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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 4 , P AGES 5 1 4 – 5 3 0

ON THE RESOLUTION OF BIPOLAR MAX-MIN
EQUATIONS

Pingke Li and Qingwei Jin

This paper investigates bipolar max-min equations which can be viewed as a generalization
of fuzzy relational equations with max-min composition. The relation between the consistency
of bipolar max-min equations and the classical boolean satisfiability problem is revealed. Con-
sequently, it is shown that the problem of determining whether a system of bipolar max-min
equations is consistent or not is NP-complete. Moreover, a consistent system of bipolar max-
min equations, as well as its solution set, can be fully characterized by a system of integer linear
inequalities.

Keywords: bipolar max-min equations, fuzzy relational equations, satisfiability, linear in-
equalities

Classification: 90C70, 49M37

1. INTRODUCTION

Let F = ([0, 1],∨,∧,→,¬) be the fuzzy algebra where ¬ is a unary operator on [0, 1] such
that ¬a = 1−a and ∨, ∧, and→ are binary operators on [0, 1] such that a∨b = max{a, b},
a ∧ b = min{a, b}, and

a→ b =

{
1, if a ≤ b,

b, otherwise.

A finite system of bipolar max-min equations, first described in Freson et al. [4], is of
the form ∨

j∈N
(a+
ij ∧ xj) ∨ (a−ij ∧ ¬xj) = bi, i ∈M, (1)

where M = {1, 2, . . . ,m} and N = {1, 2, . . . , n} are two index sets, and a+
ij , a

−
ij ,

bi, and xj are all real numbers in [0, 1]. Denote A+ = (a+
ij)m×n, A− = (a−ij)m×n,

b = (b1, b2, . . . , bm)T , x = (x1, x2, . . . , xn)T , and ¬x = (1 − x1, 1 − x2, . . . , 1 − xn)T ,
respectively. A given system of bipolar max-min equations, with x unknown, can be
expressed in the matrix form as

A+ ◦ x ∨A− ◦ ¬x = b (2)
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where “◦” denotes the max-min composite operation for matrix multiplication. Its
solution set is denoted by S(A+, A−,b), that is,

S(A+, A−,b) = {x ∈ [0, 1]n|A+ ◦ x ∨A− ◦ ¬x = b}.

Solving A+◦x∨A−◦¬x = b is to determine its solution set S(A+, A−,b). The system of
bipolar max-min equations A+ ◦x∨A− ◦¬x = b is called consistent if S(A+, A−,b) 6= ∅
and inconsistent otherwise.

Note that if either A+ or A− is a zero matrix, A+ ◦x∨A− ◦¬x = b degenerates into
A− ◦ ¬x = b or A+ ◦ x = b, respectively, i. e., a system of max-min equations which
has been intensively investigated under the name of fuzzy relational equations. The
consistency of A+ ◦ x = b can be determined in polynomial time and its solution set,
if not empty, can be characterized by a maximum solution and finitely many minimal
solutions. The system A− ◦ ¬x = b can be handled analogously and its solution set,
if not empty, can be characterized by a minimum solution and finitely many maximal
solutions. For some detailed discussion on fuzzy relational equations, see, e. g., Di Nola
et al. [3], De Baets [2], Peeva and Kyosev [11], Li and Fang [7, 8], Li [6], and references
therein.

The bipolar max-min equations and the associated linear optimization problem were
first proposed and investigated by Freson et al. [4] with a potential application in revenue
management. Since the solution set can be well characterized for each single equation
of A+ ◦x∨A− ◦¬x = b, it follows that the desired solution set S(A+, A−,b), whenever
nonempty, can be characterized by a finite set of maximal and minimal solution pairs.
Consequently, the linear optimization problem subject to a system of bipolar max-min
equations can be solved by evaluating all those maximal and minimal solutions. How-
ever, this procedure is not computationally efficient since the number of maximal and
minimal solution pairs could be exponentially large. Besides, the identification of these
maximal and minimal solution pairs itself may not be an easy problem. In this paper, by
combining the techniques developed in Li and Fang [7] and Li and Jin [9], we provide a
reformulation approach to bipolar max-min equations and demonstrate that a system of
bipolar max-min equations can be characterized by a system of integer linear inequali-
ties. This implies that the bipolar max-min equation constrained optimization problems
may be handled within the framework of integer and combinatorial optimization and
hence demand no particular solving techniques.

The rest of this paper is organized as follows. The consistency issues of bipolar max-
min equations are investigated in Section 2 via the polynomial-time reduction from the
boolean satisfiability problem. It is shown that determining the consistency of bipolar
max-min equations is NP-complete. An integer optimization based approach is applied
in Section 3 to reformulate a system of bipolar max-min equations and characterize its
solution set in a succinct manner. Some concluding remarks are presented in Section 4.

2. CONSISTENCY OF BIPOLAR MAX-MIN EQUATIONS

In this section, we apply some basic techniques originally developed for solving fuzzy
relational equations, see, e. g., Li and Fang [7] and Li and Jin [9], to demonstrate that
determining the consistency of a system of bipolar max-min equations is an NP-complete
problem.
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For a given system of bipolar max-min equations A+◦x∨A−◦¬x = b, we may assume
without loss of generality that b1 ≥ b2 ≥ · · · ≥ bm, i. e., the equations are arranged such
that the right hand side coefficients are in a decreasing order. Moreover, we may assume
that bi > 0 for all i ∈ M . Otherwise, any solution x ∈ S(A+, A−,b) must have xj = 0
for j ∈ N+

0 = {j ∈ N |a+
ij > 0, i ∈M0} and xj = 1 for j ∈ N−0 = {j ∈ N |a−ij > 0, i ∈M0}

where M0 = {i ∈ M |bi = 0} 6= ∅. Hence, if N+
0 ∩ N

−
0 6= ∅, the system is inconsistent.

Otherwise, it is a routine to delete the equations corresponding to M0 and the columns in
the coefficient matrices and the unknowns corresponding to N+

0 and N−0 . Any solution
to the reduced system of bipolar max-min equations can be transformed into a solution
to the original system by setting xj = 0 for j ∈ N+

0 and xj = 1 for j ∈ N−0 .
Before we tackle bipolar max-min equations, we should introduce some simple but

fundamental results in Lemma 2.1, which, as well as their variants, play a key role in
solving fuzzy relational equations of various types.

Lemma 2.1. For any a, b ∈ [0, 1], it holds that a ∧ x ≤ b if and only if x ≤ a → b.
Moreover, a ∧ x = b has a solution if and only if b ≤ a, in which case its solution set is
the closed interval [b, a → b]. Analogously, a ∧ ¬x ≤ b if and only if x ≥ 1 − (a → b),
while a ∧ ¬x = b has a solution if and only if b ≤ a, in which case its solution set is the
closed interval [1− (a→ b), 1− b].

Lemma 2.1 can be readily verified. It is actually the fact that the operators ∧ and→
form an adjoint pair over the unit interval. Note that the equation a∧x = b or a∧¬x = b
has multiple solutions only when a = b < 1. A direct consequence of Lemma 2.1 is that
for any a+, a−, b ∈ [0, 1],

(a+ ∧ x) ∨ (a− ∧ ¬x) ≤ b (3)

if and only if

1− (a− → b) ≤ x ≤ a+ → b. (4)

Lemma 2.2. A vector x ∈ [0, 1]n is a solution to A+ ◦ x ∨ A− ◦ ¬x = b if and only if
a+
ij ∧ xj ≤ bi and a−ij ∧ ¬xj ≤ bi for all i ∈M and j ∈ N , and also there exists an index
ji ∈ N for each i ∈M such that either a+

iji
∧ xji = bi or a−iji ∧ ¬xji = bi.

Lemma 2.2 holds in a straightforward manner because the operator ∨ is non-interactive,
i. e., a ∨ b ∈ {a, b} for any a, b ∈ [0, 1]. Lemmas 2.1 and 2.2 also indicate that if
A+ ◦ x ∨A− ◦ ¬x = b is consistent, i. e., S(A+, A−,b) 6= ∅, it necessarily holds that

bi ≤
∨
j∈N

a+
ij ∨ a

−
ij , ∀i ∈M. (5)

Furthermore, denote, respectively, x̌ = (x̌1, x̌2, . . . , x̌n)T with

x̌j =
∨
i∈M

(1− a−ij → bi) = 1−
∧
i∈M

(a−ij → bi) (6)
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and x̂ = (x̂1, x̂2, . . . , x̂n)T with

x̂j =
∧
i∈M

(a+
ij → bi). (7)

By Lemmas 2.1 and 2.2, whenever S(A+, A−,b) is nonempty, it holds that x̌ ≤ x̂ and
x̌ ≤ x ≤ x̂ for any x ∈ S(A+, A−,b). This means that the vectors x̌ and x̂ serve the
lower and upper bounds of the solutions to A+ ◦ x ∨ A− ◦ ¬x = b, respectively. Note
that if x̌j = x̂j for some j ∈ N , the variable xj in any possible solution would assume
this unique value. As a consequence, the variable xj and the equations such that either
a+
ij ∧ x̂j = bi or a−ij ∧ ¬x̌j = bi can be omitted in further analysis, resulting in a system

of bipolar max-min equations of a smaller size with strictly different lower and upper
bounds on solutions. We may hereafter assume that the lower and upper bounds x̌ and
x̂ are strictly different, i. e., x̌j < x̂j for all j ∈ N , for the system A+ ◦ x ∨A− ◦ ¬x = b
under consideration.

Nevertheless, the lower bound x̌ and upper bound x̂ themselves may not necessarily
be solutions to A+◦x∨A−◦¬x = b when S(A+, A−,b) 6= ∅. Even if x̌, x̂ ∈ S(A+, A−,b),
it does not imply that every vector x such that x̌ ≤ x ≤ x̂ belongs to S(A+, A−,b).
Hence, a further study on the structure of S(A+, A−,b) is required.

For A+◦x∨A−◦¬x = b, two set-valued matrices Q̃+ = (q̃+
ij)m×n and Q̃− = (q̃−ij)m×n,

called the characteristic matrices, can be constructed according to x̌ and x̂ such that

q̃+
ij =


{x̂j}, if a+

ij ∧ x̂j = bi, a
+
ij > bi

[x̌j ∨ bi, x̂j ], if a+
ij ∧ x̂j = bi, a

+
ij = bi,

∅ otherwise,

(8)

and

q̃−ij =


{x̌j}, if a−ij ∧ ¬x̌j = bi, a

−
ij > bi

[x̌j , x̂j ∧ ¬bi], if a−ij ∧ ¬x̌j = bi, a
−
ij = bi,

∅ otherwise.

(9)

By Lemmas 2.1 and 2.2, it is clear that the set q̃+
ij ∪ q̃

−
ij contains all the possible values

that the variable xj may assume to meet the ith equality without violating the bound
restrictions. As a consequence, A+ ◦ x ∨ A− ◦ ¬x = b is consistent only if the merged
characteristic matrix Q̃ = (Q̃+, Q̃−) contains at least one nonempty element in each
row, while the converse is not true. However, as will be illustrated in Theorem 2.3, the
matrix Q̃, along with x̌ and x̂, does record all the critical information to characterize
the solution set of A+ ◦ x ∨ A− ◦ ¬x = b. Note that it is possible that q̃+

ij ∩ q̃
−
ij 6= ∅ for

some i ∈M and j ∈ N , which means a+
ij ∧ x = a−ij ∧ ¬x = bi for x ∈ q̃+

ij ∩ q̃
−
ij .

Theorem 2.3. A vector x ∈ [0, 1]n is a solution to a system of bipolar max-min equa-
tions A+ ◦ x ∨ A− ◦ ¬x = b if and only if x̌ ≤ x ≤ x̂ and its induced binary matrix
Qx = (qxij)m×n has no zero rows where

qxij =

{
1, if xj ∈ q̃+

ij ∪ q̃
−
ij ,

0, otherwise.
(10)
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P r o o f . If x ∈ S(A+, A−,b) 6= ∅, it holds that x̌ ≤ x ≤ x̂ and also Qx is well defined
with respect to x. Subsequently, by Lemma 2.2, there exists an index ji ∈ N for each
i ∈M such that either a+

iji
∧xji = bi or a−iji∧¬xji = bi, which implies that xji ∈ q̃+

iji
∪q̃−iji

and hence qxiji = 1. Therefore, Qx has no zero rows.
Conversely, if x̌ ≤ x ≤ x̂, then a+

ij ∧ xj ≤ bi and a−ij ∧ ¬xj ≤ bi for each i ∈ M and
j ∈ N . Furthermore, according to the construction of Qx, if Qx has no zero rows, there
exists an index ji ∈ N for each i ∈M such that either a+

iji
∧ xji = bi or a−iji ∧¬xji = bi.

Hence, x ∈ S(A+, A−,b) by Lemma 2.2. �

Theorem 2.3 demonstrates the combinatorial nature of bipolar max-min equations
by revealing the connection between the solutions to A+ ◦ x ∨ A− ◦ ¬x = b and the
characteristic matrices Q̃+ and Q̃−. However, to obtain such a solution, as well as to
determine the solution set, is in general not easy because of the interaction of Q̃+ and Q̃−

in defining its induced binary matrix. Actually, a procedure used in Li and Jin [9] may
be applied analogously in this context to illustrate the NP-completeness of determining
the consistency of a system of bipolar max-min equations.

Theorem 2.4. The consistency problem of bipolar max-min equations is NP-complete.

P r o o f . It is clear that this problem is in NP. We show in this context that a boolean
formula in conjunctive normal form can be viewed as a special system of bipolar max-min
equations, which directly implies that determining whether a system of bipolar max-min
equations is consistent or not is NP-complete.

Let C1, C2, . . . , Cm be a set of clauses over the boolean variables {y1, y2, . . . , yn}
and C =

∧
i∈M Ci a boolean formula in its conjunctive normal form. A clause is a

disjunction of literals, while a literal is either a positive or a negative occurrence of a
boolean variable, i. e., yj or ¬yj for j ∈ N . Subsequently, define b = (1, 1, . . . , 1)T and
A+ = (a+

ij)m×n and A− = (a−ij)m×n, respectively, as

a+
ij =

{
1, if yj ∈ Ci,

0, otherwise,
(11)

and

a−ij =

{
1, if ¬yj ∈ Ci,

0, otherwise.
(12)

Thus, a particular system of bipolar max-min equations A+ ◦ x ∨ A− ◦ ¬x = b may be
formed, of which any solution x ∈ [0, 1]n implies, by Lemma 2.2, that there exists an
index ji ∈ N for each i ∈ M such that either a+

iji
∧ xji = 1 or a−ij ∧ ¬xj = 1, that is,

either yji ∈ Ci, xji = 1 or ¬yji ∈ Ci, xji = 0. The boolean vector y = (y1, y2, . . . , yn)T

with

yj =


1, if xj = 1,

0, if xj = 0,

0 or 1, otherwise,

(13)
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is therefore a true assignment of C =
∧
i∈M Ci. Conversely, if the boolean vector y ∈

{0, 1}n is a true assignment of C =
∧
i∈M Ci, then x = y is a solution toA+◦x∨A−◦¬x =

b by Lemma 2.2.
As a consequence, the boolean satisfiability problem is polynomially reducible to the

consistency problem of bipolar max-min equations and hence, the latter is NP-complete
as well. �

Theorem 2.4 suggests a possible method to handle bipolar max-min equations within
the framework of boolean satisfiability. Besides, by Theorem 2.3, we even don’t need to
recall the original bipolar max-min equations once we have obtained the information of
the lower bound x̌, the upper bound x̂, and the characteristic matrix Q̃. Moreover, if
only the consistency issues are concerned, we may focus on the values contained in x̌
and x̂ to simplify the analysis.

For each j ∈ N , label the value x̂j with the positive literal yj and the value x̌j with
the negative literal ¬yj , respectively, which means that xj = x̂j implies yj = 1 and
xj = x̌j implies yj = 0, and vice versa.

Subsequently, denote, for each i ∈M ,

N+
i = {j ∈ N |x̂j ∈ q̃+

ij} and N−i = {j ∈ N |x̌j ∈ q̃−ij}, (14)

and the clause

Ci =
∨

j∈N+
i

yj ∨
∨

j∈N−i

¬yj . (15)

It is clear that the clause Ci is just an alternative representation of the ith row of Q̃
concerning only its nonempty elements. Note that N+

i and N−i are not necessarily
disjoint since q̃+

ij and q̃−ij can be simultaneously nonempty for some j ∈ N . In such a
case, a+

ij ∧ x̂j = a−ij ∧ ¬x̌j = bi, which means that setting either xj = x̂j or xj = x̌j
would lead the ith equation to an equality. Consequently, the corresponding clause Ci,
containing both yj and ¬yj , becomes a tautology and hence can be omitted as long as
only the consistency is concerned. By this approach, it turns out that the consistency
of A+ ◦ x∨A− ◦ ¬x = b is fully determined by the satisfiability of C =

∧
i∈M Ci, called

its characteristic boolean formula.

Theorem 2.5. A system A+◦x∨A−◦¬x = b is consistent if and only if its characteristic
boolean formula C =

∧
i∈M Ci is satisfiable.

P r o o f . The boolean formula C =
∧
i∈M Ci is properly defined for A+◦x∨A−◦¬x = b

as long as x̌ ≤ x̂. According to Theorem 2.3, whenever S(A+, A−,b) is nonempty, there
must be a solution x = (x1, x2, . . . , xn)T such that either xj = x̂j or xj = x̌j for each
j ∈ N . Consequently, the associated boolean vector y = (y1, y2, . . . , yn)T with

yj =

{
1, if xj = x̂j ,

0, if xj = x̌j ,
(16)
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is a true assignment of C =
∧
i∈M Ci. Conversely, for any true assignment y =

(y1, y2, . . . , yn)T , the associated vector x = (x1, x2, . . . , xn)T with

xj =

{
x̂j , if yj = 1,

x̌j , if yj = 0,
(17)

is a solution to A+ ◦ x ∨ A− ◦ ¬x = b by Theorem 2.3. Therefore, the consistency of
A+ ◦ x ∨A− ◦ ¬x = b is equivalent to the satisfiability of C =

∧
i∈M Ci. �

Example 2.6. Consider the system of bipolar max-min equations A+ ◦x∨A− ◦¬x = b
with

A+ =


0.9 0.7 0.8 0.9
0.9 0.2 0.9 0.7
0.4 0.8 0.4 0.4
0.4 0.3 0.2 0.4
0.2 0.4 0.3 0.2

 , A− =


0.9 0.7 0.4 0.9
0.2 0.8 0.9 0.8
0.5 0.4 0.8 0.5
0.4 0.7 0.6 0.8
0.3 0.5 0.2 0.1

 , b =


0.8
0.8
0.6
0.5
0.4

 .

The lower bound x̌ and upper bound x̂ can be calculated, respectively, as

x̌ = (0.2, 0.6, 0.5, 0.5)T , x̂ = (0.8, 0.6, 0.8, 0.8)T ,

and neither of them is a solution. Subsequently, the associated characteristic matrices
can be calculated as

Q̃+ =


{0.8} ∅ {0.8} {0.8}
{0.8} ∅ {0.8} ∅
∅ {0.6} ∅ ∅
∅ ∅ ∅ ∅
∅ {0.6} ∅ ∅

 , Q̃− =


{0.2} ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ ∅ {0.5} {0.5}
∅ {0.6} ∅ ∅

 .

Notice that x̌2 = x̂2 = 0.6 which means in any possible solution the variable x2 can only
assume the value 0.6. Moreover, the equalities hold for the third and fifth equations
with x2 = 0.6 such that 0.8∧ 0.6 = 0.6 and 0.4∧ 0.6 = 0.5∧ (1− 0.6) = 0.4, respectively.
Consequently, the variable x2 can be omitted in further analysis together with the third
and fifth equations. Besides, the first equation can be omitted as well for consistency
checking because both q̃+

11 and q̃−11 are nonempty. Therefore, the characteristic boolean
formula can be constructed and simplified as

(y1 ∨ y3) ∧ (¬y3 ∨ ¬y4)

which is satisfiable by assigning, e. g., y3 = 1 and y4 = 0. The vector x = (0.8, 0.6, 0.8, 0.5)T

can be constructed accordingly and is indeed a solution to the given system of bipolar
max-min equations. Actually, it can be further verified that the first component of this
solution may assume any value between 0.2 and 0.8.

Example 2.6 is adapted from the example in Li and Jin [9]. It illustrates that the two
types of equations, min-biimplication equations and bipolar max-min equations, may
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share a common essential structure despite their different appearances. This issue is
further addressed in Section 3.1. Besides, as a direct consequence of Theorem 2.5, the
consistency of bipolar max-min equations may be solved as the classical boolean satis-
fiability problem using the current state-of-the-art SAT solvers, e. g., Chaff, BerkMin,
SATO, and Siege.

3. SOLUTION SETS OF BIPOLAR MAX-MIN EQUATIONS

The problem of determining the solution set S(A+, A−,b) of a system of bipolar max-
min equations A+ ◦x∨A− ◦¬x = b is a little complicated since its characteristic matrix
Q̃ may involve two types of nonempty elements, i. e., singletons and intervals. Besides,
those omitted equations corresponding to the tautologies in the characteristic boolean
formula should be taken into consideration as well because the components of a solution
x ∈ S(A+, A−,b) may assume the values that are not contained in x̌ and x̂. It turns out
that a system of integer linear inequalities is sufficient to characterize S(A+, A−,b) by
applying the techniques developed in Li and Fang [7] and Li and Jin [9]. Moreover, if the
nonempty elements in Q̃ are all singletons, e. g., Example 2.6, the situation is somehow
easier to deal with as is illustrated analogously in Li and Jin [9] for min-biimplication
equations.

3.1. Simple scenarios of bipolar max-min equations

For a system of bipolar max-min equations A+ ◦ x ∨ A− ◦ ¬x = b, we assume that its
merged characteristic matrix Q̃ = (Q̃+, Q̃−) contains only singletons as the nonempty
elements. In such a case, those singletons in Q̃ just duplicate the values in x̌ and x̂.
Consequently, Q̃ can be reduced into a binary matrix Q = (qij)m×2n such that for each
j ∈ N ,

qij =

{
1, if x̂j ∈ q̃+

ij ,

0, otherwise,
and qi(n+j) =

{
1, if x̌j ∈ q̃−ij ,
0, otherwise.

(18)

Define the binary vector u = (u1, u2, . . . , u2n)T such that uj and un+j are labeled with
x̂j and x̌j , respectively, for each j ∈ N . In this manner, A+ ◦ x ∨ A− ◦ ¬x = b may be
reformulated into a system of integer linear inequalities Qu ≥ em, Gu ≤ en, where

G =


1 1

1 1
. . . . . .

1 1


n×2n

with unspecified elements being zero and em and en are the m-dimensional and n-
dimensional vectors of all ones, respectively. According to Theorems 2.3 and 2.5, a
binary vector u ∈ {0, 1}2n subject to Qu ≥ em is necessary to induce a solution to
A+ ◦ x ∨ A− ◦ ¬x = b. The constraints of Gu ≤ en are routinely imposed to eliminate
those unqualified binary vectors so that at most one value specified in x̌ and x̂ could
be used for each single variable in the solution construction. Note that those values
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contained in x̌ and x̂ but not in Q̃ play no role in the further analysis because their
corresponding columns in Q contain only zeros.

Theorem 3.1. Let A+ ◦ x ∨ A− ◦ ¬x = b be a system of bipolar max-min equations
such that all the nonempty elements in its merged characteristic matrix Q̃ are singletons.
It is consistent if and only if its characteristic system of linear inequalities Qu ≥ em,
Gu ≤ en is consistent.

P r o o f . For any given solution x ∈ S(A+, A−,b) 6= ∅, there exists, by Lemma 2.2, an
index ji ∈ N for each i ∈ M such that either a+

iji
∧ xji = bi or a−iji ∧ ¬xji = bi. Under

the assumption that all nonempty elements in Q̃ are singletons, this implies that either
xji = x̂ji , qi,ji = 1 or xji = x̌ji , qi,n+ji = 1, but not both. Hence, the binary vector
u = (u1, u2, . . . , u2n)T with

uj =

{
1, if xj = x̂j ,

0, otherwise,
and un+j =

{
1, if xj = x̌j ,

0, otherwise,
(19)

for j ∈ N , satisfies both Qu ≥ em and Gu ≤ en. Conversely, if u ∈ {0, 1}2n satisfies
both Qu ≥ em and Gu ≤ en, we may define two disjoint index sets

supp+(u) = {j ∈ N |uj = 1} and supp−(u) = {j ∈ N |un+j = 1}. (20)

Consequently, the induced vector x = (x1, x2, . . . , xn)T with

xj =


x̂j , if j ∈ supp+(u),
x̌j , if j ∈ supp−(u),
x̌j or x̂j , otherwise,

(21)

is a solution to A+ ◦x∨A− ◦¬x = b by Theorem 2.3. Therefore, A+ ◦x∨A− ◦¬x = b
is consistent if and only if the system Qu ≥ em, Gu ≤ en is consistent whenever all the
nonempty elements of Q̃ are singletons. �

As illustrated in the proof of Theorem 3.1, each solution u ∈ {0, 1}2n to Qu ≥ em,
Gu ≤ en induces a subset of S(A+, A−,b) bounded by v̌ = (v̌1, v̌2, . . . , v̌n)T and v̂ =
(v̂1, v̂2, . . . , v̂n)T where for j ∈ N ,

v̌j =

{
x̂j , if j ∈ supp+(u),
x̌j , otherwise,

and v̂j =

{
x̌j , if j ∈ supp−(u),
x̂j , otherwise.

(22)

According to Theorem 2.3, any vector x ∈ [0, 1]n such that v̌ ≤ x ≤ v̂ is a solution to
A+ ◦ x ∨ A− ◦ ¬x = b. It is clear that the union of all such subsets of solutions forms
the solution set S(A+, A−,b). However, in order to remove the redundancy in such a
representation of S(A+, A−,b), we need figure out the minimal solutions of Qu ≥ em,
Gu ≤ en. By a minimal solution ǔ to Qu ≥ em, Gu ≤ en, we mean any solution u such
that u ≤ ǔ would imply u = ǔ. Of course, obtaining all minimal solutions of a system of
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integer linear inequalities itself is a computationally difficult problem and requires some
sophisticated enumeration techniques. Denote

Š(Q,G) = {ǔk|k = 1, 2, . . . , |Š(Q,G)|} (23)

the set of all minimal solutions of Qu ≥ um, Gu ≤ en and denote v̌k and v̂k the lower
and upper bounds induced by ǔk ∈ Š(Q,G), respectively. It is clear that the solutions
induced by a pair of v̌k and v̂k may have the number of unfixed components as many
as possible, all of which form as well the solution set S(A+, A−,b).

Theorem 3.2. Let A+ ◦ x ∨ A− ◦ ¬x = b be a consistent system of bipolar max-
min equations. If all the nonempty elements in its merged characteristic matrix Q̃ are
singletons, then

S(A+, A−,b) =
⋃

ǔk∈Š(Q,G)

{
x ∈ [0, 1]n|v̌k ≤ x ≤ v̂k

}
. (24)

P r o o f . It suffices to show that any solution x ∈ S(A+, A−,b) can be induced by some
minimal solution ǔ ∈ Š(Q,G). For any x ∈ S(A+, A−,b), by Theorem 3.1, a binary
vector u ∈ {0, 1}2n can be constructed that satisfies Qu ≥ em and Gu ≤ en as well as a
minimal solution ǔ ∈ Š(Q,G) such that ǔ ≤ u. Subsequently, the pair of v̌ and v̂ may
be constructed with respect to ǔ. It holds that xj = v̌j if j ∈ supp−(ǔ) and xj = v̂j if
j ∈ supp+(ǔ) and hence, v̌ ≤ x ≤ v̂. Therefore, S(A+, A−,b) may be determined by
the solutions induced via Š(Q,G). �

Example 3.3. (Example 2.6 continued) For the system of bipolar max-min equations
considered in Example 2.6, after removing the variable x2 and the third and fifth equa-
tions, the corresponding characteristic system of linear inequalities Qu ≥ em, Gu ≤ en
can be written as



x̂1 x̂3 x̂4 x̌1 x̌3 x̌4

1 1 1 1 0 0
1 1 0 0 0 0
0 0 0 0 1 1
−1 0 0 −1 0 0
0 −1 0 0 −1 0
0 0 −1 0 0 −1





u1

u3

u4

u5

u7

u8


≥



1

1

1

−1

−1

−1


.

The total three minimal solutions can be identified, respectively, as

ǔ1 =



1
0
0
0
1
0


, ǔ2 =



1
0
0
0
0
1


, ǔ3 =



0
1
0
0
0
1





524 P. LI AND Q. JIN

as well as their corresponding induced pairs of solutions, the variable x2 included,

v̌1 =


0.8
0.6
0.5
0.5

 , v̌2 =


0.8
0.6
0.5
0.5

 , v̌3 =


0.2
0.6
0.8
0.5



v̂1 =


0.8
0.6
0.5
0.8

 , v̂2 =


0.8
0.6
0.8
0.5

 , v̂3 =


0.8
0.6
0.8
0.5


Therefore, the solution set is

S(A+, A−,b) =
⋃

k=1,2,3

{
x ∈ [0, 1]4|v̌k ≤ x ≤ v̂k

}
.

By Example 3.3, we once again point out that the min-biimplication equations dis-
cussed in Li and Jin [9], without referring to their particular logical interpretations, may
be viewed as a special scenario of bipolar max-min equations after the hidden essential
nature has been revealed.

3.2. General scenarios of bipolar max-min equations

When the merged characteristic matrix Q̃ of a system of bipolar max-min equations
A+ ◦ x ∨ A− ◦ ¬x = b contains interval elements, it requires more binary variables to
label the critical values at those interval endpoints. However, the method developed in
Li and Fang [7] can be naturally extended to handle these general scenarios of bipolar
max-min equations.

Note that the nonempty elements in each column of Q̃+ share a common value at the
right endpoints and hence it suffices to consider the values at the left endpoints. Denote
r+
j the number of different values in the set {x̌j ∨ bi|a+

ij ∧ x̂j = bi, i ∈M} for each j ∈ N ,
and v̌jk, k ∈ K+

j = {1, 2, . . . , r+
j }, these different values. Arranging all these values in a

sequence, we obtain a vector v̌+ = (v̌11, . . . , v̌1r+1
, . . . , v̌n1, . . . , v̌nr+n )T . For each j ∈ N

and k ∈ K+
j , the position of v̌jk in v̌+ is k′ = σ+

j (k) =
∑j−1
s=1 r

+
s + k. Subsequently, Q̃+

can be represented by a binary matrix Q+ = (q+
ij)m×n+ where n+ =

∑
j∈N r

+
j and for

each j ∈ N and k ∈ K+
j ,

q+
ik′ =

{
1, if k′ = σ+

j (k), v̌jk ∈ q̃+
ij ,

0, otherwise.
(25)

Besides, an accompanied binary matrix G+ = (g+
ij)n×n+ should be constructed such

that for each j ∈ N and k ∈ K+
j ,

g+
jk′ =

{
1, if k′ = σ+

j (k),

0, otherwise.
(26)
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The matrices Q+ and G+ are called in Li and Fang [7] the augmented characteristic
matrix and the inner-variable incompatibility matrix, respectively.

It is clear that Q̃− can be handled in an analogous manner. Since the nonempty
elements in each column of Q̃− share a common value at the left endpoints, only the
values at the right endpoints of these intervals are of concern. Denote r−j the number
of different values in the set {x̂j ∧ ¬bi|a−ij ∧ ¬x̌j = bi, i ∈ M} for each j ∈ N , and
v̂jk, k ∈ K−j = {1, 2, . . . , r−j }, these different values. Analogously, we obtain a vector
v̂− = (v̂11, . . . , v̂1r−1

, . . . , v̂n1, . . . , v̂nr−n )T by arranging all these values in a sequence. For

each j ∈ N and k ∈ K−j , the position of v̂jk in v̂− is k′ = σ−j (k) =
∑j−1
s=1 r

−
s + k.

Subsequently, the augmented characteristic matrix Q− = (q−ij)m×n− can be defined with
respect to Q̃− where n− =

∑
j∈N r

−
j and for each j ∈ N and k ∈ K−j ,

q−ik′ =

{
1, if k′ = σ−j (k), v̂jk ∈ q̃−ij ,

0, otherwise.
(27)

The corresponding inner-variable incompatibility matrix G− = (g−ij)n×n− can be con-
structed as well such that for each j ∈ N and k ∈ K−j ,

g−jk′ =

{
1, if k′ = σ−j (k),

0, otherwise.
(28)

Let u ∈ {0, 1}n++n− be a binary vector such that each component is labeled with
a value in v̌+ or v̂−. A system of integer linear inequalities Qu ≥ em, Gu ≤ en can
be defined for A+ ◦ x ∨ A− ◦ ¬x = b where Q = (Q+, Q−) and G = (G+, G−) are the
merged augmented characteristic matrix and the merged inner-variable incompatibility
matrix, respectively. Analogous to Theorems 3.1 and 3.2, this system of integer linear
inequalities fully characterizes the solution set of A+ ◦ x ∨A− ◦ ¬x = b.

Theorem 3.4. Let A+ ◦ x ∨ A− ◦ ¬x = b be a system of bipolar max-min equations
with Q and G being its merged augmented characteristic matrix and inner-variable
incompatibility matrix, respectively. It is consistent if and only if its characteristic
system of linear inequalities Qu ≥ em, Gu ≤ en is consistent.

P r o o f . For any given solution x ∈ S(A+, A−,b) 6= ∅, define for each j ∈ N and
k ∈ K+

j ,

ujk =

{
1, if k = argmaxk∈K+

j
{v̌jk ≤ xj},

0, otherwise,
(29)

and for each j ∈ N and k ∈ K−j ,

ujk =

{
1, if k = argmink∈K−j {v̂jk ≥ xj},

0, otherwise.
(30)
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Because it is possible that max{v̂jk|k ∈ K−j } ≥ min{v̌jk|k ∈ K+
j } for some j ∈ N ,

a slight modification is occasionally needed such that the obtained binary vector u ∈
{0, 1}n++n− satisfies Gu ≤ en. Besides, by Theorem 2.3, it holds that for each i ∈ M
either ∑

j∈N

∑
k∈K+

j ,k
′=σ+

j (k)

q+
ik′ujk ≥ 1

or ∑
j∈N

∑
k∈K−j ,k′=σ

−
j (k)

q−ik′ujk ≥ 1

i. e., Qu ≥ em. Conversely, if u ∈ {0, 1}n++n− satisfies both Qu ≥ em and Gu ≤ en, we
may define two disjoint index sets

supp+(u) = {j ∈ N |
∑
k∈K+

j
ujk = 1} (31)

and

supp−(u) = {j ∈ N |
∑
k∈K−j

ujk = 1}. (32)

Consequently, the induced vector x = (x1, x2, . . . , xn)T with

xj =


∑
k∈K+

j
v̌jkujk, if j ∈ supp+(u),∑

k∈K−j
v̂jkujk, if j ∈ supp−(u),

x̌j or x̂j , otherwise,

(33)

is a solution to A+ ◦x∨A− ◦¬x = b by Theorem 2.3. Therefore, A+ ◦x∨A− ◦¬x = b
is consistent if and only if the system Qu ≥ em, Gu ≤ en is consistent. �

Note that although it has a same matrix representation with its counterpart in Sec-
tion 3.1, the system Qu ≥ em, Gu ≤ en addressed here usually has a larger size.
The proof of Theorem 3.4 indicates that each solution u ∈ {0, 1}n++n− to Qu ≥ em,
Gu ≤ en induces a subset of S(A+, A−,b) bounded by v̌ = (v̌1, v̌2, . . . , v̌n)T and
v̂ = (v̂1, v̂2, . . . , v̂n)T where for j ∈ N ,

v̌j =

{ ∑
k∈K+

j
v̌jkujk, if j ∈ supp+(u),

x̌j , otherwise,
(34)

and

v̂j =

{ ∑
k∈K−j

v̂jkujk, if j ∈ supp−(u),
x̂j , otherwise.

(35)

According to Theorem 2.3, any vector x ∈ [0, 1]n such that v̌ ≤ x ≤ v̂ is a solution to
A+◦x∨A−◦¬x = b. Consequently, we may focus on the minimal solutions of Qu ≥ em,
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Gu ≤ en in order to obtain a compact representation of S(A+, A−,b). Analogously,
denote

Š(Q,G) = {ǔk|k = 1, 2, . . . , |Š(Q,G)|} (36)

the set of all minimal solutions of Qu ≥ em, Gu ≤ en. For each ǔk ∈ Š(Q,G), it induces
a pair of lower and upper bound solutions v̌k and v̂k. The solution set S(A+, A−,b) is
then readily determined by these pairs of solutions induced via Š(Q,G).

Theorem 3.5. Let A+ ◦ x ∨ A− ◦ ¬x = b be a consistent system of bipolar max-
min equations with Q and G being its merged augmented characteristic matrix and
inner-variable incompatibility matrix, respectively. The solution set S(A+, A−,b) is
determined by

S(A+, A−,b) =
⋃

ǔk∈Š(Q,G)

{
x ∈ [0, 1]n|v̌k ≤ x ≤ v̂k

}
. (37)

P r o o f . For any x ∈ S(A+, A−,b), a binary vector u ∈ {0, 1}n++n− can be constructed
as in Theorem 3.4 which satisfies Qu ≥ em and Gu ≤ en. A minimal solution ǔ ∈
Š(Q,G) can be obtained such that ǔ ≤ u, which induces a pair of lower and upper
bound solutions v̌ and v̂. It holds that xj ≤

∑
k∈K−j

v̂jkujk if j ∈ supp−(ǔ) and

xj ≥
∑
k∈K+

j
v̌jkujk if j ∈ supp+(ǔ) and hence, v̌ ≤ x ≤ v̂. Therefore, S(A+, A−,b)

may be determined by the solutions induced via Š(Q,G). �

Example 3.6. Consider the system of bipolar max-min equations A+ ◦x∨A− ◦¬x = b
with

A+ =

 0.9 0.7 0.9
0.4 0.6 0.5
0.4 0.2 0.3

 , A− =

 0.9 0.7 0.9
0.5 0.4 0.8
0.4 0.2 0.3

 , b =

 0.8
0.6
0.4

 .

The lower bound x̌ and upper bound x̂ are, respectively,

x̌ = (0.2, 0, 0.4)T , x̂ = (0.8, 1.0, 0.8)T ,

and both of them are indeed solutions to A+ ◦ x ∨ A− ◦ ¬x = b. However, it can be
verified that x = (0.6, 0.6, 0.6)T is not a solution but satisfies x̌ ≤ x ≤ x̂. Subsequently,
the characteristic matrices can be calculated as

Q̃+ =

 {0.8} ∅ {0.8}
∅ [0.6, 1.0] ∅

[0.4, 0.8] ∅ ∅

 , Q̃− =

 {0.2} ∅ ∅
∅ ∅ {0.4}

[0.2, 0.6] ∅ ∅

 .

Accordingly, denote

v̌+ = (v̌11, v̌12, v̌21, v̌31)T = (0.8, 0.4, 0.6, 0.8)T
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and
v̂− = (v̂11, v̂12, v̂31)T = (0.2, 0.6, 0.4)T ,

respectively. The corresponding characteristic system of linear inequalities becomes



v̌11 v̌12 v̌21 v̌31 v̂11 v̂12 v̂31

1 0 0 1 1 0 0
0 0 1 0 0 0 1
1 1 0 0 1 1 0
−1 −1 0 0 −1 −1 0
0 0 0 −1 0 0 −1





u1

u2

u3

u4

u5

u6

u7


≥



1

1

1

−1

−1


.

There are six minimal solutions in total, i. e.,

ǔ1 =



1
0
1
0
0
0
0


, ǔ2 =



1
0
0
0
0
0
1


, ǔ3 =



0
1
1
1
0
0
0


,

ǔ4 =



0
0
1
0
1
0
0


, ǔ5 =



0
0
0
0
1
0
1


, ǔ6 =



0
0
1
1
0
1
0


.

The corresponding induced pairs of solutions are, respectively,

v̌1 =

 0.8
0.6
0.4

 , v̌2 =

 0.8
0

0.4

 , v̌3 =

 0.4
0.6
0.8

 ,

v̌4 =

 0.2
0.6
0.4

 , v̌5 =

 0.2
0

0.4

 , v̌6 =

 0.2
0.6
0.8

 ,

v̂1 =

 0.8
1.0
0.8

 , v̂2 =

 0.8
1.0
0.4

 , v̂3 =

 0.8
1.0
0.8

 ,
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v̂4 =

 0.2
1.0
0.8

 , v̂5 =

 0.2
1.0
0.4

 , v̂6 =

 0.6
1.0
0.8

 .

Therefore, the solution set is

S(A+, A−,b) =
⋃

k∈{1,2,...,6}

{
x ∈ [0, 1]3|v̌k ≤ x ≤ v̂k

}
.

According to Theorems 3.2 and 3.5, we need enumerate all the minimal solutions of a
system of integer linear inequalities, of which the number could be exponentially large,
in order to express the solution set of bipolar max-min equations in a compact form.
This is not surprising because as illustrated in this section a system of bipolar max-
min equations may be viewed as a disguised or generalized form of a boolean formula
depending on the pattern of its characteristic matrix. The practically well performed
enumeration techniques are separate research issues and beyond the scope of this paper.
The reader may refer to Johnson et al. [5], Palopoli et al. [10], and Crama and Hammer [1]
for the discussion on these issues.

4. CONCLUDING REMARKS

The system of bipolar max-min equations, originally described by Freson et al. [4],
has been investigated in this paper as a generalization of fuzzy relational equations
with max-min composition. It is demonstrated that determining the consistency of a
system of bipolar max-min equations is NP-complete while a compact representation of
its solution set requires the enumeration of all minimal solutions of a system of integer
linear inequalities. It is clear that the techniques presented in this paper work for bipolar
max-T equations in an analogous manner where T is a continuous triangular norm.

When the linear optimization problem is considered subject to a consistent system
of bipolar max-min equations, it is inevitably an NP-hard problem because the max-
min equation constrained linear optimization problem is already NP-hard as illustrated
by Li and Fang [7]. However, as also observed by Freson et al. [4], for such a linear
optimization problem there exists an optimal solution whose components assume only
the values specified in the lower and upper bounds and the endpoints of intervals in the
characteristic matrices. Consequently, by applying Theorems 3.1 and 3.4, the bipolar
max-min equation constrained linear optimization problem can be reformulated into
a linear integer optimization problem and then handled taking advantage of the well
developed techniques in combinatorial optimization and integer optimization.
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