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Construction of Mendelsohn designs

by using quasigroups of (2,q)-varieties

Lidija Goračinova-Ilieva, Smile Markovski

Abstract. Let q be a positive integer. An algebra is said to have the property
(2, q) if all of its subalgebras generated by two distinct elements have exactly q

elements. A variety V of algebras is a variety with the property (2, q) if every
member of V has the property (2, q). Such varieties exist only in the case of q

prime power. By taking the universes of the subalgebras of any finite algebra of
a variety with the property (2, q), 2 < q, blocks of Steiner system of type (2, q)
are obtained.

The stated correspondence between Steiner systems of type (2, 3) and the fi-
nite algebras of the varieties with the property (2, 3) is a folklore. There are also
more general and significant results on (2, q)-varieties which can be considered
as a part of an “algebraic theory of Steiner systems”. Here we discuss another
connection between the universal algebra and the theory of combinatorial de-
signs, and that is the relationship between the finite algebras of such varieties
and Mendelsohn designs. We prove that these algebras can be used not only as
models of Steiner systems, but for construction of Mendelsohn designs, as well.

For any two elements a and b of a groupoid, we define a sequence generated
by the pair (a, b) in the following way: w0 = a, w1 = b, and wk = wk−2 · wk−1

for k ≥ 2. If there is an integer p > 0 such that wp = a and wp+1 = b,
then for the least number with this property we say that it is the period of the
sequence generated by the pair (a, b). Then the sequence can be represented by
the cycle (w0, w1, . . . , wp−1). The main purpose of this paper is to show that
all of the sequences generated by pairs of distinct elements in arbitrary finite
algebra of a variety with the property (2, q) have the same periods (we say it is
the period of the variety), and they contain unique appearance of each ordered
pair of distinct elements. Thus, the cycles with period p obtained by a finite
quasigroup of a variety with the property (2, q) are the blocks (all of them of
order p) of a Mendelsohn design.

Keywords: Mendelsohn design; quasigroup; (2, q)-variety; t-design

Classification: Primary 05E15; Secondary 20N05

1. Introduction

Steiner system S(k, n, v), 2 ≤ k < n < v, is a pair (V,B) of a v-element set
V and a collection B of n-element subsets of V (called blocks), such that every
k-element subset of V is contained precisely in one of the blocks of B. We say that
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such Steiner system is of type (k, n). Steiner systems of type (2, 3) and (3, 4) are
known as Steiner triple systems and Steiner quadruple systems, respectively ([3]).

The pair (V,B) is said to be a (v, K, 1)-Mendelsohn design if V is a v-element
set (of points) and B is a collection of cyclically ordered subsets of V (also called
blocks) whose orders belong to K and with the property that every ordered pair
of points subsequently appears exactly in one of the blocks. We write simply
(v, k)-MD to denote a (v, {k}, 1)-Mendelsohn design ([3]). A block (a1, a2, . . . , an)
of a Mendelsohn design can be considered as the set {(a1, a2), (a2, a3), . . . ,
(an−1, an), (an, a1)}.

An algebra A is said to have the property (k, n) if every k-element subset of A
generates an n-element subalgebra. Here we will use the notion (k, n)-algebra to
denote such a structure. A variety V of algebras is a variety with the property (k, n)
(or (k, n)-variety) if every algebra of V is a (k, n)-algebra. The (k, n)-varieties
have some interesting characteristics due to the restrictive defining property of
its algebras. For instance, an important property is that the free algebra on k-
element free base in a (k, n)-variety is finite and it has n elements. In fact, in a
(k, n)-variety, all of the algebras generated by k distinct elements are isomorphic,
and hence free in the variety. We emphasize that in the case of a (2, q)-variety of
groupoids, all of its elements are idempotent quasigroups ([5]).

It is clear that by taking the universe of a finite (k, n)-algebra and the set
of the universes of all of its subalgebras generated by k-element subsets, one
can obtain a Steiner system of type (k, n). So, every v-element algebra with
the property (2, q) can be taken as a model of a Steiner system S(2, q, v). But
we want to consider classes of Steiner systems of certain type instead of a single
Steiner system. Therefore, we deal with classes of algebras, and since the varieties
are most suitable for that purpose (they are closed under the forming of direct
products, homomorphic images, and subalgebras), we focus our attention to (2, q)-
varieties. The main issue connected to this is whether such varieties contain every
Steiner system of type (2, q), or not. In the affirmative case, we say that the variety
is (2, q)-coordinatizing. It is proved in [4] that there is a (2, q)-coordinatizing
variety for every prime power q. Moreover, for every prime power q, there is
so called (2, q)-Micado coordinatizing variety, possessing two-variable equational
base and having the additional property that all of its fundamental operations
are binary.

Varieties with the property (2, q) have also some interesting properties from the
algebraic point of view. They have permutable, regular and normal congruences,
the strong amalgamation property, the finite embedding property and thus a
solvable word problem, and a nice equational base ([4]). In the same paper, it is
shown that there is (2, q)-Micado variety of idempotent quasigroups coordinatizing
all Steiner systems of type (2, q). In order to clarify the preceding statement, we
will present a brief description of the way of obtaining such varieties, also given
in the stated paper [4].

The basis of the main result of our paper is the fact that the free algebra with
two generators in a (2, q)-variety has a sharply doubly transitive automorphism
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group. Grätzer ([7]) proved that there is a strong correspondence between sharply
doubly transitive groups and the so called G-fields.

If G is a sharply doubly transitive group on a set N , then one can define an
algebraic structure (N ;−, ·, 0, 1) of type (2, 2, 0, 0) satisfying (G1)–(G5):

(G1) (N, ·, 0) is a semigroup with zero 0,
(G2) (N \ {0}, ·, 1) is a group,
(G3) a − 0 = a,
(G4) a(b − c) = ab − ac,

(G5) a − (b − c) =

{

c, if a = b,
(a − b)(1 − (b − a)−1c), if a 6= b.

Such a structure is called a G-field. All finite fields and near fields are G-fields.
On the other hand, if (N ;−, ·, 0, 1) is a G-field, then the mappings αa,b : N → N ,
defined by αa,b(x) = b − ax, a, b ∈ N , a 6= 0, form a sharply doubly transitive
group on N .

Let V be any (2, q)-variety, q ≥ 3, and let (M ;−, ·, 0, 1) be the G-field deter-
mined by V . Let V̄ be the variety whose fundamental operations are the binary
ones fa, a ∈ M , satisfying the equations (E1)–(E4):

(E1) (∀a ∈ M) fa(x, x) = x,
(E2) f0(x, y) = x,
(E3) (∀a ∈ M) fa(y, x) = f1−a(x, y),
(E4) (∀a, b, c ∈ M) fa(fb(x, y), fc(x, y)) = fb−(b−c)a(x, y).

The free two-generated algebras of V and V̄ are rationally equivalent, so V̄ is
a (2, q)-variety. The next result proves that V̄ is also (2, q)-coordinatizing variety.

Let V̄ be a (2, q)-Micado variety and let (S,B) be a Steiner system of type (2, q).
Choose for any block b ∈ B a bijection αb : b 7→ M . For a ∈ M and x, y ∈ S,
x 6= y, define fa(x, x) = x and fa(x, y) = α−1

b (αb(x) − (αb(x) − αb(y))a), where
x, y ∈ b ∈ B. Then the algebra (S; (fa)a∈M ) belongs to V̄ and its two-generated
subalgebras are exactly the blocks b ∈ B.

The latest result shows that there are many different ways to “coordinatize”
a Steiner system of a given type. The coordinatization is unique only when q = 3.

Hence, any G-field of order q defines a variety V̄ with q binary operations and
the equations (E1) – (E4). In the special case of the Galois field GF (q), one of
the binary operations generates all the others. Consider a primitive element a of
GF (q) and the operation x ◦ y = ax + (1 − a)y on GF (q). If we use the notation
[x, y]0 = x and [x, y]n+1 = [x, y]n ◦ y, then the following equations hold:

(F1) x ◦ x = x;
(F2) [x, y]q−1 = x;
(F3) [x, y]n = [y, x]m, whenever 1 ≤ n, m ≤ q − 2 such that an + am = 1.

Every variety of groupoids satisfying (F1)–(F3) is a (2, q)-Micado variety. Note
that the equations of such variety depend on the choice of the primitive a ∈ GF (q).

In this paper we prove that finite quasigroups of (2, q)-varieties can also be
used to construct Mendelsohn designs. Despite of the fact that there are several
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constructions of Mendelsohn designs, mainly by using fields, here we present a very
simple method, based only on the restrictive properties of the algebras in (2, q)-
varieties.

2. Sequences in groupoids

Given a binary operation f , we define inductively a sequence of binary opera-
tions (w0, w1, w2, w3, . . . ) generated by f , as follows: w0(x, y) = x and w1(x, y) =
y are the first and the second projection, and

wi(x, y) = f(wi−2(x, y), wi−1(x, y))

for every i ≥ 2.
Let (G, ·) be a groupoid and let (w0, w1, w2, w3, . . . ) be generated by the binary

operation “·”. Then, for a, b ∈ G, the preceding sequence of binary operations
produces the sequence (w0(a, b), w1(a, b), w2(a, b), w3(a, b), . . . ) of elements of G,
called the sequence generated by the pair (a, b). So, we have

w0(a, b) = a,
w1(a, b) = b,
wi(a, b) = wi−2(a, b) · wi−1(a, b) for i ≥ 2.

It is clear that wi(a, b) = w2(wi−2(a, b), wi−1(a, b)) for every i ≥ 2.
For example, consider the semigroup (N, +). Then the sequence generated by

(1, 1) is 1, 1, 2, 3, 5, 8, . . . , i.e., it is the sequence of Fibonacci numbers.

The least integer p > 0 such that wp(a, b) = a and wp+1(a, b) = b is said
to be the period of the sequence (w0(a, b), w1(a, b), w2(a, b), . . . ) and we denote
per(a, b) = p. If there is no such integer p, then we say that the period of the
sequence generated by (a, b) is infinite and we write per(a, b) = ∞.

A sequence with a finite period p = per(a, b) is completely determined by its
first p members (since they are periodically repeated, i.e., wkp+i(a, b) = wi(a, b)
for every k ∈ N and each i, 0 ≤ i < p). Therefore, the sequence generated by
the pair (a, b) with period p can be represented by the cycle (w0(a, b), w1(a, b),
w2(a, b), . . . , wp−1(a, b)) of length p.

Lemma 1. Let (G, ·) be a groupoid and u, v ∈ G. Then

wk(u, v) = wk−1(w1(u, v), w2(u, v)),

for every k > 0.

Proof: We have w1(u, v) = w0(w1(u, v), w2(u, v)) and w2(u, v) = w1(w1(u, v),
w2(u, v)). By the definition of wk and the inductive hypothesis, for k > 1, we
have:

wk(w1(u, v), w2(u, v))

= wk−2(w1(u, v), w2(u, v)) · wk−1(w1(u, v), w2(u, v))

= wk−1(u, v) · wk(u, v) = wk+1(u, v). �
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Lemma 2. Let (G, ·) be a groupoid and u, v ∈ G. Then for every k ≥ 0 and each

j ∈ {0, 1, 2, . . . , k},

wk(u, v) = wk−j(wj(u, v), wj+1(u, v)).

Proof: We use induction on j. The case j = 0 is trivial. For j = 1, by Lemma 1,
wk(u, v) = wk−1(w1(u, v), w2(u, v)). Then for j > 1, again by Lemma 1, we
obtain:

wk−j(wj(u, v), wj+1(u, v))

= wk−j(w1(wj−1(u, v), wj(u, v)), w2(wj−1(u, v), wj(u, v)))

= wk−(j−1)(wj−1(u, v), wj(u, v)) = wk(u, v). �

For a given groupoid, we identify the sequences generated by the pairs (a, b)
and (c, d) if the following is satisfied: per(a, b) = per(c, d) = p ∈ N and there
is a j, 0 ≤ j < p, such that wj(a, b) = c, wj+1(a, b) = d. In that case we have
wk(c, d) = wk(wj(a, b), wj+1(a, b)) = wk+j(a, b) for every k > 1, as well. In other
words, (w0(a, b), w1(a, b), . . . , wp−1(a, b)) represents a cyclic permutation of the
sequence (w0(c, d), w1(c, d), . . . , wp−1(c, d)), i.e., we have different representations
of the same cyclically ordered set. Therefore, we identify such cycles.

Trivially, per(a, a) = 1, for every idempotent groupoid G and each element
a ∈ G. Since the members of (2, q)-varieties of quasigroups are idempotent, this
holds in such varieties.

3. Period of a variety

An extensive survey on the properties of (k, n)-algebras can be found in [5].
Here we prove one of the statements which we will use below.

Lemma 3. Let V be a (k, n)-variety, let U be its free algebra on k-element free

base B and let A be arbitrary n-element algebra of V . Then every one-to-one

mapping from B to A can be extended to an isomorphism from U into A.

Proof: Let B = {b1, b2, . . . , bk} and let a1, a2, . . . , ak be mutually distinct ele-
ments of A. Because of the universal mapping property, the correspondence bi 7→
ai, i = 1, 2, . . . k, can be extended to a homomorphism φ : U → A. The algebra
A is generated by the set {a1, a2, . . . , ak}, and therefore φ(U) = A. Since |U | =
|A| = n, we get that φ is an isomorphism. �

Corollary 1. Let V be a (2, q)-variety. Then all of its algebras generated by two

distinct elements are isomorphic. �

Corollary 2. Every algebra generated by two distinct elements is free in a (2, q)-
variety. �
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In what follows, we will establish some characteristics of the sequences gene-
rated by a pair of distinct elements in the quasigroups of a (2, q)-variety. First
we will prove that all sequences have finite periods that do not exceed the value
of q, and that the elements of the corresponding cycles are distinct. Afterwards,
we will show that the cycles actually have the same length.

Theorem 1. Let (Q, ·) be a non-trivial quasigroup of a (2, q)-variety, let a, b ∈ Q
and a 6= b. Then per(a, b) ≤ q and wi(a, b) 6= wj(a, b) for all i 6= j ≤ per(a, b).

Proof: Let wm(a, b) = wi(a, b) for some i < m, and let all of the elements
w0(a, b), w1(a, b), . . . , wm−1(a, b) be distinct. All of the members of the sequence
generated by the pair (a, b) are elements of the subquasigroup generated by a
and b, which is isomorphic to the free quasigroup on two generators. Hence, the
equations on these two elements represent the corresponding identities in the va-
riety. Therefore, by Lemma 2, we have wm−i(wi(a, b), wi+1(a, b)) = wm(a, b) =
wi(a, b) = w0(wi(a, b), wi+1(a, b)), and hence we obtain that wm−i(x, y) ≈ w0(x, y)
is an identity in (Q, ·). Then wm−i(a, b) = w0(a, b) and, since m − i > 0, accord-
ing to the condition wj(a, b) 6= wk(a, b) for all j, k < m, j 6= k, we get i = 0,
that is wm(a, b) = w0(a, b) = a. By the identity and Lemma 1, we also get
that wm+1(a, b) = wm(w1(a, b), w2(a, b)) = w0(w1(a, b), w2(a, b)) = w1(a, b) = b,
implying per(a, b) = m. Also, m ≤ q since all the elements in the sequence
w0(a, b), w1(a, b), . . . , wm−1(a, b) are distinct and they belong to the subquasi-
group generated by a and b which has exactly q elements. �

Note that the period p of the sequence generated by (a, b), a 6= b, of a quasi-
group in a (2, q)-variety is not less than 3. We have that p 6= 1 since w1(a, b) =
b 6= a = w0(a, b). Beside this, p 6= 2 since w2(a, b) = a · b 6= a = w0(a, b). Namely,
the quasigroups of a (2, q)-variety are idempotent ones and the cancellation laws
hold, therefore a · b = a ⇒ a · b = a · a ⇒ b = a.

Theorem 2. Let V be a (2, q)-variety of quasigroups. Then there is a p ∈ N,

3 ≤ p ≤ q, such that p = per(a, b), for every quasigroup Q of V and arbitrary

elements a 6= b of Q.

Proof: Let Q1 and Q2 be V-quasigroups, and let a and b be distinct elements
of Q1, and c and d be distinct elements of Q2. Let per(a, b) = p, per(c, d) =
s, and assume that p < s. By the argument stated in the preceding proof,
x ≈ wp(x, y) and x ≈ wq(x, y) are identities in V . But then, for the cycle
(w0(c, d), w1(c, d), . . . , wp−1(c, d), . . . , ws−1(c, d)) we have that c = wp(c, d), which
is impossible, since all of its elements differ from each other. �

As a result of Theorem 2, we define a notion period of a variety V , referring to
the period of any of the quasigroups in V .

4. Main result

Let (Q, ·) be a quasigroup of a (2, q)-variety V , and consider the set B of all
the sequences which are generated by the pairs of distinct elements of Q. If we
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summarize the results contained in Theorems 1 and 2, we obtain that B is the set
of cycles of the same length (the period of V), and it contains a unique appearance
of every ordered pair of distinct elements as a member of some of its cycles. Hence,
we have the following theorem and its combinatorial corollary.

Theorem 3. Let V be a (2, q)-variety of quasigroups with period p, (Q, ·) be in V
and B = {(x0, x1, . . . , xp−1) |x0, x1 ∈ Q, x0 6= x1, xi+1 = xi−1 · xi, 0 < i < p − 1}.
Then for arbitrary pair of elements (a, b) of Q, a 6= b, there exists unique element

of B containing the pair (a, b). �

Corollary 3. Let V be a (2, q)-variety of quasigroups with period p, let (Q, ·)
be a v-element quasigroup of V and B = {(x0, x1, . . . , xp−1) |x0, x1 ∈ Q, x0 6=
x1, xi+1 = xi−1 · xi, 0 < i < p − 1}. Then the pair (Q,B) is a (v, p)-MD. �

5. Other designs related to (2, q)-quasigroups

The class of Steiner systems is a subclass of a larger class of combinatorial
designs. A pair (V,B) of v-element set (of points) V and a collection B of k-
element subsets of V (blocks), with the property that every t-element subset of
V is contained in exactly λ of the blocks of B, is said to be t − (v, k, λ) design.
Steiner system S(t, k, v) is a t − (v, k, 1) design.

Let (V,B) be (v, p, 1)-Mendelsohn design arising from a quasigroup in a (2, q)-
variety with period p. If a ∈ V is an arbitrary element, then it is contained
precisely in v − 1 of the blocks of B (as the first member of the pair (a, b) with
each of the other elements b ∈ V , and having in mind that the appearance of an
element in a block is unique). If we exclude a from these blocks, then there are
totally (p − 1)(v − 1) elements which are uniformly distributed in these blocks
(i.e., every element of V \ {a} is contained in exactly p − 1 of the blocks). We
have to elaborate the last statement.

Assume that the opposite holds, which means that the distribution of the
elements of V \ {a} in the blocks containing a,

(a, x12, x13, . . . , x1p),
(a, x22, x23, . . . , x2p),

. . . . . . . . . . . . . . . . . .
(a, xv−1,2, xv−1,3, . . . , xv−1,p),

is not uniform. This implies that there is an element b 6= a appearing at least
p times in the above blocks. Then we have two blocks (a, xi2, xi3, . . . , xip) and
(a, xj2, xj3, . . . , xjp) such that xik = xjk = b, for some 2 ≤ k ≤ p. Put for
simplicity x = xi2, y = xj2. Then we have xi3 = ax, xi4 = x(ax), xi5 =
(ax)(x(ax)), . . . , xik = b and xj3 = ay, xj4 = y(ay), xj5 = (ay)(y(ay)), . . . , xjk =
b. Since xik is a product of a and x and xjk is a product of a and y, from the
equality xik = xjk in the free quasigroup, we get an identity xik ≈ xjk in the
variety. (For instance, if k = 5, we have the identity (ax)(x(ax)) ≈ (ay)(y(ay)).)
Hence, for each i, 1 ≤ i ≤ v − 1, we have xik = b. Since every ordered pair
(x, b), x 6= b, is contained exactly in one of the blocks of B, we have that the pair
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(xi,k−1, b), i = 1, 2, . . . , v − 1, in the above blocks are all distinct. Therefore,
there is j ∈ {1, 2, . . . , v − 1} such that (xj,k−1, b) = (a, b). But, the element a is
contained in all of these blocks, and since the appearance of any element in any
block is unique, according to our representation of the blocks (“starting” with the
element a), the only possibility is that k − 1 = 1. But this leads to the obvious
contradiction that all of the stated blocks start with the pair (a, b) implying that
they are equal.

Now, if we consider the blocks as (unordered) sets, then for arbitrary quasi-
group element b 6= a, the two-element subset {a, b} is contained in p − 1 of the
blocks. Hence, we have the following relationship between (2, q)-varieties of quasi-
groups and 2-designs.

Corollary 4. Let V be a (2, q)-variety of quasigroups with period p, let (Q, ·) be v-

element quasigroup of V and B = {(x0, x1, . . . , xp−1) |x0, x1 ∈ Q, x0 6= x1, xi+1 =
xi−1 · xi, 0 < i < p− 1}. If C = {{x0, x1, . . . , xp−1} | (x0, x1, . . . , xp−1) ∈ B}, then

the pair (Q, C) is a 2 − (v, p, p − 1) design. �

6. Values of periods

A period p of (2, q)-varieties of quasigroups does not strictly depend on q.
There are varieties whose period is q or q − 1 but this is not a general rule.
A variety V with the property (k, n) is said to be maximal if every variety with
the same property containing V is equal to V , see [5]. For example, there are
three maximal (2, 5)-varieties of quasigroups. (The proof of this result is given
in Appendix.) One of them has period 5, and the other two have period 4. On
the other hand, the (2, 9)-variety which is constructed in [6] is defined by the
identities x · xy ≈ yx, xy · (y · xy) ≈ x, and its period is 4. Nevertheless, having

in mind that there are q(q−1)
p

cycles which are produced by one subquasigroup on

two generators, we have that q(q − 1) ≡ 0 (mod p).
The problem of determination of more precise expression representing a value

of the period of a (2, q)-variety remains open.

7. Example

In this section we present an example of a quasigroup of order 16 of the (2, 4)-
variety V4 (see Table 1) and the corresponding combinatorial structures. The
unique variety of quasigroups with the property (2, 4) is determined by the iden-
tities x · xy ≈ yx, xy · yx ≈ x ([5], [10]). The variety V4 has period 3, and the
sequences which are generated by the ordered pairs of distinct elements of the
quasigroup (which match the blocks of the corresponding (16, 3)-MD) are given
in Table 2. Note that they also represent a decomposition of the complete directed
graph of order 16, and this holds in general. (In the Appendix the decomposi-
tions of all maximal (2, q)-varieties for q = 3, 4, 5 are described.) Moreover, the
replacement of each of these cycles with the set consisting of the same elements
results with the blocks of a 2 − (16, 3, 2) design. The Steiner system S(2, 4, 16),
obtained by the quasigroup given in Table 1, is presented in Table 3.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 3 4 2 6 7 5 9 10 8 12 13 11 15 16 14
2 4 2 1 3 8 12 9 11 15 13 5 14 16 6 7 10
3 2 4 3 1 13 8 10 16 11 12 14 7 15 9 5 6
4 3 1 2 4 10 9 11 12 13 14 16 15 6 5 8 7
5 7 11 15 14 5 1 6 2 12 4 8 16 3 10 13 9
6 5 14 16 13 7 6 1 3 4 11 15 2 9 12 10 8
7 6 15 12 16 1 5 7 13 2 3 4 10 14 8 9 11
8 10 5 6 15 11 16 14 8 1 9 2 4 7 13 12 3
9 8 7 14 6 16 13 15 10 9 1 3 5 4 11 2 12
10 9 16 7 5 14 15 12 1 8 10 6 3 2 4 11 13
11 13 8 9 7 2 10 16 5 14 15 11 1 12 3 6 4
12 11 6 10 8 9 14 3 15 16 7 13 12 1 2 4 5
13 12 10 5 9 15 4 8 14 6 16 1 11 13 7 3 2
14 16 12 11 10 4 2 13 7 3 5 9 6 8 14 1 15
15 14 9 13 12 3 11 2 4 7 6 10 8 5 16 15 1
16 15 13 8 11 12 3 4 6 5 2 7 9 10 1 14 16

Table 1. V4-quasigroup of order 16

(1,2,3) (1,3,4) (1,4,2) (2,4,3) (1,5,6) (1,6,7) (1,7,5)
(5,7,6) (1,8,9) (1,9,10) (1,10,8) (8,10,9) (1,11,12) (1,12,13)
(1,13,11) (11,13,12) (1,16,14) (14,16,15) (2,5,8) (2,8,11) (2,11,5)
(5,11,8) (2,6,12) (2,12,14) (2,14,6) (6,14,12) (2,7,9) (2,9,15)
(2,15,7) (7,15,9) (2,10,13) (2,13,16) (2,16,10) (10,16,13) (3,5,13)
(3,13,15) (3,15,5) (5,15,13) (3,6,8) (3,8,16) (3,16,6) (6,16,8)
(3,7,10) (3,10,12) (3,12,7) (7,12,10) (3,9,11) (3,11,14) (3,14,9)
(9,14,11) (4,5,10) (4,10,14) (4,14,5) (5,14,10) (4,6,9) (4,9,13)
(4,13,6) (6,13,9) (4,7,11) (4,11,16) (4,16,7) (7,16,11) (4,8,12)
(4,12,15) (4,15,8) (8,15,12) (5,9,12) (5,12,16) (5,16,9) (9,16,12)
(6,10,11) (6,11,15) (6,15,10) (10,15,11) (7,8,13) (7,13,14) (7,14,8)
(8,14,13) (1,14,15) (1,15,16)

Table 2. (16, 3)-MD obtained by the quasigroup given in Table 1

Appendix

Maximal varieties with property (2,5)

Recall that a variety V with the property (k, n) is maximal if every variety
with the same property containing V is equal to V . Here we will show that there
are exactly three maximal (2, 5)-varieties of quasigroups, one with period 5, and
the others with period 4. Two of these varieties are found by R. Padmanabhan
([10]) and the third by L. Goracinova-Ilieva ([5]).
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{1,2,3,4} {1,5,6,7} {1,8,9,10} {1,11,12,13} {1,14,15,16}
{2,5,8,11} {2,6,12,14} {2,7,9,15} {2,10,13,16} {3,5,13,15}
{3,6,8,16} {3,7,10,12} {3,9,11,14} {4,5,10,14} {4,6,9,13}
{4,7,11,16} {4,8,12,15} {5,9,12,16} {6,10,11,15} {7,8,13,14}

Table 3. Steiner system S(2, 4, 16) obtained by the quasigroup
given in Table 1

Theorem 4. The variety of groupoids V5 defined by the identities

xy ≈ yx (1)
x · (xy · y) ≈ y (2)
x · (xy · x) ≈ xy · y (3)

is a (2, 5)-variety of commutative quasigroups.

Proof: Let (G, ·) be any groupoid satisfying the identities (1)–(3) of Theorem 4.
It follows from (1) and (2) that for each a, b ∈ G the equations ax = b and ya = b
have solutions x = y = ab · b. By the implications ax = az =⇒ ax · a = az · a =⇒

a(ax · a) = a(az · a)
(3)
=⇒ ax · x = az · z =⇒ a(ax · x) = a(az · z)

(2)
=⇒ x = z we have

that the groupoid is cancellative, i.e., it is a quasigroup.
We will show that the subquasigroup generated by elements x, y, x 6= y, of

any nontrivial V5-quasigroup has the structure as in Table 4.

x y xy xy · x xy · y
x x xy xy · x xy · y y
y xy y xy · y x xy · x
xy xy · x xy · y xy y x

xy · x xy · y x y xy · x xy
xy · y y xy · x x xy xy · y

Table 4. V5-quasigroup generated by {x, y}

Namely, besides the identities (1)–(3), the next identities also hold.

xx ≈ x (4)
xy · (xy · x) ≈ y (5)
xy · (xy · y) ≈ x (6)

(xy · x)(xy · y) ≈ xy (7).

(4): By (1) and (3) we have x · (xx ·x) = x ·xx and, after cancellation, xx = x;

(5): xy ·(xy ·x)
(1)
= xy ·(yx·x)

(3)
= xy ·y(yx·y)

(1)
= xy ·y(xy ·y)

(1)
= xy ·(xy ·y)y

(2)
= y;

(6): xy · (xy · y)
(3)
= xy · x(xy · x)

(1)
= xy · (xy · x)x

(2)
= x;

(7): (xy · x)(xy · y)
(1)
= (xy · x)(y · xy)

(5)
= (xy · x)((xy · (xy · x)) · xy)

(1)
=
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(1)
= (xy · x)(((xy · x) · xy) · xy)

(2)
= xy.

To complete the proof, we have to show that the elements x, y, xy, xy · x and
xy·y are different when x 6= y. Let us suppose that x = xy. Then, by (4), xx = xy,
leading to x = y after cancellation. If x = xy·x then xx = xy·x, i.e., x = xy, which
is not possible (as we have already seen). If x = xy ·y then xx = x(xy ·y), implying
x = y by (2) and (4). The assumption xy = xy ·x, together with the idempotency
and the cancellation property, gives again xy = x. The same arguments show that
the equality xy = xy · y is not true. The assumption xy · x = xy · y immediately
gives x = y. �

Theorem 5. The variety of groupoids V
′

5 defined by the identities

x · xy ≈ y,

xy · y ≈ yx,

is a (2, 5)-variety of anti-commutative quasigroups. �

The proof of Theorem 5 follows the steps of the proof of Theorem 4, and we
are not stating the details. Table 5 shows only the subquasigroup generated by
elements x, y, x 6= y, of any nontrivial V ′

5-quasigroup.

x y xy yx x· yx
x x xy y x· yx yx
y yx y x· yx x xy
xy x· yx yx xy y x
yx xy x· yx x yx y

x· yx y x yx xy x· yx

Table 5. V
′

5-quasigroup generated by {x, y}

Theorem 6. The variety of groupoids V
′′

5 , defined by the identities

x · xy ≈ yx,

xy · y ≈ x,

is a (2, 5)-variety of anti-commutative quasigroups. �

Instead of complete proof, Table 6 shows only the subquasigroup generated by
elements x, y, x 6= y, of any nontrivial V ′′

5 -quasigroup.
We will show that any (2, 5)-variety of groupoids is contained in one of the

varieties V5, V
′

5 or V
′′

5 . Also, any one of these varieties is not a subvariety of some
of the other two.

Theorem 7. The varieties V5, V
′

5 and V
′′

5 are the only maximal (2, 5)-varieties

of groupoids.

Proof: Let V be a (2, 5)-variety of groupoids and let U be its free groupoid
with free 2-elements base {x, y}. Then, as we stated earlier, U is an idempotent
quasigroup.
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x y xy yx x· yx
x x xy yx x· yx y
y yx y x· yx xy x
xy x· yx x xy y yx
yx y x· yx x yx xy

x· yx xy yx y x x· yx

Table 6. V
′′

5 -quasigroup generated by {x, y}

At first, suppose that U is commutative. Then x · xy /∈ {x, xy}, since in the
opposite case we will get x = y. The same is true for the element y · xy, and it is
different from x · xy, too. Thus, U = {x, y, xy, x · xy, y · xy}. The product of the
element x with the elements x ·xy and y ·xy must be defined by x · (x ·xy) = y ·xy
and x · (y · xy) = y, since U is a quasigroup. The last two equalities give the
identities (3) and (2) for the variety V5 and, by the commutativity, we have that
V is a subvariety of V5.

Let us consider now the non-commutative case, xy 6= yx.
If we suppose that x ·xy = y, then x · yx must be a new element different from

x, y, xy and yx. Since U is a quasigroup, we have x · (x · yx) = yx, y ·xy = x · yx,
y · (x · yx) = xy, xy · yx = y. Then xy · y = xy · (xy · yx) = yx, meaning that V is

a subvariety of V
′

5.
Now take the opposite, i.e., suppose that U is not commutative and x ·xy 6= y.

We have two cases to consider.
(i) Let x ·xy = yx. Then x ·yx is a new element different from x, y, xy, yx, and

the equality x · (x · yx) = y holds true. Then yx · x = x · (x · yx) = y, implying

that V is contained in V
′′

5 .
(ii) The last remaining case is when x · xy /∈ {x, y, xy, yx} is a new element.

Then, in order the multiplication table of U to be completed to idempotent quasi-
group, we must have the following equalities: x·yx = y, x·(x·xy) = yx, y ·xy = x,
y ·yx = x ·xy, y(x ·xy) = xy, xy · (x ·xy) = x, yx · (x ·xy) = y. The partly fulfilled
multiplicative table of U is presented in Table 7. It can be seen from Table 7 that
we cannot define the product (yx)(xy) such that U is a quasigroup.

x y xy yx x· xy
x x xy x· xy y yx
y yx y x x· xy xy
xy xy x
yx yx y

x· xy x· xy

Table 7. Partly fulfilled multiplicative table of a (2, 5)-groupoid
where x · xy 6= x, y, xy, yx
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Hence, we have shown that V is a subvariety of some of the varieties V5, V
′

5

or V
′′

5 .

To complete the proof, we have to show that none of the varieties V5, V
′

5 or V
′′

5

is contained into some of the others. By the commutativity of V5 and the anti-
commutativity of V

′

5 and V
′′

5 , we have that V5 is not a subvariety of neither V
′

5 nor

V
′′

5 , and vice versa. On the other hand, for arbitrary groupoid (G, ·) belonging to

V
′

5 and V
′′

5 , and for any x, y ∈ G we have x = xx = x(y · yx) = x · xy = y (since

x · xy ≈ y is an identity of V
′

5, and xy ≈ y · yx is an identity of V
′′

5 ), consequently
(G, ·) is the trivial groupoid. �

At the end, we present the cyclic decompositions of the complete directed
graphs which correspond to the basic structures (the free quasigroups on two
generators) of all maximal (2, q)-varieties of quasigroups for q = 3, 4, 5.

The (2, 3)-variety V3, defined by the identities xx ≈ x, xy ≈ yx and x(xy) ≈ y,
has the decomposition (x, y, xy), (x, xy, y).

The (2, 4)-variety V4, defined by the identities x(xy) ≈ yx and (xy)(yx) ≈ x,
has the decomposition (x, y, xy), (x, xy, yx), (x, yx, y), (y, yx, xy).

The decompositions of the (2, 5)-varieties are as follows.
V5: (x, y, xy, (xy)y), (x, xy, (xy)x, y), (x, (xy)x, (xy)y, xy), (x, (xy)y, y, (xy)x),

(y, (xy)y, (xy)x, xy).

V
′

5: (x, y, xy, x(yx)), (x, xy, y, yx), (x, yx, x(yx), y), (x, x(yx), yx, xy),
(y, x(yx), xy, yx).

V
′′

5 : (x, y, xy, x(yx), yx), (x, xy, yx, y, x(yx)), (x, yx, x(yx), xy, y),
(x, x(yx), y, yx, xy).
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