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Abstract. Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we denote by
Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is counted m times
if m 6 k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g) then we say that f and g

share the value a with weight k. Using this idea of sharing values we study the uniqueness
of meromorphic functions whose certain nonlinear differential polynomials share a nonzero
polynomial with finite weight. The results of the paper improve and generalize the related
results due to Xia and Xu (2011) and the results of Li and Yi (2011).
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1. Introduction, definitions and results

In this paper, by meromorphic functions we will always mean meromorphic func-

tions in the complex plane. We assume the reader is familiar with the basic notions

of Nevanlinna value distribution theory (see [6] and [18]). For a nonconstant mero-

morphic function f and positive real number r, we denote by T (r, f) the Nevanlinna

characteristic of f and by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} as

r → ∞ outside of an exceptional set of finite linear measure. We denote by T (r) the

maximum of T (r, f) and T (r, g). The symbol S(r) denotes any quantity satisfying

S(r) = o{T (r)} as r → ∞.

Let f and g be two nonconstant meromorphic functions and a ∈ C∪{∞}. If f −a

and g − a have the same zeros, we say that f and g share the value a IM (ignoring
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multiplicities). If f − a and g − a have the same zeros with the same multiplicities,

then we say that f and g share the value a CM (counting multiplicities). In addition,

we need the following definitions.

Definition 1 ([8]). Let a ∈ C∪{∞}. We denote by N(r, a; f | = 1) the counting

function of simple a points of f . For a positive integer p we denote by N(r, a; f | 6 p)

the counting function of those a-points of f (counted with proper multiplicities)

whose multiplicities are not greater than p. By N(r, a; f | 6 p) we denote the corre-

sponding reduced counting function. Analogously we can define N(r, a; f | > p) and

N(r, a; f | > p).

Definition 2 ([9]). Let k be a positive integer or infinity. We denote by

Nk(r, a; f) the counting function of a-points of f , where an a-point of multiplicity m

is counted m times if m 6 k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f | > 2) + . . . +N(r, a; f | > k).

Clearly N1(r, a; f) = N(r, a; f).

Definition 3. Let a be a value in the extended complex plane and k an arbitrary

nonnegative integer. We define

Θ(a, f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
,

and

Θk)(a, f) = 1− lim sup
r→∞

N(r, a; f | 6 k)

T (r, f)
.

In 1999 Lahiri [10] studied the uniqueness problems of meromorphic functions

when two linear differential polynomials share the same 1-points. In the same paper

regarding the nonlinear differential polynomials Lahiri asked the following question.

Q u e s t i o n 1. What can be said about the relationship between two meromor-

phic functions f and g when two nonlinear differential polynomials generated by

them share certain values?

Afterwards, research works concerning Question 1 have been done by many math-

ematicians and continuous efforts are being put in to relax the hypothesis of the

results, cf. [2]–[5], [8], [13].

In 2004 Lin and Yi [13] proved the following result which dealt with Question 1.
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Theorem A. Let f and g be two nonconstant meromorphic functions satisfying

Θ(∞, f) > 2/(n+ 1), n > 12 an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share the

value 1 CM, then f ≡ g.

A new trend in this direction is to consider the uniqueness of a meromorphic

function concerning the value sharing of the k-th derivatives of a linear expression of

a meromorphic function. For the last couple of years a number of astonishing results

have been obtained regarding the value sharing of nonlinear differential polynomials

which are mainly the k-th derivative of some linear expressions of f and g (see [1],

[3], [12], [14] and [16], for example). In 2007 Bhoosnurmath and Dyavanal [3] proved

the following result which extends Theorem A.

Theorem B. Let f and g be two nonconstant meromorphic functions such that

Θ(∞, f) > 3/(n+ 1), and let n, k be two positive integers satisfying n > 3k+13. If

(fn(f − 1))(k) and (gn(g − 1))(k) share 1 CM, then f = g.

A recent development to the uniqueness theory has been to consider weighted

sharing instead of sharing IM or CM; this implies a gradual change from sharing IM to

sharing CM. This notion of weighted sharing was introduced by Lahiri around 2000.

It measures how close a shared value is to being shared CM or to being shared IM.

The definition is as follows.

Definition 4 ([9]). Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}

we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m

is counted m times if m 6 k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we

say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is an

a-point of f with multiplicity m (6 k) if and only if it is an a-point of g with

multiplicity m (6 k), and z0 is an a-point of f with multiplicity m (> k) if and only

if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal

to n.

We write f , g share (a, k) meaning that f , g share the value a with weight k.

Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 6 p < k. Also we

note that f , g share the value a IM or CM if and only if f , g share (a, 0) or (a,∞),

respectively.

Using the notion of weighted value sharing, Banerjee [1] proved the following result

in 2011 which improves and generalizes Theorem B.
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Theorem C. Let f and g be two transcendental meromorphic functions and

n > 1, k > 1, l > 0 three integers such that Θ(∞, f)+Θ(∞, g) > 4/n. Suppose that

(fn(af + b))(k) and (gn(ag + b))(k) share (1, l) where a and b are any two nonzero

constants. If l > 2 and n > 3k + 9 or if l = 1 and n > 4k + 10 or if l = 0 and

n > 9k+18, then either (fn(af + b))(k)(gn(ag+ b))(k) = 1 or f = g. The possibility

(fn(af + b))(k)(gn(ag + b))(k) = 1 does not occur for k = 1.

In 2011 the present author studied the uniqueness problem of meromorphic func-

tions concerning some general differential polynomials and proved the following result

which improves and extends Theorem C.

Theorem D ([14]). Let f and g be two transcendental meromorphic functions,

and let n > 1, k > 1, m > 1 and l > 0 be four integers. Let P (z) = amzm + . . . +

a1z + a0, where a0 (6= 0), a1, . . . , am (6= 0) are complex constants. Suppose that

(fnP (f))(k) and (gnP (g))(k) share (1, l) and one of the following conditions holds:

(a) l > 2 and n > 3k +m+ 8;

(b) l = 1 and n > 4k + 3
2m+ 9;

(c) l = 0 and n > 9k + 4m+ 14.

Then either (fnP (f))(k)(gnP (g))(k) = 1 or f = tg for a constant t such that

td = 1, where d = gcd(n + m, . . . , n + m − i, . . . , n + 1, n), am−i 6= 0 for some

i = 0, 1, . . . ,m, or f and g satisfy the algebraic equation R(f, g) = 0, where R(f, g) =

fnP (f) − gnP (g). The possibility (fnP (f))(k)(gnP (g))(k) = 1 does not arise for

k = 1.

In view of Theorems C and D one may ask the following question.

Q u e s t i o n 2. Is it possible in any way to remove the conclusion (fnP (f))(k) ×

(gnP (g))(k) = 1 in Theorems C and D?

In this direction Xia and Xu [16] proved the following results, which dealt with

Question 2.

Theorem E. Let n, m, k be three positive integers, and let f and g be two non-

constant meromorphic functions such that (fn(f − 1)m)(k) and (gn(g − 1)m)(k)

share 1 CM. If m > k and n > 3k+m+8, and Θ(∞, f) > 2m(n+m)/((n+m)2−4k2)

or Θ(∞, g) > 2m(n+m)/((n+m)2 − 4k2), then either f = g, or f and g satisfy the

algebraic equation R(f, g) = 0, where

R(w1, w2) = wn
1 (w1 − 1)m − wn

2 (w2 − 1)m.
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Theorem F. Let n, m, k be three positive integers, and let f and g be two

nonconstant meromorphic functions such that (fn(f − 1)m)(k) and (gn(g − 1)m)(k)

share 1 CM. If m 6 k and n > 3k +m+ 8, and

(1.1) Θ(∞, f) + Θ[k/m])(1, f) > 1 +
2m(n+m)

(n+m)2 − 4k2

or

(1.2) Θ(∞, g) + Θ[k/m])(1, g) >
2m(n+m)

(n+m)2 − 4k2
,

then the conclusions of Theorem E hold.

The following question arises:

Q u e s t i o n 3. What can be said if the sharing value 1 in the above theorems is

replaced by a nonzero polynomial?

In 2011 Li and Yi [12] answered the above question by proving the following

theorems.

Theorem G. Let f and g be two transcendental meromorphic functions, and

let n, k be two positive integers satisfying n > 3k + 11 and max{χ1, χ2} < 0, where

(1.3) χ1 =
2

n− 2k + 1
+

2

n+ 2k + 1
+

2k + 1

n+ k + 1
+ 1−Θk)(1, f)−Θk−1)(1, f)

and

(1.4) χ2 =
2

n− 2k + 1
+

2

n+ 2k + 1
+

2k + 1

n+ k + 1
+ 1−Θk)(1, g)−Θk−1)(1, g).

If Θ(∞, f) > 2/n and if (fn(f − 1))(k) − P1 and (gn(g − 1))(k) − P1 share 0 CM,

where P1 is a nonzero polynomial, then f = g.

Theorem H. Let f and g be two transcendental meromorphic functions, and

let n, k be two positive integers satisfying n > 9k + 20 and max{χ1, χ2} < 0,

where χ1 and χ2 are defined as in (1.3) and (1.4), respectively. If Θ(∞, f) > 2/n

and if (fn(f − 1))(k) −P1 and (g
n(g− 1))(k) −P1 share 0 IM, where P1 is a nonzero

polynomial, then f = g.

Regarding Theorems G and H, it is natural to ask the following questions which

are the motive of the present author.
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Qu e s t i o n 4. Is it possible in any way to further reduce the lower bound of n

in Theorems G and H?

Q u e s t i o n 5. What can be said about the relationship between two transcen-

dental meromorphic functions f and g if one replaces the differential polynomials

(fn(f − 1))(k) and (fn(f − 1)m)(k) by (fnP (f))(k) in Theorems E–H where P (z) is

defined as in Theorem D?

In the paper, our main concern is to find the possible answer to the above questions.

We prove two theorems which not only give a compact form of Theorems G and H,

but at the same time improve and generalize them. We now state the main results

of the paper.

Theorem 1. Let f and g be two transcendental meromorphic functions, and

let n > 1, k > 1, m > 1 and l > 0 be four integers such that Θ(∞, f) +

Θ(∞, g) > 4/n. Let P (z) be defined as in Theorem D. Suppose that (fnP (f))(k)−P1

and (gnP (g))(k) − P1 share (0, l), where P1 is a nonzero polynomial. If li 6 k, and

(1.5) p+Θ(∞, f) +

p
∑

i=1

Θ[k/li])(0, f − ci) > 2 +
2m(n+m)

(n+m+ 2k)(n+m− 2k)

or

(1.6) p+Θ(∞, g) +

p
∑

i=1

Θ[k/li])(0, g − ci) > 2 +
2m(n+m)

(n+m+ 2k)(n+m− 2k)

where p is the number of distinct roots of P (z) = 0, ci is a zero of P (z) of multiplic-

ity li, i = 1, 2, . . . , p, and one of l > 2, n > 3k+m+8; l = 1, n > 4k+ 3
2m+9; l = 0,

n > 9k + 4m+ 14 is satisfied, then either f = tg for a constant t such that td = 1,

where d = gcd(n+m, . . . , n+m− j, . . . , n+1, n), am−j 6= 0 for some j = 0, 1, . . . ,m,

or f , g satisfy the equation

fnP (f)− gnP (g) = 0.

In particular, f = g when m = 1.

Theorem 2. Let f and g be two transcendental meromorphic functions, and

let n > 1, k > 1, m > 1 and l > 0 be four integers such that Θ(∞, f) +

Θ(∞, g) > 4/n. Let P (z) be defined as in Theorem D. Suppose that (fnP (f))(k)−P1

and (gnP (g))(k) − P1 share (0, l), where P1 is a nonzero polynomial, li > k for

i = 1, 2, . . . , p and one of the following conditions holds:
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(a) l > 2 and n > max{2k + 3m, 3k +m+ 8};

(b) l = 1 and n > max{2k + 3m, 4k + 3
2m+ 9};

(c) l = 0 and n > max{2k + 3m, 9k + 4m+ 14}.

Then the conclusions of Theorem 1 hold.

R em a r k 1. If P (z) = 0 has only one root of multiplicity m then the inequali-

ties (1.5) and (1.6) are the same as (1.1) and (1.2). In this case Theorems 1 and 2

improve Theorems F and E, respectively, by relaxing the nature of sharing.

R em a r k 2. Taking P (z) = z−1 we see that Theorem 1 improves Theorem G by

reducing the lower bound of n as well as by relaxing the nature of sharing. Theorem 1

also improves Theorem H by reducing the lower bound of n.

2. Lemmas

Let F and G be two nonconstant meromorphic functions defined in the open

complex plane C. We denote by H the function

H =
(F ′′

F ′
−

2F ′

F − 1

)

−
(G′′

G′
−

2G′

G− 1

)

.

Lemma 1 ([17]). Let f be a transcendental meromorphic function, and let Pn(f)

be a polynomial in f of the form

Pn(f) = anf
n(z) + an−1f

n−1(z) + . . . + a1f(z) + a0,

where an (6= 0), an−1, . . . , a1, a0 are complex numbers. Then

T (r, Pn(f)) = nT (r, f) +O(1).

Lemma 2 ([19]). Let f be a nonconstant meromorphic function, and let p, k be

positive integers. Then

Np(r, 0; f
(k)) 6 T (r, f (k))− T (r, f) +Np+k(r, 0; f) + S(r, f),(2.1)

Np(r, 0; f
(k)) 6 kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).(2.2)
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Lemma 3 ([11]). If N(r, 0; f (k)|f 6= 0) denotes the counting function of those

zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according

to its multiplicity, then

N(r, 0; f (k)|f 6= 0) 6 kN(r,∞; f) +N(r, 0; f | < k) + kN(r, 0; f | > k) + S(r, f).

Lemma 4 ([9]). Let f and g be two nonconstant meromorphic functions shar-

ing (1, 2). Then one of the following cases occurs:

(i) T (r) 6 N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r),

(ii) f = g,

(iii) fg = 1.

Lemma 5 ([2]). Let F and G be two nonconstant meromorphic functions shar-

ing (1, 1) and let H 6≡ 0. Then

T (r, F ) 6 N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

+
1

2
N(r, 0;F ) +

1

2
N(r,∞;F ) + S(r, F ) + S(r,G).

Lemma 6 ([2]). Let F and G be two nonconstant meromorphic functions sharing

(1, 0) and let H 6≡ 0. Then

T (r, F ) 6 N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F )

+N(r, 0;G) + 2N(r,∞;F ) +N(r,∞;G) + S(r, F ) + S(r,G).

Lemma 7. Let f and g be two transcendental meromorphic functions, and let n,

k, m be three positive integers. If li > k and n > 2k + 3m or if li 6 k and (1.5)

or (1.6) holds, then

(fnP (f))(k)(gnP (g))(k) 6≡ P 2
1 ,

where P1 is a nonzero polynomial, P (z) is defined as in Theorem D and li’s,

i = 1, 2, . . . , p are positive integers defined as in Theorem 1.

P r o o f. We discuss the following two cases separately.

Case (i). Let li > k for i = 1, 2, . . . , p. We may assume that

(2.3) (fnP (f))(k)(gnP (g))(k) = P 2
1 .
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We write P (z) as

P (z) = am(z − c1)
l1(z − c2)

l2 . . . (z − ci)
li . . . (z − cp)

lp ,

where
p
∑

i=1

li = m, 1 6 p 6 m; ci 6= cj , i 6= j, 1 6 i, j 6 p; ci’s are nonzero constants

and li’s are positive integers, i = 1, 2, . . . , p. Let z0 6∈ {z : P1(z) = 0} be a zero of f

with multiplicity p0 (> 1). Then it follows from (2.3) that z0 is a pole of g. Suppose

that z0 is a pole of g of order q0 (> 1). Then we have

(2.4) np0 − k = (n+m)q0 + k.

From (2.4) we get mq0+2k = n(p0− q0) > n, i.e., q0 > (n− 2k)/m. Thus from (2.4)

we obtain np0 = (n+m)q0 + 2k, and so

p0 >
n+m− 2k

m
.

Let z1 6∈ {z : P1(z) = 0} be a zero of P (f) with multiplicity p1 and be a zero of f−ci
of order ri for i = 1, 2, . . . , p. Then p1 = rili for i = 1, 2, . . . , p. Since li > k, z1 is

a zero of (fnP (f))(k) of multiplicity rili−k. Then (2.3) implies that z1 is a pole of g

with multiplicity q1, say. Therefore from (2.3) we get

rili − k = (n+m)q1 + k

i.e., ri > (n+m+ 2k)/li for i = 1, 2, . . . , p. Let z2 6∈ {z : P1(z) = 0} be a zero of

(fnP (f))(k) of order p2 that is not a zero of f
nP (f). Then from (2.3) we see that z2

is a pole of g. Suppose that z2 is a pole of g of order q2. Then

p2 = (n+m)q2 + k > n+m+ k.

Suppose that z3 6∈ {z : P1(z) = 0} is a pole of f . Then by virtue of (2.3), z3 is either

a zero of gnP (g) or a zero of (gnP (g))(k). Therefore

(2.5) N(r,∞; f) 6 N(r, 0; g) +N(r, 0;P (g)) +N(r, 0;h(k)|h 6= 0) + S(r, g),

where N(r, 0;h(k)|h 6= 0) denotes the reduced counting function of those zeros of h(k)

that are not zeros of h and h = gnP (g).

By Lemma 3 we have

N(r, 0;h(k)|h 6= 0) 6
1

n+m+ k
N(r, 0;h(k)|h 6= 0)

6
1

n+m+ k
(kN(r,∞;h) +N(r, 0;h| < k) + kN(r, 0;h| > k))

6
1

n+m+ k
(kN(r,∞;h) +Nk(r, 0;h))

6
k

n+m+ k
(N (r,∞; g) +N(r, 0; g) +N(r, 0;P (g))).
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So from (2.5) we obtain

N(r,∞; f) 6
n+m+ 2k

n+m+ k
(N(r, 0; g) +N(r, 0;P (g)))

+
k

n+m+ k
N(r,∞; g) + S(r, g)

6
n+m+ 2k

n+m+ k

( m

n+m− 2k
+

m

n+m+ 2k

)

T (r, g)

+
k

n+m+ k
N(r,∞; g) + S(r, g)

6

( 2m(n+m)

(n+m+ k)(n+m− 2k)
+

k

n+m+ k

)

T (r, g) + S(r, g).

Using the second fundamental theorem of Nevanlinna we get

pT (r, f) 6 N(r,∞; f) +N(r, 0; f) +

p
∑

i=1

N(r, ci; f) + S(r, f)(2.6)

6

( 2m(n+m)

(n+m+ k)(n+m− 2k)
+

k

n+m+ k

)

T (r, g)

+
2m(n+m)

(n+m+ 2k)(n+m− 2k)
T (r, f) + S(r, f) + S(r, g).

Similarly,

pT (r, g) 6
( 2m(n+m)

(n+m+ k)(n+m− 2k)
+

k

n+m+ k

)

T (r, f)(2.7)

+
2m(n+m)

(n+m+ 2k)(n+m− 2k)
T (r, g) + S(r, f) + S(r, g).

From (2.6) and (2.7) we obtain

(

p−
k

n+m+ k
−

2m(n+m)

(n+m+ k)(n+m− 2k)
(2.8)

−
2m(n+m)

(n+m+ 2k)(n+m− 2k)

)

(T (r, f) + T (r, g)) 6 S(r, f) + S(r, g).

Since n > 2k + 3m, a simple calculation shows that

p−
k

n+m+ k
−

2m(n+m)

(n+m+ k)(n+m− 2k)
−

2m(n+m)

(n+m+ 2k)(n+m− 2k)
> 0,

which contradicts (2.8).
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Case (ii). Let li 6 k for i = 1, 2, . . . , p. Let z4 6∈ {z : P1(z) = 0} be a zero of P (f)

with multiplicity p4 and a zero of f − ci of order ri > [k/li] + 1 for i = 1, 2, . . . , p.

Then z4 is a zero of (f
nP (f))(k) of multiplicity rili − k (> 1). Then (2.3) implies

that z4 is a pole of g. Suppose that z4 is a pole of g of order q4 (> 1). Thus we

obtain

ri >
n+m+ 2k

li
for i = 1, 2, . . . , p. Thus

N(r, 0; f − ci) 6 N
(

r, 0; f − ci| 6
[k

li

])

+N
(

r, 0; f − ci| >
[k

li

]

+ 1
)

6 N
(

r, 0; f − ci| 6
[k

li

])

+
li

n+m+ 2k
N
(

r, 0; f − ci| >
[ k

li

]

+ 1
)

.

Then by Nevanlinna’s second fundamental theorem, we obtain

pT (r, f) 6 N(r,∞; f) +N(r, 0; f) +

p
∑

i=1

N(r, ci; f) + S(r, f)

6 N(r,∞; f) +
m

n+m− 2k
N(r, 0; f) +

p
∑

i=1

N
(

r, 0; f − ci| 6
[ k

li

])

+

p
∑

i=1

li
n+m+ 2k

N
(

r, 0; f − ci| >
[k

li

]

+ 1
)

+ S(r, f).

This gives

(

p+Θ(∞, f)+

p
∑

i=1

Θ[k/li])(0, f−ci)−2−
2m(n+m)

(n+m+ 2k)(n+m− 2k)

)

T (r, f)6S(r, f),

which contradicts the assumption (1.5). This proves the lemma. �

Lemma 8. Let f and g be two nonconstant meromorphic functions such that

Θ(∞, f) + Θ(∞, g) >
4

n
,

where n (> 3) is an integer. Then

fn(af + b) = gn(ag + b)

implies f = g, where a, b are any two nonzero finite complex constants.

P r o o f. We omit the proof since it can be carried out along the lines of the proof

of Lemma 6 in [7]. �

The following lemma can be proved in the same manner as Lemma 2.14 in [15].
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Lemma 9. Let f and g be two transcendental meromorphic functions, and let n, k

be two positive integers. Suppose that F = (fnP (f))(k)/P1 and G = (gnP (g))(k)/P1

where P1 is a nonzero polynomial. If there exist two nonzero constants d1 and d2
such that N(r, d1;F ) = N(r, 0;G) and N(r, d2;G) = N(r, 0;F ), then n 6 3k+m+3.

Lemma 10 ([15]). Let f and g be two transcendental meromorphic functions,

and let n, k be two positive integers. Suppose that F1 = (fnP (f))(k) and G1 =

(gnP (g))(k). If there exist two nonzero constants d3 and d4 such that N(r, d3;F1) =

N(r, 0;G1) and N(r, d4;G1) = N(r, 0;F1), then n 6 3k +m+ 3.

3. Proof of the theorem

P r o o f of Theorem 2. Let F and G be defined as in Lemma 9. Then F , G are

transcendental meromorphic functions that share (1, l). Then from (2.1) we obtain

N2(r, 0;F )(3.1)

6 N2(r, 0; (f
nP (f))(k)) + S(r, f)

6 T (r, (fnP (f))(k))− (n+m)T (r, f) +Nk+2(r, 0; f
nP (f)) + S(r, f)

6 T (r, F )− (n+m)T (r, f) +Nk+2(r, 0; f
nP (f)) +O{log r} + S(r, f).

Again by (2.2) we have

(3.2) N2(r, 0;F ) 6 kN(r,∞; f) +Nk+2(r, 0; f
nP (f)) + S(r, f).

Therefore from (3.1) we get

(n+m)T (r, f) 6 T (r, F ) +Nk+2(r, 0; f
nP (f))(3.3)

−N2(r, 0;F ) +O{log r}+ S(r, f).

We now discuss the following three cases separately.

Case 1. Let l > 2. We assume that (i) of Lemma 4 holds. Then using (3.2) we

obtain from (3.3)

(n+m)T (r, f) 6 N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)(3.4)

+Nk+2(r, 0; f
nP (f)) +O{log r} + S(r, f) + S(r, g)

6 Nk+2(r, 0; f
nP (f)) +Nk+2(r, 0; g

nP (g)) + 2N(r,∞; f)

+ (k + 2)N(r,∞; g) +O{log r} + S(r, f) + S(r, g)
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6 (k +m+ 2)(T (r, f) + T (r, g)) + 2N(r,∞; f)

+ (k + 2)N(r,∞; g) +O{log r} + S(r, f) + S(r, g)

6 (k +m+ 4− 2Θ(∞, f) + ε)T (r, f) +
(

2k +m+ 4

− (k + 2)Θ(∞, g) + ε
)

T (r, g) + S(r, f) + S(r, g)

6
(

3k + 2m+ 8− 2Θ(∞, f)− 2Θ(∞, g)

− kmin{Θ(∞, f),Θ(∞, g)}+ 2ε
)

T (r) + S(r).

Similarly

(n+m)T (r, g) 6
(

3k + 2m+ 8− 2Θ(∞, f)− 2Θ(∞, g)(3.5)

− kmin{Θ(∞, f),Θ(∞, g)}+ 2ε
)

T (r) + S(r).

From (3.4) and (3.5) we obtain

(n−3k−m−8+2Θ(∞, f)+2Θ(∞, g)+kmin{Θ(∞, f),Θ(∞, g)}−2ε)T (r) 6 S(r),

contradicting the fact that n > max{2k+3m, 3k+m+8}, Θ(∞, f)+Θ(∞, g) > 4/n

and ε > 0 is arbitrary. Therefore by Lemma 4 and Lemma 7 we conclude that

F = G. Then

(fnP (f))(k) = (gnP (g))(k).

Integrating both sides we obtain

(fnP (f))(k−1) = (gnP (g))(k−1) + dk−1,

where dk−1 is a constant. We assume that dk−1 6= 0. Then from Lemma 10 we

obtain n 6 3k +m, a contradiction. Hence dk−1 = 0. Repeating k-times, we obtain

(3.6) fnP (f) = gnP (g).

Let h = f/g. If h is a constant, by putting f = gh in (3.6) we get

amgn+m(hn+m − 1) + am−1g
n+m−1(hn+m−1 − 1) + . . .

+ a1g
n+1(hn+1 − 1) + a0g

n(hn − 1) = 0,

which implies hd = 1, where d = gcd(n + m, . . . , n + m − j, . . . , n + 1, n) for some

j = 0, 1, . . . ,m. Thus f = tg for a constant t such that td = 1, d = gcd(n+m, . . . ,

n+m− j, . . . , n+ 1, n), for some j = 0, 1, . . . ,m.
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If h is not a constant, then from (3.6) we see that f and g satisfy the algebraic

equation R(f, g) = 0, where

R(f, g) = fnP (f)− gnP (g).

Case 2. Let l = 1 and H 6≡ 0. Using Lemma 5 and (3.2) we obtain from (3.3)

(n+m)T (r, f)(3.7)

6 N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

+
1

2
N(r, 0;F ) +

1

2
N(r,∞;F ) +Nk+2(r, 0; f

nP (f))

+O{log r} + S(r, f) + S(r, g)

6 Nk+2(r, 0; f
nP (f)) +Nk+2(r, 0; g

nP (g))

+
1

2
Nk+1(r, 0; f

nP (f)) +
k + 5

2
N(r,∞; f)

+ (k + 2)N(r,∞; g) +O{log r}+ S(r, f) + S(r, g)

6

(

2k +
3m

2
+ 5−

(k

2
+ 2

)

Θ(∞, f)−
1

2
Θ(∞, f) + ε

)

T (r, f)

+
(

2k +m+ 4−
(k

2
+ 2

)

Θ(∞, g)−
k

2
Θ(∞, g) + ε

)

T (r, g)

+O{log r} + S(r, f) + S(r, g)

6

(

4k +
5m

2
+ 9−

k + 5

2
(Θ(∞, f) + Θ(∞, g)) + 2ε

)

T (r) + S(r).

Similarly

(3.8) (n+m)T (r, g) 6
(

4k+
5m

2
+9−

k + 5

2
(Θ(∞, f)+Θ(∞, g))+2ε

)

T (r)+S(r).

From (3.7) and (3.8) we obtain

(

n− 4k −
3m

2
− 9 +

k + 5

2
(Θ(∞, f) + Θ(∞, g))− 2ε

)

T (r) 6 S(r),

a contradiction since n > max{2k + 3m, 4k + 3
2m + 9}, Θ(∞, f) + Θ(∞, g) > 4/n

and ε > 0 is arbitrary. Therefore H = 0. That is,

(F ′′

F ′
−

2F ′

F − 1

)

−
(G′′

G′
−

2G′

G− 1

)

= 0.

Integrating both sides of the above equality twice we get

(3.9)
1

F − 1
=

A

G− 1
+B,
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where A (6= 0) and B are constants. From (3.9) it is clear that F , G share the

value 1 CM and so they share (1, 2). Hence we have n > max{2k+3m, 3k+m+8}.

Now we discuss the following three subcases separately.

Subcase 1. Let B 6= 0 and A = B. Then from (3.9) we get

(3.10)
1

F − 1
=

BG

G− 1
.

If B = −1, then from (3.10) we get FG = 1, a contradiction by Lemma 7.

If B 6= −1, from (3.10) we obtain 1/F = BG/((1 +B)G− 1) and so

N
(

r,
1

1 +B
;G

)

= N(r, 0;F ).

Using the second fundamental theorem of Nevanlinna, we obtain

T (r,G) 6 N(r, 0;G) +N
(

r,
1

1 +B
;G

)

+N(r,∞;G) + S(r,G)

6 N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G).

Using (2.1) and (2.2) we obtain from the above inequality

T (r,G) 6 Nk+1(r, 0; f
nP (f)) + kN(r,∞; f) + T (r,G)

+Nk+1(r, 0; g
nP (g))− (n+m)T (r, g) +N(r,∞; g) + S(r, g).

Hence

(n+m)T (r, g) 6 (2k +m+ 1)T (r, f) + (k +m+ 2)T (r, g) + S(r, g).

This gives

(n− 3k −m− 3)(T (r, f) + T (r, g)) 6 S(r, f) + S(r, g),

a contradiction as n > max{2k + 3m, 3k +m+ 8}.

Subcase 2. Let B 6= 0 and A 6= B. Then from (3.9) we get F = ((B + 1)G −

(B − A + 1))/(BG + (A − B)) and so N(r, (B −A+ 1)/(B + 1);G) = N(r, 0;F ).

Proceeding similarly to Subcase 1 we obtain a contradiction.

Subcase 3. Let B = 0 and A 6= 0. Then from (3.9) we get F = (G+A− 1)/A and

G = AF−(A−1). IfA 6= 1 thenN(r, (A− 1)/A;F ) = N(r, 0;G) andN(r, 1−A;G) =

N(r, 0;F ). So by Lemma 9 we have n 6 3k +m + 3, a contradiction. Thus A = 1

and hence F = G. Then the result follows from Case 1.
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Case 3. Let l = 0 and H 6≡ 0. Using Lemma 6 and (3.2) we obtain from (3.3)

(n+m)T (r, f)(3.11)

6 N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F )

+N(r, 0;G) +Nk+2(r, 0; f
nP (f)) + 2N(r,∞;F )

+N(r,∞;G) +O{log r} + S(r, f) + S(r, g)

6 Nk+2(r, 0; f
nP (f)) +Nk+2(r, 0; g

nP (g)) + 2Nk+1(r, 0; f
nP (f))

+Nk+1(r, 0; g
nP (g)) + (2k + 4)N(r,∞; f)

+ (2k + 3)N(r,∞; g) +O{log r} + S(r, f) + S(r, g)

6
(

5k + 3m+ 8− (2k + 4)Θ(∞, f)− ε
)

T (r, f)

+
(

4k + 2m+ 6− (2k + 3)Θ(∞, g)− ε
)

T (r, g)

+O{log r} + S(r, f) + S(r, g)

6
(

9k + 5m+ 14− (2k + 3)(Θ(∞, f) + Θ(∞, g))

−min{Θ(∞, f),Θ(∞, g)}+ 2ε
)

T (r) + S(r).

Similarly,

(n+m)T (r, g) 6 (9k + 5m+ 14− (2k + 3)(Θ(∞, f) + Θ(∞, g))(3.12)

−min{Θ(∞, f),Θ(∞, g)}+ 2ε)T (r) + S(r).

Combining (3.11) and (3.12) we obtain

(

n− 9k − 4m− 14 + (2k + 3)(Θ(∞, f) + Θ(∞, g))

+ min{Θ(∞, f),Θ(∞, g)} − 2ε
)

T (r) 6 S(r),

which contradicts the fact that

n > max{2k + 3m, 9k + 4m+ 14}, Θ(∞, f) + Θ(∞, g) > 4/n

and ε > 0 is arbitrary. Therefore H = 0 and then proceeding in the same manner as

in Case 2 the result follows.

This completes the proof of the theorem. �

P r o o f of Theorem 1. Proceeding along the lines of the proof of Theorem 2 and

using the case li 6 k of Lemma 7 and Lemma 8 we can easily deduce the conclusions

of Theorem 1. We omit the details here. �
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