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Abstract. The Humbert matrix polynomials were first studied by Khammash and She-
hata (2012). Our goal is to derive some of their basic relations involving the Humbert
matrix polynomials and then study several generating matrix functions, hypergeometric
matrix representations, matrix differential equation and expansions in series of some rela-
tively more familiar matrix polynomials of Legendre, Gegenbauer, Hermite, Laguerre and
modified Laguerre. Finally, some definitions of generalized Humbert matrix polynomials
also of two, three and several index are derived.
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1. Introduction and preliminaries

Special matrix functions are very close to statistics, Lie group theory and number

theory [14]. In the recent work, matrix polynomials have significant emergent in

[1]–[7], [9], [10], [12], [17]–[21], [24]–[32], [34]–[37]. Results in the theory of classical

orthogonal polynomials have been extended to orthogonal matrix polynomials in

[8], [16], [38]. Humbert matrix polynomials have been introduced and studied in

[22]. The reasons of interest in this family of Humbert matrix polynomials are their

intrinsic mathematical importance.

Our main aim in this paper is to prove new properties the generalized hyperge-

ometric matrix function and Humbert matrix polynomials. The structure of this

paper is as follows. In Section 2, some basic relations involving the generalized hy-

pergeometric matrix functions and convergence properties, integral representation,

differential properties, and matrix differential equation are obtained. In Section 3, we

give some new results involving the Humbert matrix polynomials and then establish
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several operational results, matrix differential equation, finite series representation,

hypergeometric representations, four additional generating matrix functions and ex-

pansions of Humbert matrix polynomials in series of other polynomials which are

best stated in terms of the generalized matrix polynomials. Relationships with other

polynomial systems are also developed. Finally, we define the multiindex Humbert

matrix polynomials and present several new results for matrix polynomials in Sec-

tion 4.

Throughout this paper, for a matrix A in C
N×N , its spectrum σ(A) denotes the

set of all eigenvalues of A. Its two-norm will be denoted by ‖A‖, and is defined by

‖A‖ = sup
x 6=0

‖Ax‖2
‖x‖2

where, for a vector x ∈ C
N , ‖x‖2 = (xTx)1/2 is the Euclidean norm of x.

If f(z) and g(z) are holomorphic functions of the complex variable z, which are

defined in an open set Ω of the complex plane, and A, B are matrices in CN×N with

σ(A) ⊂ Ω and σ(B) ⊂ Ω, such that AB = BA, then from the properties of the

matrix functional calculus in [13] it follows that

f(A)g(B) = g(B)f(A).(1.1)

We recall that the reciprocal gamma function denoted by Γ−1(z) = 1/Γ(z) is an entire

function of the complex variable z and thus for any matrix A in C
N×N , Γ−1(A) is

a well defined matrix. Furthermore, if A is a matrix in C
N×N such that

A+ nI is an invertible matrix for all integers n > 0(1.2)

where I is the identity matrix in C
N×N , then the Pochhammer symbol or shifted

factorial is defined by [15]

(A)n = A(A+ I)(A+ 2I) . . . (A+ (n− 1)I)

= Γ(A+ nI)Γ−1(A); n > 1, (A)0 = I.

(1.3)

For matrices A(k, n) and B(k, n) in CN×N where n > 0, k > 0 the following relations

are satisfied according to Defez and Jódar in [11]:

∞
∑

n=0

∞
∑

k=0

B(k, n) =

∞
∑

n=0

n
∑

k=0

B(k, n− k),

∞
∑

n=0

∞
∑

k=0

A(k, n) =
∞
∑

n=0

[n/m]
∑

k=0

A(k, n−mk); m ∈ N.

(1.4)
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Similarly, we can write

∞
∑

n=0

n
∑

k=0

B(k, n) =
∞
∑

n=0

∞
∑

k=0

B(k, n+ k),(1.5)

∞
∑

n=0

[n/m]
∑

k=0

A(k, n) =
∞
∑

n=0

∞
∑

k=0

A(k, n+mk); m ∈ N.

Let us denote real numbers M(A) and m(A) by

M(A) = max{ℜ(z) : z ∈ σ(A)}; m(A) = min{ℜ(z) : z ∈ σ(A)}.(1.6)

Note that, if k is large enough so that for k > ‖C‖, then we have the relation which
is given in Jódar and Cortés [18], [17] in the form

‖(C + kI)−1‖ 6
1

k − ‖C‖ ; k > ‖C‖.(1.7)

The hypergeometric matrix function 2F 1(A,B;C; z) has been given in [17] in the

form

2F 1(A,B;C; z) =

∞
∑

k=0

(A)k(B)k((C)k)
−1

k!
zk(1.8)

where A, B and C are matrices of CN×N such that C + nI is an invertible matrix

for all integers n > 0. It has been shown by Jódar and Cortés [17] that the series is

absolutely convergent for |z| = 1 when

m(C) > M(A) +M(B).

If CB = BC and C, B, C − B are positive stable matrices, then, for |z| < 1,

an integral representation of (1.8) was given in the form [17]

2F 1(A,B;C; z) =

∫ 1

0

(1− tz)−AtB−I(1− t)C−B−I dt

× Γ−1(B)Γ−1(C −B)Γ(C).

(1.9)

For any matrix A in C
N×N , we will exploit the relation due to [17]

(1− z)−A = 1F 0(A;−; z) =

∞
∑

n=0

1

n!
(A)nz

n; |z| < 1.(1.10)

Our main aim in the next section is to prove new properties of generalized hyperge-

ometric matrix function.
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2. Properties of generalized hypergeometric matrix function

The generalized hypergeometric matrix function is defined as follows:

Definition 2.1. Let A1, A2, A3, B1 and B2 be matrices in C
N×N such that

B1 + nI and B2 + nI are invertible matrices for all integers n > 0.(2.1)

Then we define the generalized hypergeometric matrix function as

3F 2(A1, A2, A3;B1, B2; z) =

∞
∑

k=0

zk

k!
(A1)k(A2)k(A3)k((B1)k)

−1((B2)k)
−1.(2.2)

We are going to study the convergence properties of the hypergeometric matrix

function. Note that if k is large enough so that k > ‖Bj‖; j = 1, 2, then by the

perturbation lemma, see [17], we can write

∥

∥

∥

(1

k
Bj + I

)−1∥
∥

∥
6

1

1− k−1‖Bj‖
=

k

k − ‖Bj‖
; j = 1, 2

and

‖(Bj + kI)−1‖ =
∥

∥

∥

1

k

(1

k
Bj + I

)−1∥
∥

∥
=

1

k

∥

∥

∥

(1

k
Bj + I

)−1∥
∥

∥

6
1

k − ‖Bj‖
; k > ‖Bj‖; j = 1, 2.

(2.3)

Let us denote

Tj(k) = ‖B−1
j ‖‖(Bj + I)−1‖ . . . ‖(Bj + (k − 1)I)−1‖(2.4)

for k > 1 and j = 1, 2.

Note that from (1.3) we obtain

‖(Ai)k‖ 6 (‖Ai‖)k; i = 1, 2, 3.(2.5)

Using (2.3), (2.4) and (2.5) for k > ‖Bj‖ we have
∥

∥

∥

zk

k!
(A1)k(A2)k(A3)k((B1)k)

−1((B2)k)
−1

∥

∥

∥

6
1

k!
|zk|‖(A1)k‖‖(A2)k‖‖(A3)k‖T1(k)T2(k)

6
1

k!
|zk|(‖A1‖)k(‖A2‖)k(‖A3‖)kT1(k)T2(k).

(2.6)
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Now we will investigate the convergence of the series

∞
∑

k=0

1

k!
|zk|(‖A1‖)k(‖A2‖)k(‖A3‖)kT1(k)T2(k).(2.7)

Using the ratio test and the relation (1.7), one gets

lim
k→∞

∣

∣

∣

∣

(‖A1‖)k+1(‖A2‖)k+1(‖A3‖)k+1T1(k + 1)T2(k + 1)k!

(‖A1‖)k(‖A2‖)k(‖A3‖)kT1(k)T2(k)(k + 1)!

zk+1

zk

∣

∣

∣

∣

6 lim
k→∞

∣

∣

∣

∣

(‖A1‖+ k)(‖A2‖+ k)(‖A3‖+ k)‖(B1 + kI)−1‖‖(B2 + kI)−1‖
(k + 1)

zk+1

zk

∣

∣

∣

∣

6 lim
k→∞

(‖A1‖+ k)(‖A2‖+ k)(‖A3‖+ k)

(k − ‖B1‖)(k − ‖B2‖)(k + 1)
|z|,

(2.8)

hence the power series (2.2) is absolutely convergent for |z| < 1 and diverges for

|z| > 1. Analogously to Theorem 3 in [17], we can state

Theorem 2.1. The generalized hypergeometric matrix function 3F 2(A1, A2, A3;

B1, B2; z) is absolutely convergent for |z| = 1 when

m(B1) +m(B2) > M(A1) +M(A2) +M(A3)(2.9)

where M and m are defined in (1.6).

The integral representation (1.9) of the generalized hypergeometric matrix func-

tion can be extended to obtain the following result:

Theorem 2.2. Let Ai, 1 6 i 6 3 and Bj , 1 6 j 6 2 be matrices in C
N×N

such that Bj + kI are invertible matrices for all integers k > 0. Suppose that the

matrices Ai, Bj and Bj −Ai are positive stable matrices. For |z| < 1 and |zt| < 1 it

follows that

3F 2(A1, A2, A3;B1, B2; z) =

∫ 1

0

tA1−I(1− t)B1−A1−I
2F 1(A2, A3;B2; zt) dt

× Γ−1(A1)Γ
−1(B1 −A1)Γ(B1)

(2.10)

where AiBj = BjAi.

The proof is similar to the proof of Theorem 5 in [17].
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Consider the differential operator θ = z(d/dz), Dz = d/dz, θzk = kzk. For

commutative matrices, we have

θ(θI +B1 − I)(θI +B2 − I)3F 2

=
∞
∑

k=1

kzk

k!
(kI +B1 − I)(kI +B2 − I)(A1)k(A2)k(A3)k((B1)k)

−1((B2)k)
−1

=

∞
∑

k=1

zk

(k − 1)!
(A1)k(A2)k(A3)k((B1)k−1)

−1((B2)k−1)
−1.

Replacing k by k + 1, we have

θ(θI +B1 − I)(θI +B2 − I)3F 2

=

∞
∑

k=0

zk+1

k!
(A1)k+1(A2)k+1(A3)k+1((B1)k)

−1((B2)k)
−1

= z(θI +A1)(θI +A2)(θI +A3)3F 2.

Thus, we have shown that 3F 2 is a solution of the matrix differential equation

(θ(θI +B1 − I)(θI +B2 − I)− z(θI +A1)(θI +A2)(θI +A3))3F 2 = 0

where 0 is a zero matrix or null matrix in C
N×N . This result is summarized below.

Theorem 2.3. Let A1, A2, A3, B1 and B2 be matrices in C
N×N satisfying the

spectral condition (2.1) and BjAi = AiBj ; 1 6 i 6 3 and 1 6 j 6 2. Then 3F 2

satisfies the matrix differential equation

(θ(θI +B1 − I)(θI +B2 − I)− z(θI +A1)(θI +A2)(θI +A3))3F 2 = 0(2.11)

or

(

(1− z)z2
d3

dz3
+ ((B1 +B2 + I)− (A1 +A2 +A3 + 3)z)z

d2

dz2

+ (B1B2 − z(A1A2 +A2A3 +A1A3 +A1 +A2 +A3 + I))
d

dz

−A1A2A3

)

3F 2 = 0.

(2.12)
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3. Properties of Humbert matrix polynomials

In this section, we deal with the Humbert matrix polynomials hA
n (x) that are

defined by (see [22])

hA
n (x) =

[n/3]
∑

k=0

(−1)k(3x)n−3k

k!(n− 3k)!
(A)n−2k(3.1)

for a matrix A in C
N×N such that

A+ nI is an invertible matrix for all integers n > 0.(3.2)

Such matrix polynomials have the generating matrix function

(1− 3xt+ t3)−A =

∞
∑

n=0

hA
n (x)t

n; |3xt− t3| < 1,(3.3)

and the hypergeometric matrix representation for Humbert matrix polynomials

hA
n (x) =

(A)n(3x)
n

n!
3F 2

(

−1

3
nI,

1

3
(1 − n)I,

1

3
(2− n)I;

1

2
(I −A− nI),

1

2
(2I −A− nI);

1

4x3

)

(3.4)

where (I −A− nI)/2 and (2I −A− nI)/2 are matrices in CN×N satisfying the con-

dition (2.1).

Next, let us recall the convergent properties and matrix differential equations of

Humbert matrix polynomials which will be used in the following.

Theorem 3.1. Let A be a matrix in CN×N satisfying the spectral condition (3.2).

Then the power series (3.1) is absolutely convergent for |1/4x3| < 1 and diverges for

|1/4x3| > 1.

Theorem 3.2. Let A be a matrix in C
N×N satisfying the condition (3.2). Then

Humbert matrix polynomials are absolutely convergent for |1/4x3| = 1 when

m
(1

2
(2I −A− nI)

)

+m
(1

2
(I −A− nI)

)

> M
(

−1

3
nI

)

+M
(1

3
(1− n)I

)

+M
(1

3
(2− n)I

)

(3.5)

where M and m are defined in (1.6).
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From the fundamental relation (3.3) by the usual method in such cases (differen-

tiating (3.3) with respect to x and then with respect to t) the following recurrence

formula may be easily obtained:

(n+ 1)hA
n+1(x)− 3x(A+ nI)hA

n (x) + (3A+ (n− 2)I)hA
n−2(x) = 0, n > 2,(3.6)

see [22]. This formula affects only Humbert matrix polynomials with the same su-

perior index. But another one can be readily written, connecting Humbert matrix

polynomials with different indices, both superior and inferior, namely

(n+ 1)hA
n+1(x) + 3AhA+I

n−2 (x) = 3AxhA+I
n (x), n > 2.(3.7)

In [22], other recurrence formulae introduce the differential coefficient of the Humbert

matrix polynomials:

nhA
n (x) +

d

dx
hA
n−2(x)− x

d

dx
hA
n (x) = 0, n > 2,(3.8)

(3A+ nI)hA
n (x) =

d

dx
hA
n+1(x) − 2x

d

dx
hA
n (x)(3.9)

and

d

dx
hA
n (x) = 3AhA+I

n−1 (x), n > 1.(3.10)

With help of these recurrence formulas, we can write the following equations: The

first of them is

d

dx
hA
n+1(x) = 3AhA+I

n (x).(3.11)

Comparing (3.11) with (3.10), we obtain

d2

dx2
hA
n+2(x) = 9A(A+ I)hA+2I

n (x).(3.12)

Due to (3.12), it is easy to see that

DkhA
n+k(x) = 3k(A)kh

A+kI
n (x); D =

d

dx
.(3.13)

From the relations (3.8) and (3.9), we easily get the relations

(xD − n)hA
n (x) = DhA

n−2(x), n > 2(3.14)
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and

(2xDI + nI + 3A)hA
n (x) = DhA

n+1(x).(3.15)

Now iteratively applying the linear differential operator in (3.15) twice to (3.14) and

using the simple relation

(axD + b)Dn = Dn(axD + b− na)(3.16)

the matrix differential equation is given in the form

(2xDI + (n+ 3)I + 3A)(2xDI + nI + 3A)(xD − n)hA
n (x) = D3hA

n (x).(3.17)

From (3.17), we get the matrix differential equation of third order satisfied by Hum-

bert matrix polynomials

(1 − 4x3)D3hA
n (x) − 6(3I + 2A)x2D2hA

n (x)

−
(

((n+ 5)I + 3A)((2 − 3n)I + 3A) + 10nI
)

xDhA
n (x)

+ n(nI + 3A)((n+ 3)I + 3A)hA
n (x) = 0.

(3.18)

This result is summarized in

Theorem 3.3. Let A be a matrix in CN×N satisfying the spectral condition (3.2).

Then the Humbert matrix polynomial is the solution of the matrix differential equa-

tion (3.18).

A variety of interesting results can be easily deduced from Theorem 2.3. In the

next result, the Humbert matrix polynomials appear as finite series solutions of the

third order matrix differential equation.

Corollary 3.1. The Humbert matrix polynomial is the solution of the matrix

differential equation of the third order

(1− 4x3)D3hA
n (x) − 6(3I + 2A)x2D2hA

n (x)

− (((n + 5)I + 3A)((2− 3n)I + 3A) + 10nI)xDhA
n (x)

+ n(nI + 3A)((n+ 3)I + 3A)hA
n (x) = 0.

(3.19)

P r o o f. Put z = 1/4x3, A1 = −nI/3, A2 = (1 − n)I/3, A3 = (2− n)I/3,

B1 = (I −A− nI)/2 and B2 = (2I −A− nI)/2 in (2.12) and multiply by (3x)n,

then the proof of (3.19) follows directly. �

Now we obtain the finite series representation for Humbert matrix polynomi-

als hA
n (x).
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Theorem 3.4. Let A be a matrix in C
N×N satisfying (3.2). Then we have

hA
n (x) =

[n/2]
∑

k=0

n−2k
∑

s=0

(A)k(−k)s(2A+ 2kI)n−2k−s

(

3
2x

)n−3s

k!s!(n− 2k − s)!
.(3.20)

P r o o f. From (3.3) and (1.5) we have

∞
∑

n=0

hA
n (x)t

n = (1 − 3xt+ t3)−A =
((

1− 3xt

2

)2

−
(3xt

2

)2

+ t3
)−A

=
(

1− 3xt

2

)−2A(

1− (3xt)22−2 − t3

(1− 3xt2−1)2

)−A

=
(

1− 3xt

2

)−2A ∞
∑

k=0

(A)k
k!

( (3xt)22−2 − t3

(1− 3xt2−1)2

)k

=
∞
∑

k=0

(A)k
k!

((3xt

2

)2

− t3
)k(

1− 3xt

2

)−2A−2kI

=

∞
∑

n=0

∞
∑

k=0

(A)k(2A+ 2kI)n
(

3
2xt

)n+2k

k!n!

(

1− 4t

(3x)2

)k

=

∞
∑

n=0

∞
∑

k=0

k
∑

s=0

(A)k(−k)s(2A+ 2kI)n
(

3
2x

)n+2k−2s

k!s!n!
tn+2k+s

=
∞
∑

n=0

∞
∑

k=0

∞
∑

s=0

(A)k(−k)s(2A+ 2kI)n
(

3
2x

)n+2k−2s

k!s!n!
tn+2k+s.

(3.21)

Replacing n by n− 2k − s, we get

∞
∑

n=0

hA
n (x)t

n =

∞
∑

n=0

[n/2]
∑

k=0

n−2k
∑

s=0

(A)k(−k)s(2A+ 2kI)n−2k−s

(

3
2x

)n−3s

k!s!(n− 2k − s)!
tn.(3.22)

Comparing the coefficients of tn, we get the finite series representation (3.20) for

Humbert matrix polynomials. �

Theorem 3.5. Let A, 2A and B be matrices in C
N×N satisfying the spectral

condition (3.2). Then the Humbert matrix polynomials have the following four ad-
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ditional generating matrix functions:

∞
∑

n=0

((A)n)
−1hA

n (x)t
n =

∞
∑

n=0

(3xt)n

n!
(3.23)

× 1F 3

(

A+ nI;
A+ nI

3
,
A+ (n+ 1)I

3
,
A+ (n+ 2)I

3
;−

( t

3

)3)

,

∞
∑

n=0

(B)n((A)n)
−1hA

n (x)t
n =

∞
∑

n=0

(3xt)n(B)n
n!

(3.24)

× 4F 3

(B + nI

3
,
B + (n+ 1)I

3
,
B + (n+ 2)I

3
, A+ nI;

A+ nI

3
,
A+ (n+ 1)I

3
,
A+ (n+ 2)I

3
;−t3

)

, |−t3| < 1,

∞
∑

n=0

[(2A)n]
−1hA

n (x)t
n =

∞
∑

n=0

∞
∑

k=0

k
∑

r=0

(−k)r
(

3
2xt

)n+2k

n!k!r!22k
(3.25)

×
((

A+
1

2

)

k

)−1

((2A+ (n+ 2k)I)r)
−1

( 4t

(3x)2

)r

and

∞
∑

n=0

(B)n((2A)n)
−1hA

n (x)t
n =

∞
∑

n=0

∞
∑

k=0

k
∑

r=0

(−k)r
(

3
2xt

)n+2k

n!k!r!22k
(B)n+2k

× (B + (n+ 2k)I)r

((

A+
1

2

)

k

)−1

((2A+ (n+ 2k)I)r)
−1

( 4t

(3x)2

)r

.

(3.26)

P r o o f. From (3.1) we get

∞
∑

n=0

((A)n)
−1hA

n (x)t
n =

∞
∑

n=0

(n/3)
∑

k=0

(−1)k((A)n)
−1(A)n−2k(3x)

n−3k

k!(n− 3k)!
tn.(3.27)

Using the result (1.5), we have

∞
∑

n=0

((A)n)
−1hA

n (x)t
n =

∞
∑

n=0

∞
∑

k=0

(−1)k((A)n+3k)
−1(A)n+k(3x)

n

k!n!
tn+3k.(3.28)

Using (1.3) it is easy to show that

(A)n+k = (A)n(A+ nI)k, (A)n+3k = (A)n(A+ nI)3k(3.29)
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and using Gauss’s multiplication theorem, we can write

(A+ nI)3k = 33k
(A+ nI

3

)

k

(A+ (n+ 1)I

3

)

k

(A+ (n+ 2)I

3

)

k
.(3.30)

From (3.28), (3.29) and (3.30), we get

∞
∑

n=0

((A)n)
−1hA

n (x)t
n =

∞
∑

n=0

∞
∑

k=0

1

33kk!n!

(

(−1)k
((A+ nI

3

)

k

)−1

×
((A+ (n+ 1)I

3

)

k

)−1((A+ (n+ 2)I

3

)

k

)−1

(A+ nI)k(3x)
n

)

tn+3k

=
∞
∑

n=0

(3xt)n

n!

∞
∑

k=0

1

k!33k

(

(−1)k(A+ nI)k

((A+ nI

3

)

k

)−1

×
((A+ nI + I

3

)

k

)−1((A+ nI + 2I

3

)

k

)−1
)

t3k,

which is equivalent to (3.23).

Next, for A and B ∈ C
N×N we obtain another generating matrix function for the

Humbert matrix polynomials. Indeed, using (3.29) and (3.30), we find that

∞
∑

n=0

(B)n((A)n)
−1hA

n (x)t
n

=

∞
∑

n=0

(n/3)
∑

k=0

(−1)k(B)n((A)n)
−1(A)n−2k(3x)

n−3k

k!(n− 3k)!
tn

=

∞
∑

n=0

∞
∑

k=0

(−1)k(B)n+3k((A)n+3k)
−1(A)n+k(3x)

n

k!n!
tn+3k

=
∞
∑

n=0

∞
∑

k=0

1

k!n!

(

(−1)k(B)n(B + nI)3k((A)n)
−1

× ((A+ nI)3k)
−1(A)n(A+ nI)k(3x)

n
)

tn+3k

=

∞
∑

n=0

∞
∑

k=0

(−1)k(B)n
(

1
3 (B + nI)

)

k

(

1
3 (B + (n+ 1)I)

)

k

(

1
3 (B + (n+ 2)I)

)

k

k!n!

×
((A+ nI

3

)

k

)−1((A+ (n+ 1)I )

k

)−1((A+ (n+ 2)I

3

)

k

)−1

× (A+ nI)k(3x)
ntn+3k

=

∞
∑

n=0

(B)n(3xt)
n

n!
4F 3

(B + nI

3
,
B + (n+ 1)I

3
,
B + (n+ 2)I

3
,

A+ nI;
A+ nI

3
,
A+ (n+ 1)I

3
,
A+ (n+ 2)I

3
;−t3

)

,
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which leads to (3.25). The proof of (3.26) and (3.27) can be done similarly to that

of (3.24) and (3.25) by using (3.21). �

Expansions of Humbert matrix polynomials in series of Legendre, Gegenbauer,

Hermite, Laguerre and modified Laguerre matrix polynomials relevant to the present

investigation are summarized in the following theorem.

Theorem 3.6. Let A be a matrix in CN×N satisfying the spectral condition (3.2).

Expansions of Humbert matrix polynomials in series of Legendre, Gegenbauer, Her-

mite, Laguerre and modified Laguerre matrix polynomials are given by

hA
n (x) =

[n/3]
∑

k=0

[(n−3k)/2]
∑

r=0

(−1)k(A)n−2k(2n− 4r − 6k + 1)

k!r!
(

3
2

)

n−r−3k

×
(
√
2A

)3k−n
Pn−2r−3k(3x,A)

(3.31)

where Pn(x,A) is the Legendre matrix polynomial [35];

hA
n (x) =

[n/3]
∑

k=0

[(n−3k)/2]
∑

r=0

(−1)k(A)n−2k

k!r!(n− 2r − 3k)!

(
√
2A

)3k−n
Hn−2r−3k(3x,A)(3.32)

where Hn(x,A) stands for the Hermite matrix polynomial [10], [15];

hA
n (x) =

[n/3]
∑

k=0

[(n−3k)/2]
∑

r=0

(−1)k(A)n−2k(A+ (n− 3k − 2r)I)

k!r!

× ((A)n+1−3k−r)
−1CA

n−3k−2r

(3x

2

)

(3.33)

where CA
n (x) stands for the Gegenbauer matrix polynomial [27];

hA
n (x) =

[n/3]
∑

k=0

n−3k
∑

r=0

1

k!(n− r − 3k)!

(

(−1)k+rλ−n+3k(A)n−2k

× (A+ I)n−3k((A + I)r)
−1

)

L(A,λ)
r (3x)

(3.34)

where L
(A,λ)
n (x) stands for the Laguerre matrix polynomial [20];

hA
n (x) =

[n/3]
∑

k=0

n−3k
∑

r=0

(−1)k(A)n−2k

k!r!
λ−n+3k(−A)rf

(A,λ)
n−r−3k(3x)(3.35)

where f
(A,λ)
n (3x) stands for the modified Laguerre matrix polynomial (see [23], [33]).
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P r o o f. Using the relation (3.1), we have

∞
∑

n=0

hA
n (x)t

n =

∞
∑

n=0

[n/3]
∑

k=0

(−1)k(A)n−2k(3x)
n−3k

k!(n− 3k)!
tn.(3.36)

From (1.5) and (3.36) we get

∞
∑

n=0

hA
n (x)t

n =

∞
∑

n=0

∞
∑

k=0

(−1)k(A)n+k(3x)
n

k!n!
tn+3k.(3.37)

In [35], the expansion of xnI in a series of Legendre matrix polynomials has been

given in the form

(3x)n

n!
I =

(
√
2A

)−n
[n/2]
∑

r=0

(2n− 4r + 1)

r!
(

3
2

)

n−r

Pn−2r(3x,A),(3.38)

hence we get

∞
∑

n=0

hA
n (x)t

n =

∞
∑

n=0

∞
∑

k=0

[n/2]
∑

r=0

(−1)k(A)n+k(2n− 4r + 1)

k!r!
(

3
2

)

n−r

×
(
√
2A

)−n
Pn−2r(3x,A)t

n+3k.

(3.39)

Replacing n by n− 3k, we get

∞
∑

n=0

hA
n (x)t

n =

∞
∑

n=0

[n/3]
∑

k=0

[(n−3k)/2]
∑

r=0

(−1)k(A)n−2k(2n− 4r − 6k + 1)

k!r!
(

3
2

)

n−r−3k

×
(
√
2A

)3k−n
Pn−2r−3k(3x,A)t

n.

(3.40)

Comparing the coefficients of tn, we obtain (3.31).

In [15], the expansion of xnI in a series of Hermite matrix polynomials has been

given in the form

(

x
√
2A

)n
=

[n/2]
∑

r=0

n!

r!(n− 2r)!
Hn−2r(x,A),(3.41)

hence we get

∞
∑

n=0

hA
n (x)t

n =
∞
∑

n=0

∞
∑

k=0

[n/2]
∑

r=0

(−1)k(A)n+k

k!r!(n− 2r)!

(
√
2A

)−n
Hn−2r(3x,A)t

n+3k.(3.42)
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Replacing n by n− 3k, we get

∞
∑

n=0

hA
n (x)t

n =

∞
∑

n=0

[n/3]
∑

k=0

[(n−3k)/2]
∑

r=0

(−1)k(A)n−2k

k!r!(n− 2r − 3k)!

×
(
√
2A

)3k−n
Hn−2r−3k(3x,A)t

n.

(3.43)

Comparing the coefficients of tn, we obtain (3.32).

Using the result (1.17) in [16], [27], we get

(3x)nI = n!

[n/2]
∑

r=0

(A+ (n− 2r)I)((A)n−r+1)
−1

r!
CA

n−2r

(3

2
x
)

.(3.44)

Using (3.37) and (3.44), we have

∞
∑

n=0

hA
n (x)t

n =

∞
∑

n=0

∞
∑

k=0

[n/2]
∑

r=0

(−1)k(A)n+k

k!r!
(A+ (n− 2r)I)

× ((A)n−r+1)
−1CA

n−2r

(3

2
x
)

tn+3k.

(3.45)

Replacing n by n− 3k, we get

∞
∑

n=0

hA
n (x)t

n =
∞
∑

n=0

[n/3]
∑

k=0

[(n−3k)/2]
∑

r=0

(−1)k(A)n−2k

k!r!
(A+ (n− 2r − 3k)I)

× ((A)n−r−3k+1)
−1CA

n−2r−3k

(3

2
x
)

tn.

(3.46)

Comparing the coefficients of tn, we obtain (3.33).

Using the results (1.13) in [20], [25], we have

(3x)nI = n!
n
∑

r=0

(−1)rλ−n

(n− r)!
(A+ I)n((A + I)r)

−1L(A,λ)
r (3x).(3.47)

From (3.37) and (3.47) we get

∞
∑

n=0

hA
n (x)t

n =

∞
∑

n=0

∞
∑

k=0

n
∑

r=0

(−1)k+rλ−n(A)n+k

k!(n− r)!
(A+ I)n

× ((A+ I)r)
−1L(A,λ)

r (3x)tn+3k.

(3.48)
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Replacing n by n− 3k, we get

∞
∑

n=0

hA
n (x)t

n =

∞
∑

n=0

[n/3]
∑

k=0

n−3k
∑

r=0

(−1)k+rλ−n+3k(A)n−2k

k!(n− r − 3k)!
(A+ I)n−3k

× ((A+ I)r)
−1L(A,λ)

r (3x)tn.

(3.49)

Comparing the coefficients of tn, we obtain (3.34).

Using the result (1.15) in [23], we have

(3λx)nI = n!

n
∑

r=0

(−A)r
r!

f
(A,λ)
n−r (3x).(3.50)

From (3.37) and (3.50) we have

∞
∑

n=0

hA
n (x)t

n =

∞
∑

n=0

∞
∑

k=0

n
∑

r=0

(−1)k(A)n+k

k!r!
λ−n(−A)rf

(A,λ)
n−r (3x)tn+3k.(3.51)

Replacing n by n− 3k, we get

∞
∑

n=0

hA
n (x)t

n =

∞
∑

n=0

[n/3]
∑

k=0

n−3k
∑

r=0

(−1)k(A)n−2k

k!r!
λ−n+3k(−A)rf

(A,λ)
n−r−3k(3x)t

n.(3.52)

Comparing the coefficients of tn, we obtain (3.35). Thus the proof is completed. �

Theorem 3.7. Let A be a matrix in CN×N satisfying the spectral condition (3.2).

The Humbert matrix polynomials satisfy the formula

∑

n1+n2+...+nk=n

hA
n1
(x)hA

n2
(x) . . . hA

nk
(x) =

[n/3]
∑

s=0

(−1)s(kA)n−2s(3x)
n−3s

s!(n− 3s)!
(3.53)

for k ∈ N.

P r o o f. Using the power series of (1− 3xt+ t3)−kA for |3xt− t3| < 1 and making

the necessary arrangements, we have

(1− 3xt+ t3)−kA =

∞
∑

n=0

(kA)n(3x− t2)n

n!
tn

=

∞
∑

n=0

n
∑

s=0

(−1)s(kA)n(3x)
n−s

s!(n− s)!
tn+2s

=

∞
∑

n=0

[n/3]
∑

s=0

(−1)s(kA)n−2s(3x)
n−3s

s!(n− 3s)!
tn.

(3.54)
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In addition, we can write

(1− 3xt+ t3)−kA =

∞
∑

n=0

(

∑

n1+n2+...+nk=n

hA
n1
(x)hA

n2
(x) . . . hA

nk
(x)

)

tn.(3.55)

From (3.54) and (3.55) one can see that the proof is completed. �

Theorem 3.8. For k ∈ N and A1, A2, . . . , Ak being matrices in C
N×N satisfying

the spectral condition (3.2), we have the relation

n
∑

n1=0

. . .

n−n1−n2−...−nk−2
∑

nk−1=0

hA1

n−n1−n2−...−nk−1
(x)hA2

n1
(x) . . . hAk

nk−1
(x)

=

[n/3]
∑

s=0

(−1)s(A1 +A2 + . . . +Ak)n−2s(3x)
n−3s

s!(n− 3s)!
,

(3.56)

where the matrices are assumed to be commutative.

P r o o f. Using the power series of (1− 3xt+ t3)−(A1+A2+...+Ak) for |3xt− t3| < 1

and (1.5), we obtain

(1− 3xt+ t3)−(A1+A2+...+Ak) =

∞
∑

n=0

(A1 +A2 + . . . +Ak)n(3x− t2)n

n!
tn

=
∞
∑

n=0

n
∑

s=0

(−1)s(A1 +A2 + . . . +Ak)n(3x)
n−s

s!(n− s)!
tn+2s

=

∞
∑

n=0

[n/3]
∑

s=0

(−1)s(A1 +A2 + . . . +Ak)n−2s(3x)
n−3s

s!(n− 3s)!
tn.

(3.57)

On the other hand, we get

(1− 3xt+ t3)−(A1+A2+...+Ak)

=(1− 3xt+ t3)−A1(1 − 3xt+ t3)−A2 . . . (1− 3xt+ t3)−Ak

=

( ∞
∑

n1=0

hA1

n1
(x)tn1

)( ∞
∑

n2=0

hA2

n2
(x)tn2

)

. . .

( ∞
∑

nk=0

hAk
nk

(x)tnk

)

=

∞
∑

n=0

n
∑

n1=0

. . .

n−n1−n2−...−nk−2
∑

nk−1=0

hA1

n−n1−n2−...−nk−1
(x)hA2

n1
(x) . . . hAk

nk−1
(x)tn.

(3.58)

Thus the proof is completed. �
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Theorem 3.9. Let k ∈ N and let A be a matrix in C
N×N satisfying the spectral

condition (3.2). The Humbert matrix polynomials satisfy the relation

hA
n (x1 + x2 + . . . + xk) =

[n/3]
∑

s=0

(−1)s(A)n−2s(3(x1 + x2 + . . . + xk))
n−3s

s!(n− 3s)!
(3.59)

P r o o f. For |3(x1 + x2 + . . . + xk)t− t3| < 1, using (1.2), we can write

(1− 3(x1 + x2 + . . . + xk)t+ t3)−kA

=

∞
∑

n=0

(A)n(3(x1 + x2 + . . . + xk)− t2)n

n!
tn

=

∞
∑

n=0

n
∑

s=0

(−1)s(A)n(3(x1 + x2 + . . . + xk))
n−s

s!(n− s)!
tn+2s

=

∞
∑

n=0

[n/3]
∑

s=0

(−1)s(kA)n−2s(3(x1 + x2 + . . . + xk))
n−3s

s!(n− 3s)!
tn.

(3.60)

On the other hand, we get

(1− 3(x1 + x1 + . . . + xk)t+ t3)−A =

∞
∑

n=0

hA
n (x1 + x2 + . . . + xk)t

n.(3.61)

Combining (3.60) and (3.61), the proof is completed. �

4. Generalized Humbert matrix polynomials

The purpose of this section is to introduce a new matrix polynomial representing

a generalization of the Humbert matrix polynomials in (3.1). For a positive integerm,

let A be a matrix in C
N×N satisfying the spectral condition (3.2). Then we define

the generalized Humbert matrix polynomials by the generating matrix function in

the form

(1−mxt+ tm)−A =

∞
∑

n=0

hA
n,m(x)tn, |mxt− tm| < 1(4.1)

where

hA
n,m(x) =

[n/m]
∑

k=0

(−1)k(mx)n−mk

k!(n−mk)!
(A)n−(m−1)k.(4.2)
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In a forthcoming work, we will consider the problems of a unified approach to the

theory of new orthogonal matrix polynomials by the technique discussed in this

paper. The notation will be used here are that implied by the following generalized

Humbert matrix polynomials and generating matrix function definitions: For the

generalized Humbert matrix polynomials of index two, three and p in terms of series

they are represented as follows:

hA
n,m(x, y) =

[n/3]
∑

k=0

[m/3]
∑

r=0

(−1)k+r(3x)n−3k(3y)m−3r

k!r!(n − 3k)!(m− 3r)!
(A)n+m−2(k+r),(4.3)

∞
∑

n=0

∞
∑

m=0

hA
n,m(x, y)tnum = (1− 3xt− 3yu+ t3 + u3)−A;

|3xt+ 3yu− t3 − u3| < 1,

hA
n,m,p(x, y, z) =

[n/3]
∑

k=0

[m/3]
∑

r=0

[p/3]
∑

s=0

(−1)k+r+s(3x)n−3k(3y)m−3r(3z)p−3s

k!r!s!(n− 3k)!(m− 3r)!(p− 3s!)!
(4.4)

×(A)n+m+p−2(k+r+s),
∞
∑

n=0

∞
∑

m=0

∞
∑

p=0

hA
n,m,p(x, y, z)t

numvp = (1− 3xt− 3yu− 3zv + t3 + u3 + v3)−A;

|3xt+ 3yu+ 3zv − t3 − u3 − v3| < 1

and

hA
n1,n2,...np

(x) =

[ni/3]
∑

ki=0, i=1,2,...,p

(−1)
∑

ki(3x)
∑

ni−3
∑

ki

∏p
i=1(ki)!

∏p
i=1(ni − 3ki)!

(A)∑ni−2
∑

ki
,

∞
∑

n1=0

∞
∑

n2=0

. . .

∞
∑

np=0

hA
n1,n2,...np

(x)tn1

1 tn2

2 . . . tnp

p

= (1− 3x(t1 + t2 + . . . + tp) + (t31 + t32 + . . . + t3p))
−A,

(4.5)

where |3x(t1 + t2 + . . . + tp)− (t31 + t32 + . . . + t3p)| < 1 and
∑

denotes
p
∑

i=1

.

Finally, we consider Pn(m,x, y, c, A) which is defined by

(c−mxt+ ytm)−A =

∞
∑

n=0

Pn(m,x, y, c, A)tn,(4.6)

wherem is a positive integer and all parameters satisfy the condition |mxt−ytm| < |c|
(see [4]). This leads us to define a new class of matrix polynomials Pn(m,x, y, c, A)
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by the relation

(1 − axt+ bxltm)−A =
∞
∑

n=0

P l
n(m,x, a, b, A)tn(4.7)

where a, b, m and l are parameters satisfying the condition |axt− bxltm| < 1.

From (4.7) we have

P l
n(m,x, a, b, A) =

[n/m]
∑

k=0

(−1)kan−kmbkxn−(m−l)k

k!(n−mk)!
(A)n−(m−1)k.(4.8)

A generalization of various matrix polynomials mentioned above is provided by the

following definition. This definition includes Gegenbauer, Legendre, Chebyeshev,

Pincherle, Kinney and Humbert matrix polynomials.

(c− axt+ btm(2x− 1)d)−A =
∞
∑

n=0

PA
n,m,a,b,c,d(x)t

n,(4.9)

|axt− btm(2x− 1)d| < |c|

where m and a are positive integers and the other parameters are unrestricted in

general.

From (4.9) we get

PA
n,m,a,b,c,d(x) =

[n/m]
∑

k=0

1

k!(n−mk)!

(

(−1)kc−A−nI+(m−1)kI

× (ax)n−(m−l)k(b(2x− 1)d)k
)

(A)n−(m−1)k.

(4.10)

Setting m = 3, c = 1 in (4.6), we get the series representation in (3.1). Also, if we

set a = m, b = c = 1 in (4.7), we get (4.1).

In conclusion, we remark that it would be easy to extend these properties to certain

polynomials with two variables; for instance, just as with the generalized Humbert

matrix polynomials, we can start from the expansion

(1− 3xt− 3yu+ t3 + u3)−A =

∞
∑

m,n=0

hA
m,n(x, y)t

num,(4.11)

|3xt+ 3yu− t3 − u3| < 1

and obtain formulae such as

∂

∂x
hA
m,n+1(x, y) =

∂

∂y
hA
m+1,n(x, y),(4.12)

∂

∂x
hA
m,n−2(x, y)− x

∂

∂x
hA
m,n(x, y) + nhA

m,n(x, y) = 0, n > 2(4.13)

426



and

(4.14)
∂

∂y
hA
m−2,n(x, y)− y

∂

∂y
hA
m,n(x, y) +mhA

m,n(x, y) = 0, n > 2.

There are many ways of investigating the generalized classes of Humbert matrix

polynomials. Starting from the modified forms of the generating matrix function

of Humbert matrix polynomials is one of the direct methods clearly offering some

directions to develop more researches and studies in that area.

5. Open problem

One can use the same class of new integral representations, operational methods

and the property of orthogonality for the generalized Humbert matrix polynomials,

from which a variety of interesting results follows as special cases. Hence, new results

and further applications can be obtained. Further results and applications will be

discussed in a forthcoming work.
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[34] F.Taşdelen, B. Çekim, R.Aktaş: On a multivariable extension of Jacobi matrix polyno-
mials. Comput. Math. Appl. 61 (2011), 2412–2423.

[35] L.M.Upadhyaya, A. Shehata: On Legendre matrix polynomials and its applications. Int.
Trans. Math. Sci. Comput. 4 (2011), 291–310.

[36] L.M.Upadhyaya, A. Shehata: A new extension of generalized Hermite matrix polyno-
mials. Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 165–179.
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