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K Y B E R N E T I K A — V O L U M E 5 2 ( 2 0 1 6 ) , N U M B E R 4 , P A G E S 5 7 5 – 5 8 8

D-OPTIMAL AND HIGHLY D-EFFICIENT DESIGNS WITH
NON-NEGATIVELY CORRELATED OBSERVATIONS

Krystyna Katulska and  Lukasz Smaga

In this paper we consider D-optimal and highly D-efficient chemical balance weighing designs.
The errors are assumed to be equally non-negatively correlated and to have equal variances.
Some necessary and sufficient conditions under which a design is D*-optimal design (regular
D-optimal design) are proved. It is also shown that in many cases D*-optimal design does
not exist. In many of those cases the designs constructed by Masaro and Wong (2008) and
some new designs are shown to be highly D-efficient. Theoretical results are accompanied by
numerical search, suggesting D-optimality of designs under consideration.

Keywords: correlation, D-efficiency, D-optimal chemical balance weighing design,
Hadamard matrix, simulated annealing algorithm, tabu search
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1. INTRODUCTION

Denote by Mn×p(S) the set of all n × p matrices with each entry in the set S. First,
we present the model of the chemical balance weighing design. Let the observations
y1, y2, . . . , yn follow the linear model y = Xb + e, where y = (y1, . . . , yn)′ is an n × 1
vector of observations, X is an n × p design matrix such that rank(X) = p (n > p),
b = (b1, . . . , bp)′ is a p × 1 vector of unknown parameters, and e = (e1, . . . , en)′ is an
n × 1 vector of errors. Elements of a design matrix X = (xij) are equal to 1 or −1,
i. e. X ∈ Mn×p({−1, 1}), and xij = −1 or 1 if the jth object is placed on the left or
right pan respectively during the ith operation. Moreover, assume that E(ei) = 0 for
all i = 1, . . . , n and Cov(e) = σ2G, where σ > 0 is an unknown parameter and G is
an n × n known positive definite matrix. Since a design matrix is of full column rank,
the generalized least-squares estimator of b equals b̂ = (X′G−1X)−1X′G−1y, and its
covariance matrix is given by σ2(X′G−1X)−1.

In the class Mn×p({−1, 1}), we would like to choose a design that is the best design
with respect to D-optimality criterion. In the literature there are also considered other
criteria (see, for example, Pukelsheim [27]), but D-optimality criterion is the most popu-
lar. The optimality criteria are expressed in terms of the information matrix of a design
X, i. e. a matrix X′G−1X. We say that X is D-optimal in C if it maximizes the deter-
minant of the information matrix among all designs in C. Under certain assumtions on
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the distribution of the error terms, a D-optimal design minimizes the expected volume
of the usual confidence ellipsoid for parameters.

An important issue is also the efficiency of a design. Following the definition of
Bulutoglu and Ryan [4], the D-efficiency of a design X ∈Mn×p({−1, 1}) is

D-eff(X) =
[

det(X′G−1X)
maxY∈Mn×p({−1,1}) det(Y′G−1Y)

]1/p

.

Unfortunately, maxY∈Mn×p({−1,1}) det(Y′G−1Y) is usually not known. However, when
an upper bound det(Y′G−1Y) for it is known, D-eff(X) can be approached by a lower
bound equal to

D∗-eff(X) =

[
det(X′G−1X)
det(Y′G−1Y)

]1/p

. (1)

Using (1), we can find designs of high D-efficiency or even D*-optimal designs (i. e.
det(X′∗G

−1X∗) = det(Y′G−1Y)), since when D∗-eff(X) = 1, X is D*-optimal.
In the literature, optimal and highly efficient designs are considered separately for

different forms of the matrix G. It follows from the fact that optimal and highly efficient
designs depend significantly on the form of G. Very often, it is assumed that the
errors are uncorrelated and they have the same variances. Then, the matrix G is the
identity matrix. For example, Banerjee [2], Ceranka and Graczyk [5], Cheng [9], Ehlich
[11, 12], Galil and Kiefer [13], Jacroux et al. [17], Neubauer and Pace [26] (for spring
balance) obtained some results about optimal designs under such assumption. In many
experimental instances, however, it is quite realistic to assume some sort of dependence
(see Angelis et al. [1] for more details, and Jenkins and Chanmugam [18] for real data
example). Unfortunately, the case where G is not the identity matrix, is less explored.
When the errors form an AR(1) process, theoretical and numerical search results about
A- and D-optimal designs are given in Angelis et al. [1], Bora-Senta and Moyssiadis [3],
Katulska and Smaga [20, 21], Li and Yang [24], Smaga [29, 30] and Yeh and Lo Huang
[34]. Katulska and Smaga [22], Masaro and Wong [25] and Smaga [29] present some
results on the D-optimal designs, when the errors are equally correlated and they have
equal variances (the matrix G is completely symmetric). Ceranka et al. [7], Graczyk
[14] and Smaga [29] consider the case where the errors are uncorrelated but may have
different variances (the matrix G is diagonal).

Some applications of weighing designs (in chemistry, medicine, economics, etc.) are
given in Angelis et al. [1], Banerjee [2], Cheng [9] and Graczyk [15].

In this paper we consider D-optimal and highly D-efficient designs under the assump-
tion on the matrix G as in Ceranka and Graczyk [6], Katulska and Smaga [22], Masaro
and Wong [25] and Smaga [29, 31]. More precisely, we suppose that

G = (1− ρ)In + ρ1n1′n, (2)

where ρ ∈ [0, 1) is a known parameter, In is the n × n identity matrix, and 1n is the
n× 1 vector of ones. For given ρ, the matrix G is positive definite and

G−1 = c(In − r1n1′n), (3)
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where
c =

1
1− ρ

, r =
ρ

1 + (n− 1)ρ
. (4)

When n = p, we have det(X′G−1X) = det(G−1) det(X′X), and hence D-optimal design
for ρ = 0 is also D-optimal for ρ 6= 0, so we assume that n > p.

The remainder of the present paper is organized as follows. In Section 2, we present
necessary and sufficient conditions under which a design is D*-optimal design for ρ ∈
[0, 1) (it means D-optimal design, which satisfies the equality in some inequality for the
determinant of the information matrix). We also show that in many cases D*-optimal
design does not exist. The lower bound for D-efficiency of weighing designs when ρ > 0
is proved in Section 3. Using that lower bound, we show that some designs constructed
by Masaro and Wong [25] and certain new designs are highly D-efficient in many cases
where D*-optimal designs do not exist (Sections 3 and 4). Moreover, we also present
the best designs found by numerical search in special cases. Finally, Section 5 offers
concluding remarks.

2. D*-OPTIMAL DESIGNS FOR ρ ∈ [0, 1)

Katulska and Smaga [22] proved the following theorem, which presents the inequality
giving the upper bound for the determinant of the information matrix of a design in
Mn×p({−1, 1}).

Theorem 2.1. (Katulska and Smaga [22]) If ρ ∈ [0, 1), n > p + 1, G is given by the
formula (2) and X ∈Mn×p({−1, 1}), then

det(X′G−1X) 6
(

n

1− ρ

)p

. (5)

Katulska and Smaga [22] named a design, which satisfies the equality in the inequality
(5), as D*-optimal for ρ ∈ [0, 1). Theorem 2.1 implies a D*-optimal design is D-optimal.
However, the opposite implication is not true generally, because there are D-optimal
designs which are not D*-optimal for some design parameters, i. e. the numbers n, p
and ρ (see Theorem 2.3). Katulska and Smaga [22] constructed D*-optimal designs for
certain n and p using Hadamard matrices. That construction is also the construction of
A-optimal designs considered in Ceranka et al. [8].

In the following theorem, we present some necessary and sufficient conditions under
which a design is D*-optimal. They help us to find many values of n and p for which
D*-optimal design does not exist. The sufficient conditions were proved in Katulska and
Smaga [22].

Theorem 2.2. Let X ∈Mn×p({−1, 1}) and Cov(e) = σ2G, where G is given by (2).

(a) If ρ ∈ (0, 1), then a design X is D*-optimal if and only if X′X = nIp and X′1n =
0p, where 0p is the p× 1 vector of zeros.

(b) If ρ = 0, then a design X is D*-optimal if and only if the condition X′X = nIp

holds.
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P r o o f . The sufficiency follows from Theorem 2.2 in Katulska and Smaga [22]. So, we
have to show the necessity. First, we prove (a). Let X ∈ Mn×p({−1, 1}) be arbitrary.
By the Hadamard’s inequality, it follows that

det(X′G−1X) 6
p∏

i=1

x′iG
−1xi, (6)

where xi, i = 1, . . . , p, denotes the ith column of X. From (3), we conclude that

x′iG
−1xi = c(x′ixi − r(x′i1n)2) 6 cn (7)

for all i = 1, . . . , p. So by (6) and (7), we have det(X′G−1X) 6 (cn)p. Assume that
X is D*-optimal design. For such design, the equalities must hold in the inequalities
(6) and (7). By the condition for equality in Hadamard’s inequality, it follows that the
equalities in these inequalities imply that the matrix X′X is diagonal and X′1n = 0p.
Since X ∈ Mn×p({−1, 1}), X′X = nIp. Point (b), we obtain from the condition for
equality in Hadamard’s inequality, and the fact that X′G−1X = X′X clearly shows
that the condition X′1n = 0p is not required. �

Theorem 2.3. Assume that X ∈Mn×p({−1, 1}), Cov(e) = σ2G, where G is given by
(2), and ρ ∈ (0, 1). If n is odd, or n ≡ 2 (mod 4) and p > 2, then the D*-optimal design
does not exist.

P r o o f . Let n be an odd number. The sum of elements in the ith column of a design
matrix X ∈ Mn×p({−1, 1}) is equal to n − 2mi, i = 1, . . . , p, where mi is a num-
ber of elements of the ith column equal to −1. Hence, since n is odd, the condition
X′1n = 0p is not satisfied and Theorem 2.2 implies a D*-optimal design does not exist
in Mn×p({−1, 1}). Suppose now that n ≡ 2 (mod 4) and p > 2. Let pi be a number of
elements of the ith column of X equal to 1. If there exists i such that pi is even, then the
sum of entries in the ith column of X is not equal to zero and the condition X′1n = 0p

is not satisfied. Assume now that pi is odd for all i = 1, . . . , p. Hence, by Lemma 2.2 in
Jacroux et al. [17], the absolute value of the inner product of any two columns of X is
greater than or equal to 2. Thus the condition X′X = nIp is not satisfied. Therefore,
Theorem 2.2 implies a D*-optimal design does not also exist when n ≡ 2 (mod 4) and
p > 2, so the proof is complete. �

When n is odd, or n ≡ 2 (mod 4) and p > 2, Theorem 2.3 shows that the inequality
(5) is useless in finding D-optimal designs in Mn×p({−1, 1}). However, it is useful in
studying the D-efficiency of designs as we shall see in the next sections.

3. D-EFFICIENT DESIGNS WHEN N ≡ 1 (MOD 4)

Assume that ρ ∈ [0, 1). By (5), it follows that np/(1 − ρ)p is the upper bound for
maxY∈Mn×p({−1,1}) det(Y′G−1Y). Hence, by (1) and (3), we obtain

D∗-eff(X) =
[det(X′(In − r1n1′n)X)]1/p

n
,
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where r is given in (4), for all X ∈ Mn×p({−1, 1}). This lower bound for the D-
efficiency of the weighing design is a kind of measure which says how far a design is from
D*-optimal design. In this section and Section 4, we use it to show that some designs
have high D-efficiency in cases where D*-optimal design does not exist.

Let n ≡ 1 (mod 4), n > 5. Assume that Hn−1 = (1n−1,h1, . . . ,hn−2) is an Hadamard
matrix of order n − 1 and ki = (h′i, 1)′ for i = 1, 2, . . . , n − 2. Masaro and Wong [25]
showed that the design K formed from p columns of k1, . . . ,kn−2, is D-optimal for all
ρ > 0 in the subclass D1 = {X ∈Mn×p({−1, 1}) : X′X = (n− 1)Ip + 1p1′p}. Moreover,
by the results of Smaga [29], we obtain the following corollary which establishes D-
optimality of the designs K for small number of objects and almost all ρ ∈ [0, 1).

Corollary 3.1. Assume that n ≡ 1 (mod 4), n > p + 1 and Cov(e) = σ2G, where
G is given by (2). If p = 2, 3, 4, then the design K is D-optimal for ρ belonging to
{0} ∪ [1/(7n), 1) , {0} ∪ [1/(n+ 8), 1) , {0} ∪ [1/(n+ 5), 1) respectively.

The proof of this result is long and needs intensive calculation. Its extension for p > 5
seems to be very difficult if possible at all. However, we show that the designs K are
highly D-efficient.

Since K ∈ D1 and K′1n = 1p, K′(In − r1n1′n)K has eigenvalues n− 1 and n− 1 +
(1− r)p with multiplicities p− 1 and 1 respectively. So, for the design K we have

D∗-eff(K) =
n− 1
n

[
n+ p− 1− pr

n− 1

]1/p

, (8)

where r is given in (4).

Theorem 3.2. Let n ≡ 1 (mod 4), n > 5, p = 2, . . . , n−2, ρ ∈ (0, 1) and Cov(e) = σ2G,
where G is given by (2). Then, D∗-eff(K) decreases, when ρ increases. Moreover,
D∗-eff(K) is greater than 0.93.

P r o o f . Since r is an increasing function of ρ, it is easy to see that D∗-eff(K) decreases,
when ρ increases. Hence, D∗-eff(K) is greater than the right hand side of (8) for ρ = 1,
i. e. ((n − 1)/n)[(n + p)/n]1/p. Consider the function f, f : (1, n − 1) → R given by
f(x) = [(n + x)/n]1/x. Its derivative is equal to [(n + x)/n]1/xx(1 − (1 + n/x) log(1 +
x/n))/(x2(n+ x)), where log denotes the natural logarithm. Suppose g, g : (1,∞)→ R
is the function defined by g(x) = 1 − (1 + x) log(1 + 1/x). Using l’Hospital’s rule, it
is easy to show that limx→∞ g(x) = 0. Moreover, we have g′(x) = 1/x − log(1 + 1/x),
g′(x)→ 0 as x→∞ and g′′(x) = −1/(x3 + x2). Therefore, g′(x) > 0 and hence g is an
increasing function. Since g is increasing and g(x) → 0 as x → ∞, g(x) is negative for
all x > 1. But n/x > 0 for all x ∈ (1, n− 1), so f ′(x) < 0. Thus

D∗-eff(K) > ((n− 1)/n)f(n− 2) = ((n− 1)/n)[2(n− 1)/n]1/(n−2). (9)

Consider the function h, h : (8,∞) → R, which is given by the formula h(x) = ((x −
1)/x)[2(x− 1)/x]1/(x−2). The derivative of h equals

h′(x) =
[2(x− 1)/x]1/(x−2)(x− 1)(x log(x/(x− 1)) + x(1− log(2))− 2)

(x− 2)2x2
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and it is positive, since x > 8. Hence, h is increasing. From (9), it follows that
D∗-eff(K) > min{h(5), h(9)} = 0.9356. The proof is complete. �

Let us see on examples how D∗-eff(K) behaves. Theorem 3.2 shows that D∗-eff(K)
decreases as ρ increases. However, the examples suggest that the decrease of D∗-eff(K)
is not significant in this case and it decreases, when p or n increases (see, for example,
Table 1). Unfortunately, the decrease of D∗-eff(K) can be greater as p increases, but
the decrease of the lower bound for the D-efficiency of K decreases as n increases, which
we see in Table 2. Fortunately, from Table 3, we conclude that D∗-eff(K) increases
quite fast as n increases. In Tables 2 and 3 the values of D∗-eff(K) were calculated for
ρ = 0.99. Since D∗-eff(K) decreases as ρ increases, this value of ρ is “the worst” for
D∗-eff(K). So, for the same values of n and p, the D∗-eff(K) is greater for smaller values
of ρ. In Theorem 3.2, we proved the lower bound for D∗-eff(K), but from examples we
see that it is much greater than that lower bound in many cases.

ρ D∗-eff(K) D∗-eff(K) D∗-eff(Z) D∗-eff(Z)
0 0.9938 0.9724 1.0000 0.9567

0.01 0.9928 0.9718 0.9981 0.9557
0.1 0.9882 0.9687 0.9894 0.9504
0.2 0.9861 0.9673 0.9856 0.9481
0.3 0.9850 0.9665 0.9836 0.9469
0.4 0.9842 0.9661 0.9824 0.9462
0.5 0.9838 0.9657 0.9816 0.9457
0.6 0.9834 0.9655 0.9810 0.9454
0.7 0.9832 0.9653 0.9806 0.9451
0.8 0.9830 0.9652 0.9802 0.9449
0.9 0.9828 0.9651 0.9800 0.9447
0.99 0.9827 0.9650 0.9798 0.9446
n, p 9, 2 9, 7 10, 2 10, 7

Tab. 1. The lower bound for D-efficiency of designs K and Z.

To show more clearly that the design K is a very good design under criterion of D-
optimality, we compared it with the best designs found by simulated annealing algorithm
(SA algorithm) from Angelis et al. [1] and by tabu-search-based approach (see, for
example, Harman et al. [16], Jung and Yum [19]). SA and tabu-search algorithms are
algorithms for searching optimal designs with very good performance, so we use them
to find D-efficient designs in Mn×p({−1, 1}) with Cov(e) = σ2G, where G is given by
(2). We chose T0 = 1, I = 25 and R = 0.95, or even greater values of I and R in
some cases, as the initial parameters of SA algorithm, since these are right choices by
the results of Angelis et al. [1]. When T0 = 1, I = 25 and R = 0.95, the SA algorithm
was executed at least 5000 times for many values of the design parameters namely n,
p and ρ. Generally, larger values of I and R (for example I = 100, R = 0.99) have a
beneficial effect on the performance of the algorithm, but they increase dramatically the
duration of the search, so we executed SA algorithm for such I and R less times than
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p D∗-eff(K) D∗-eff(K) D∗-eff(Z) D∗-eff(Z)
1 0.9600 0.9965 1.0000 1.0000
2 0.9466 0.9950 0.9429 0.9938
3 0.9357 0.9935 0.9245 0.9917
4 0.9922 0.9882
5 0.9909 0.9861
6 0.9898 0.9833
7 0.9887 0.9814
8 0.9876 0.9790
9 0.9866 0.9772
10 0.9857 0.9752
11 0.9848 0.9736
12 0.9840 0.9718
13 0.9832 0.9703
14 0.9824 0.9687
15 0.9817 0.9673
n 5 17 6 18

Tab. 2. The lower bound for D-efficiency of designs K and Z

(ρ = 0.99).

n D∗-eff(K) n D∗-eff(Z)
21 0.9852 22 0.9730
25 0.9889 26 0.9797
29 0.9914 30 0.9842
33 0.9931 34 0.9873
37 0.9944 38 0.9896
41 0.9953 42 0.9913

Tab. 3. The lower bound for D-efficiency of designs K and Z

(p = 19, ρ = 0.99).

when I = 25 and R = 0.95. In a tabu-search-based approach, the number of iterations
in the preliminary search of the algorithm was chosen to be equal to 150 (usually) or
250 (for more difficult cases). A number of neighbour designs to check at each iteration
was np. The tabu-search algorithm was executed 1000 times for the same values of the
design parameters as for SA algorithm. In the present framework, the tabu-search-based
approach may be easily implemented in the R program [28] (see Appendix). What is
very interesting and important, the SA and tabu-search algorithms did not find D-better
designs than the design K. Moreover, the tabu-search found the design K as the best
design under D-optimality criterion. For smaller values of p, the SA algorithm did the
same, but for greater values of p (especially for p near to n) it found designs with the
lower bound for D-efficiency clearly lower than D∗-eff(K). As an example, we present in
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Fig. 1. The lower bound for D-efficiency of design K (K) and the

best designs found by the SA algorithm (A) for (a) n = 17 and

ρ = 0.99, (b) n = 17 and p = 10. The lower bound for D-efficiency the

best designs found by the tabu-search algorithm equals to that of K.

Figure 1 (a) the lower bound for D-efficiency of design K and the best designs found by
SA algorithm (T0 = 1, I = 25 and R = 0.95) for n = 17, p = 2, . . . , 15, and ρ = 0.99. For
fixed n and p, the SA algorithm behave quite stable for different values of ρ. However,
for some ρ, it found K as the best design, but for the other it did not do that (see Figure
1 (b)). So, the SA algorithm perform quite well, but not better than the design K and
the tabu-search algorithm.

To summarize theoretical (see, Corollary 3.1 and Theorem 3.2) and numerical search
results, we can conclude that the design K is a design with high D-efficiency and it
seems to be D-optimal for all ρ ∈ (0, 1), when it exists.

Ehlich [11] showed that an X ∈ Mn×n({−1, 1}) with X′X = (n − 1)In + 1n1′n is
D-optimal for ρ = 0 and as we noticed in Section 1 it is also D-optimal for ρ 6= 0. Such
designs can exist only if 2n−1 is the square of an integer and they are known for example
for “practical” values n = 5, 13, 25. We now take into consideration the near-saturated
case p = n−1 and ρ > 0. One can negate every row of X ∈Mn×n({−1, 1}) with X′X =
(n − 1)In + 1n1′n, whose first element equals −1, and hence X = (1n,x1, . . . ,xn−1).
So, the design N = (x1, . . . ,xn−1) has the following properties N′N = (n − 1)In−1 +
1n−11′n−1 and N′1n = 1′n−1, similarly as the design K. Therefore, D∗-eff(N) = ((n −
1)/n)(2 − r)1/(n−1) and it is greater than 0.92. Thus, if p = n − 1, ρ ∈ (0, 1) and the
design N exists, then it is highly D-efficient and we did not find (in numerical search)
D-better design than it. In some cases where N does not exist, the webpage http:
//www.staff.amu.edu.pl/~ls/str_en.html lists the best designs under D-optimality
criterion found by SA and tabu-search algorithms. We observe that the inner product of
any two columns of these designs is equal to ±1, and the sum of elements in any column
equals ±1 or ±3 (for the vast majority of columns) or less frequently ±5.

http://www.staff.amu.edu.pl/~ls/str_en.html
http://www.staff.amu.edu.pl/~ls/str_en.html
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4. D-EFFICIENT DESIGNS WHEN N ≡ 2 (MOD 4)

In this section, we shortly consider the case where n ≡ 2 (mod 4), since it is similar
to the previous. Assume that Hn−2 = (1n−2,h1, . . . ,hn−3) is an Hadamard matrix of
order n − 2. Then, we define the designs Z = (z1, . . . , zp), where zi = (h′i, 1,−1)′ for
i = 1, . . . , s, zj = (h′j , 1, 1)′ for j = s + 1, . . . , p, and s = [(p+ 1)/2] ([x] is the integral
part of x). Such designs may exist for p 6 n − 3. Masaro and Wong [25] proved that
the designs Z are D-optimal for all ρ > 0 in the subclass

D2 = {X : X′X = diag
[
(n− 2)Is + 21s1′s, (n− 2)Ip−s + 21p−s1′p−s

]
}.

Furthermore, the following result shows that the designs Z are D-optimal for p = 2, 3, 4
and almost all ρ ∈ [0, 1). It is a consequence of the results of Smaga [29].

Corollary 4.1. Suppose that n ≡ 2 (mod 4), n > p + 1 and Cov(e) = σ2G, where
G is given by (2). If p = 2, 3, 4, then the design Z is D-optimal for ρ belonging to
[0, 1) , {0} ∪ (1/(3n+ 1), 1), {0} ∪ (1/(n+ 6), 1) respectively.

Similarly as for the case n ≡ 1 (mod 4), it seems that it is difficult to extend this
corollary for greater number of objects. Therefore, we once again investigate D-efficiency
of the designs Z.

It is easy to see that z′i1n = 0 for i = 1, . . . , s, and z′j1n = 2 for j = s+ 1, . . . , p. If p
is odd, then Z′(In− r1n1′n)Z has eigenvalues n− 2, n+ p− 1 and n− 2 + (1− 2r)(p− 1)
with multiplicities p − 2, 1 and 1 respectively. When p is even, Z′(In − r1n1′n)Z has
eigenvalues n − 2, n + p − 2 and n − 2 + (1 − 2r)p with multiplicities p − 2, 1 and 1
respectively. So, we have

D∗-eff(Z) =


n−2

n

[
(n+p−1)(n−2+(1−2r)(p−1))

(n−2)2

]1/p

if p is odd,

n−2
n

[
(n+p−2)(n−2+(1−2r)p)

(n−2)2

]1/p

if p is even,
(10)

where r is given in (4). So, we consider two cases: p is odd or even. In both these cases,
the results for the lower bound for D-efficiency of the designs Z are very similar to those
for D∗-eff(K) (see, Theorem 4.2 and Tables 1-3), so we do not discuss them in detail.
The designs Z are also highly D-efficient designs and seem to be D-optimal for all ρ > 0
in those cases where they exist.

Theorem 4.2. Let n ≡ 2 (mod 4), n > 6, ρ ∈ (0, 1) and Cov(e) = σ2G, where G is
given by (2).

(a) If p = 3, 5, . . . , n− 3, then D∗-eff(Z) decreases, when ρ increases, and D∗-eff(Z) is
greater than 0.92.

(b) If p = 2, 4, . . . , n− 4, then D∗-eff(Z) decreases, when ρ increases and D∗-eff(Z) >
0.94.

P r o o f . First, we present the proof of part (a). It is easy to see that D∗-eff(Z) decreases,
when ρ increases. Hence

D∗-eff(Z) >
n− 2
n

[
(n+ p− 1)(n− 2 + (1− 2/n)(p− 1))

(n− 2)2

]1/p
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(the right hand side of (10) for ρ = 1). We define the function f, f : (2, n− 2)→ R by

f(x) =
[

(n+ x− 1)(n− 2 + (1− 2/n)(x− 1))
(n− 2)2

]1/x

.

We have

f ′(x) =
[(n+ x− 1)2/((n− 2)n)]1/xm(n, x)

x2(n+ x− 1)
,

where m(n, x) = 2x − (n + x − 1) log((n + x − 1)2/((n − 2)n)). Direct calculations
show that m(n, x) = 2(x− 1)g(n/(x− 1))− x log(n/(n− 2)) + k(n), where g is defined
in the proof of Theorem 3.2, and k, k : (5,∞) → R is the function given by k(x) =
2 − (x − 1) log(x/(x − 2)). From the proof of Theorem 3.2, it follows that g(n/(x −
1)) < 0. We have k′(x) = 2(x − 1)/(x(x − 2)) − log(x/(x − 2)) → 0 as x → ∞, and
k′′(x) = −4/((x − 2)2x2) < 0. Hence k′(x) > 0 and k is increasing. Using l’Hospital’s
rule, we can show that limx→∞ k(x) = 0. Thus, k(x) < 0 for all x > 5 and hence
f ′(x) < 0. So, f is decreasing, which implies D∗-eff(Z) > ((n − 2)/n)f(n − 3) =
((n − 2)/n)[4(n − 2)/n]1/(n−3). Consider the function h, h : (5.9,∞) → R given by
h(x) = ((x− 2)/x)[4(x− 2)/x]1/(x−3). Its derivative equals

h′(x) = − [4(x− 2)/x]1/(x−3)(x− 2)(6− 2x+ x log(4(x− 2)/x))
(x− 3)2x2

.

If h1(x) = 6−2x+x log(4(x−2)/x), then h′1(x) = (6−2x+(x−2) log(4(x−2)/x))/(x−2)
and h′′1(x) = −4/((x − 2)2x) < 0. Since h′1(5.9) < 0, we conclude that h′1(x) < 0. So,
h1(x) < 0, because h1(5.9) is negative. Therefore, h is an increasing function, which
implies D∗-eff(Z) > h(6) = 0.9245.

Now, we prove the part (b). Since D∗-eff(Z) decreases, when ρ increases and by (10),
the inequality

D∗-eff(Z) >
n− 2
n

[
(n+ p− 2)(n− 2 + (1− 2/n)p)

(n− 2)2

]1/p

holds. Set

f(x) =
x− 2
x

[
(x+ p− 2)(x− 2 + (1− 2/x)p)

(x− 2)2

]1/p

for all x ∈ (p+ 3,∞). We have

f ′(x) = 2
[

(x+ p− 2)(x+ p)
x(x− 2)

]1/p−1 (x− 1)p+ p2 − 2
(x− 2)x3

> 0.

So, D∗-eff(Z) > f(p+ 4) = ((p+ 2)/(p+ 4))[4(p+ 1)/(p+ 4)]1/p. Consider the function
l, l : (1,∞) → R given by l(x) = ((x + 2)/(x + 4))[4(x + 1)/(x + 4)]1/x. It can be
calculated that l(2) = 0.9428, l(4) = 0.9431, l(6) = 0.9498, l(8) = 0.956, l(10) = 0.9611
and l(12) = 0.9653. The derivative of l is of the form

l′(x) =
41/x[(x+ 1)/(x+ 4)]1/x−1k(x)

x2(x+ 4)3
,
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where k(x) = x(2x2 + 5x + 6) − (x3 + 7x2 + 14x + 8) log(4(x + 1)/(x + 4)). Since
log(4(x+ 1)/(x+ 4)) < log(4), l′(x) is greater than

41/x[(x+ 1)/(x+ 4)]1/x−1h(x)
x2(x+ 4)3

,

where h(x) = x(2x2 + 5x + 6) − log(4)(x3 + 7x2 + 14x + 8). We have h′(x) = 3(2 −
log(4))x2 − 2(7 log(4)− 5)x+ 6− 14 log(4) > 0 for all x > 11. Hence h is increasing for
all x > 11 and since h(11) > 0, we obtain h(x) > 0 for x > 11. Therefore, l′(x) > 0 and
l is increasing for x > 11. Summarizing, D∗-eff(Z) > l(2) > 0.94. �

In cases p = n − 1 and p = n − 2, we can sometimes construct highly D-efficient
designs from some D-optimal design in Mn×n({−1, 1}). Ehlich [11] and Wojtas [32]
showed that an X ∈ D2 ⊆Mn×n({−1, 1}) with s = n/2 is D-optimal inMn×n({−1, 1}).
Such designs can be constructed in all cases n 6 54 except n = 22 and 34 (see Yang
[33]). We can negate every row of X, whose last element is equal to −1. Then, X =
(x1, . . . ,xn−1,1n). The designs Xk = (xk, . . . ,xn−1) for k = 1, 2 belong to D2 with
s = n/2, n/2 − 1, respectively, and x′i1n = 0 for i = 1, . . . , n/2, and x′i1n = 2 for
i = n/2 + 1, . . . , n− 1, similarly as the designs Z. Hence, we have

D∗-eff(Xk) =


n−2

n [4(1− r)]1/(n−2) if k = 2
n−2

n

[
4(n−1)(1−r)

n−2

]1/(n−1)

if k = 1.

The inequalities D∗-eff(X2) > 0.9 and D∗-eff(X1) > 0.88 hold. Therefore, the designs
Xk for k = 1, 2 are highly D-efficient when ρ ∈ (0, 1) and p = n− 1, n− 2, respectively,
and we did not find (in numerical search) D-better designs than them in some cases of
their existence. Some examples of such designs found by SA and tabu-search algorithms
are also reported on the webpage mentioned above.

5. CONCLUSIONS

In this paper we established the situations where D*-optimal designs considered in
Katulska and Smaga [22] do not exist. In many of those situations, namely when
n ≡ 1, 2 (mod 4), we showed that the designs constructed by Masaro and Wong [25]
and some new designs are highly D-efficient. Numerical search conducted did not find
D-better designs than those. Therefore, the designs constructed by Masaro and Wong
[25] may be used safely in practice when the number of observations n ≡ 1, 2 (mod 4).
The situation changes in the most difficult case where n ≡ 3 (mod 4). It has recently
been obtained by Katulska and Smaga [23] that in this case, the designs constructed
by Masaro and Wong [25] seem to be D-optimal when the number of observations is
appropriately large or appropriately larger than the number of objects. In the other
cases, however, D-better designs exist.
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APPENDIX

R code for a tabu-search-based approach

A tabu-search-based approach for D-efficient designs is performed by the following R
code. We use the function tabuSearch from the R package tabuSearch (Domijan [10]).
This function performs a tabu-search algorithm for optimizing binary strings. The pa-
rameters of a design, namely the number of observations n, the number of objects p and
the value of parameter ρ, need to be fixed. For instance, in the following code, we have
n = 5, p = 4 and ρ = 0.7. The number of iterations in the preliminary search of the algo-
rithm is 150 (the argument iters in the function tabuSearch) and the number of times
to repeat the search is 1000 (the argument repeatAll in the function tabuSearch). As
a result, we obtain the best design found by tabu-search algorithm under D-optimality
criterion and its D-efficiency.

# parameters of a design
n = 5; p = 4; rho = 0.7

# the constant defined in (4)
r = rho/(1+(n-1)*rho)

# the objective function
det.max = function(x){
x[x == 0] = -1
temp = matrix(x, nrow = n, ncol = p)
sums = t(colSums(temp))
return(det(t(temp) %*% temp - r * t(sums) %*% sums))

}

# performing of a tabu-search algorithm
library(tabuSearch)
res = tabuSearch(size = n*p, iters = 150, objFunc = det.max,

repeatAll = 1000)

# the maximal D-efficiency obtained
max.D.eff = (max(res$eUtilityKeep)^(1/p))/n

# the best design obtained under D-optimality criterion
D.best.string = (res$configKeep)[which.max(res$eUtilityKeep),]
D.best.string[D.best.string == 0] = -1
D.best.design = matrix(D.best.string, nrow = n, ncol = p)
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[16] R. Harman, A. Bachratá, and L. Filová: Construction of efficient experimental designs
under multiple resource constraints. Appl. Stochast. Models in Business and Industry 32
(2015), 1, 3–17.DOI:10.1002/asmb.2117

[17] M. Jacroux, C.S. Wong and J.C. Masaro: On the optimality of chemical balance
weighing designs. J. Statist. Planning Inference 8 (1983), 231–240. DOI:10.1016/0378-
3758(83)90041-1

[18] G. M. Jenkins and J. Chanmugam: The estimation of slope when the errors are autocor-
related. J. Royal Statist. Soc., Ser. B (Statistical Methodology) 24 (1962), 199–214.

http://dx.doi.org/10.1016/s0167-9473(01)00011-1
http://dx.doi.org/10.1016/j.jspi.2008.05.012
http://dx.doi.org/10.1016/j.spl.2005.09.012
http://dx.doi.org/10.1016/j.csda.2006.10.021
http://dx.doi.org/10.1080/15598608.2014.840520
http://CRAN.R-project.org/package=tabuSearch
http://CRAN.R-project.org/package=tabuSearch
http://dx.doi.org/10.1007/bf01111249
http://dx.doi.org/10.1007/bf01109911
http://dx.doi.org/10.1214/aos/1176345202
http://dx.doi.org/10.2478/bile-2013-0014
http://dx.doi.org/10.1002/asmb.2117
http://dx.doi.org/10.1016/0378-3758(83)90041-1
http://dx.doi.org/10.1016/0378-3758(83)90041-1


588 K. KATULSKA AND  L. SMAGA

[19] J. S. Jung and B. J. Yum: Construction of exact D-optimal designs by tabu search.
Comput. Statist. Data Analysis 21 (1996), 181–191. DOI:10.1016/0167-9473(95)00014-3

[20] K. Katulska and  L. Smaga: D-optimal chemical balance weighing designs with n ≡
0 (mod 4) and 3 objects. Comm. Statist. – Theory and Methods 41 (2012), 2445–2455.
DOI:10.1080/03610926.2011.608587

[21] K. Katulska and  L. Smaga: D-optimal chemical balance weighing designs with autore-
gressive errors. Metrika 76 (2013), 393–407. DOI:10.1007/s00184-012-0394-8

[22] K. Katulska and  L. Smaga: A note on D-optimal chemical balance weighing designs and
their applications. Colloquium Biometricum 43 (2013), 37–45.

[23] K. Katulska and  L. Smaga: On highly D-efficient designs with non-negatively correlated
observations. REVSTAT – Statist. J. (accepted).

[24] C. H. Li and S. Y. Yang: On a conjecture in D-optimal designs with n ≡ 0 (mod 4).
Linear Algebra Appl. 400 (2005), 279–290. DOI:10.1016/j.laa.2004.11.020

[25] J. Masaro and C. S. Wong: D-optimal designs for correlated random vectors. J. Statist.
Planning Inference 138 (2008), 4093–4106. DOI:10.1016/j.jspi.2008.03.012

[26] M. G. Neubauer and R. G. Pace: D-optimal (0, 1)-weighing designs for eight objects.
Linear Algebra Appl. 432 (2010), 2634–2657. DOI:10.1016/j.laa.2009.12.007

[27] F. Pukelsheim: Optimal Design of Experiments. John Wiley and Sons Inc., New York
1993.

[28] R Core Team: R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ (2015).

[29]  L. Smaga: D-optimal Chemical Balance Weighing Designs with Various Forms of the
Covariance Matrix of Random Errors. Ph.D. Thesis, Adam Mickiewicz University, 2013
(in polish).

[30]  L. Smaga: Necessary and sufficient conditions in the problem of D-optimal weigh-
ing designs with autocorrelated errors. Statist. Probab. Lett. 92 (2014), 12–16.
DOI:10.1016/j.spl.2014.04.027

[31]  L. Smaga: Uniquely E-optimal designs with n ≡ 2 (mod 4) correlated observations.
Linear Algebra Appl. 473 (2015), 297–315. DOI:10.1016/j.laa.2014.08.022

[32] M. Wojtas: On Hadamard’s inequality for the determinants of order non-divisible by 4.
Colloquium Mathematicum 12 (1964), 73–83.

[33] C. H. Yang: On designs of maximal (+1,−1)-matrices of order n ≡ 2 (mod 4). Math.
Computat. 22 (1968), 174–180. DOI:10.1090/s0025-5718-1968-0225476-4

[34] H. G. Yeh and M. N. Lo Huang: On exact D-optimal designs with 2 two-level factors and
n autocorrelated observations. Metrika 61 (2005), 261–275. DOI:10.1007/s001840400336

Krystyna Katulska, Faculty of Mathematics and Computer Science, Adam Mickiewicz
University, Umultowska 87, 61-614 Poznań. Poland.
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