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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 5 , P AGES 6 6 6 – 6 9 5

AN IDEMPOTENT ALGORITHM FOR A CLASS
OF NETWORK-DISRUPTION GAMES

William M. McEneaney and Amit Pandey

A game is considered where the communication network of the first player is explicitly
modelled. The second player may induce delays in this network, while the first player may
counteract such actions. Costs are modelled through expectations over idempotent probability
measures. The idempotent probabilities are conditioned by observational data, the arrival of
which may have been delayed along the communication network. This induces a game where the
state space consists of the network delays. Even for small networks, the state-space dimension
is high. Idempotent algebra-based methods are used to generate an algorithm not subject to
the curse-of-dimensionality. An example is included.

Keywords: idempotent, max-plus, tropical, network, dynamic programming, game theory,
command and control

Classification: 15A80, 49L20, 90C35, 91A80, 14T05

1. INTRODUCTION

In recent years, algorithms based on idempotent algebras, most notably the max-plus
algebra, have been demonstrated to be quite efficient for solution of classes of nonlinear
control problems, [2, 9, 14, 15, 22]. Algebras such as the max-plus and min-plus semifields
are the natural structures for the modeling of certain classes of network-traffic systems,
cf. [10]. Most recently, it has also been seen that idempotent algebras are appropriate
not only for solution of deterministic optimal control problems, but also for stochastic
control problems and deterministic games, [13, 16, 18].

Here, we consider a game between two players, where we specifically model the flow of
information along the communication network of the first player. The state will consist
of the delays in information flow along this network. These delays will affect the ability
of the first player to make optimal decisions regarding physical actions. An idempotent-
algebra-based numerical method will be developed for solution of the game. The method
will be in the class of idempotent curse-of-dimenmsionality-free algorithms. Note that
dynamic programming methods are applicable to solution of a tremendous variety of
problems in deterministic and stochastic control and games. However, they are subject
to a computational cost which grows exponentially fast in the dimension of the state
space – thus the famous “curse-of-dimensionality”. The curse-of-dimenmsionality-free

DOI: 10.14736/kyb-2016-5-0666

http://doi.org/10.14736/kyb-2016-5-0666


Idempotent algorithm for network-disruption games 667

algorithms have costs which grow only at a cubic rate in space dimension, but are subject
to other complexity growth problems which are attenuated by optimal idempotent pro-
jection, which is known to take the form of a pruning operation ([8] and the references
therein). These methods have been demonstrated to have exceptionally low computa-
tional cost for high-dimensional nonlinear control problems ([9, 22] and the references
therein).

This paper has a somewhat complex structure. In Section 2, the class of games of
interest is described in more detail. In Section 3, some mathematical structures are
recalled. The development of the game model begins in Section 4. This section is sub-
divided into several subsections. First, the model for controlled dynamics of delay on
the network is presented in Subsection 4.1. In Subsection 4.2, the model of the running
cost is developed. This requires that one first examine how a lack of information affects
decisions, and ultimately, the resulting costs of actions in the physical domain. Through-
out, we will distinguish between what will be called physical actions (e. g., movement of
troops in the example game of Section 2) and the controls/dynamics in the network de-
lay game. The running cost for the latter flows from the potentially suboptimal choice of
physical actions, where we describe this as the value of information. Subsection 4.2 is a
technical, but necessary precursor to study of the network-delay game. In Subsection 4.3,
the payoff and value models for the network-delay game are given. Then, in Section 5,
the algorithm for solution of the game is developed. As in related efforts [13, 16, 18],
the algorithm is referred to as an “idempotent distributed dynamic program”, where
this indicates that an idempotent distributive property is used to convert the dynamic
program into a curse-of-dimensionality-free form. In Section 6, computational efficiency
and complexity bounds are considered in more detail. Lastly, in Section 7, an example
application is discussed.

2. OVERALL GAME

In order to motivate the mathematical development to follow, it is necessary to describe
the class of games to be studied. We find it helpful to use a specific example. Suppose
there are two players, Blue and Red. We will be concerned chiefly with attack and
defense of the Blue communication network, where these attacks will delay the flow of
information along that network. The resulting costs will be determined by the effects of
those delays on actions which will take place in a physical conflict between the players.
We use a military example for illustrative purposes. Refer to Figures 1 and 2. Figure
1 depicts a Blue communication network. There are three subregions served by this
network, and these are indicated by the circled areas. In those areas, the blue and red
triangles denote physical Blue and Red entities, respectively. The blue crosses denote
Blue observation assets. One may imagine that each of the subregions could correspond
to a physical conflict such as that depicted in Figure 2. In the figure, one can see that
the Blue observation assets may generate information on the activities of the physical
Red entities, which may be helpful to the physical Blue entities in the subregion. The
observational information must flow along some specified subnetwork of that indicated in
Figure 1, with possible processing along the way, before the processed information and/or
resulting commands can be delivered to the physical Blue entities in the subregion. We
will use a max-plus stochastic model for the estimation of the physical Red state by Blue,
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Fig. 1. Blue network with 3 physical regions. Fig. 2. Example physical region.

where this is equivalent to a zero-sum game model while being a more useful form for
the construction of the computational method. This model will be used to generate the
costs associated with the delay of information to the physical Blue entities. The larger
game of interest here is that played on the space of delays along the Blue communication
network, and the above costs will be used to define the payoffs in that game. Note that
we must first define the costs, themselves a result of a max-plus stochastic optimization
problem, before they can be used to define the costs in the overall network-delay game.

3. MATHEMATICAL PRELIMINARIES

Prior to development of the game model, we recall and define relevant mathematical
objects. Specifically, we introduce the idempotent algebras, provide an overview of the
max-plus probability structure, and introduce some standard results related to min-plus
convex functions. These will prove useful in the development of our algorithm. Classical
references on idempotent algebras (max-plus, min-plus or tropical, and min-max) include
[3, 10, 11, 12, 14] among others.

3.1. Idempotent algebras

The min-plus algebra is given by

a⊕ b .= min{a, b}, a⊗ b .= a+ b,

operating on R+ .= R ∪ {+∞}. The additive and multiplicative identities are ε⊕ = ∞
and ε⊗ = 0, respectively. The max-plus algebra is given by

a⊕∨b .= max{a, b}, a⊗∨b .= a+ b,
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operating on R− .= R∪{−∞}. The additive and multiplicative identities are ε⊕∨ = −∞
and ε⊗∨ = 0, respectively. The addition operator is idempotent in both the max-plus
and the min-plus algebras. Namely, a⊕ a = a and a⊕∨a = a. We observe that both the
max-plus and min-plus algebras define idempotent, commutative semifields.

In the max-min algebra, the operations are defined as

a ∨ b .= max{a, b}, a ∧ b .= min{a, b},

operating on R .= R ∪ {−∞} ∪ {+∞}. The additive and multiplicative identities are
ε∨ = −∞ and ε∧ = ∞, respectively. The max-min algebra defines an idempotent,
commutative semiring [10]. Lastly, it will be helpful to also define the min-max algebra
with these same operations, but with the ∧ operation formally taking the role of addition
and the ∨ operation formally taking the role of multiplication.

Regarding notation, we let
⊕

v∈V and
⊗

v∈V denote a min-plus sum and product
over index set V, with analogous notation for the other algebras. Also, in the interests
of space when two objects are each indexed by the same variable that takes values in
a finite set, we will use dot product notation as follows. For a = {av | v ∈ V} and
b = {bv | v ∈ V}, we let a� b .= ⊕v∈V av ⊗ bv and a�∨ b .= ⊕∨v∈V av ⊗ bv. Lastly, when
an object is indexed by a single variable taking values in a finite set, unless otherwise
specified this may be understood to be a column vector.

Note that the min-plus and max-plus algebras are equivalent under a change of sign
(i. e., −[(−a)⊕ (−b)] = a⊕∨b and −[(−a)⊗ (−b)] = a⊗∨b ), and similarly for the max-
min and min-max algebras. We specifically note that the distributive property holds for
idempotent algebras. For arbitrary finite index sets the following is easily obtained, cf.
[13].

Lemma 3.1. Let Y and V be sets of finite cardinality. Given any Φ : Y × V → R, we
have⊗

y∈Y

⊕
v∈V

[
Φ(y, v)

]
=
⊕
{v·}∈V̂

⊗
y∈Y

[
Φ(y, vy)

]
,
⊗
y∈Y

∨
⊕
v∈V

∨[Φ(y, v)
]

=
⊕
{v·}∈V̂

∨
⊗
y∈Y

∨[Φ(y, vy)
]
,

∨
y∈Y

∧
v∈V

[
Φ(y, v)

]
=
∧
{v·}∈V̂

∨
y∈Y

[
Φ(y, vy)

]
and

∧
y∈Y

∨
v∈V

[
Φ(y, v)

]
=
∨
{v·}∈V̂

∧
y∈Y

[
Φ(y, vy)

]
,

where V̂ denotes the set of sequences of elements of V indexed by y ∈ Y.

We note that the subscript dot notation in {v·} ∈ V̂ used in the lemma is included
as a reminder of the fact that each v = v· is a function of a subscripted argument. It is
also worth noting here that Φ may be instantiated as a matrix with #Y rows and #V
columns, or vice-versa.

3.2. A review of max-plus probability

One may define a probability measure with respect to the max-plus algebra [1, 7, 19, 21].
Let the pair (Ω,F) denote a sample space and associated sigma-algebra of sets on that
space.
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Definition 3.2. p⊕
∨

is a max-plus probability measure on (Ω,F) if:

p⊕
∨

(E) ∈ [−∞, 0] ∀E ∈ F , p⊕
∨

(Ω) = 0,
and for any countable collection of disjoint sets, {Ei},

p⊕
∨
(⋃

Ei

)
=
⊕
i

∨p⊕
∨

(Ei).

We recall that [−∞, 0] in the max-plus algebra is analogous to [0, 1] in the standard
field, and consequently, max-plus probabilities take values between the max-plus additive
and multiplicative identities, in analogy with standard-field probabilities.

Suppose X is a finite set, and let X .= #X . The max-plus probability simplex over
X is

[S⊕
∨

]X .=
{
q ∈ [−∞, 0]X

∣∣∣⊕
x∈X

∨qx = 0
}
,

where [−∞, 0] denotes (−∞, 0] ∪ {−∞} and the X superscript denotes outer product
X times. Note that a vector consisting of the max-plus probabilities of the elements of
X must lie in [S⊕

∨
]X . For generic max-plus random variable, say Z̃, taking values in

(R−)X , we define the expectation of Z̃ as E⊕
∨

[Z̃] .=
⊕∨

x∈X Z̃x ⊗∨ qx.

Remark 3.3. In standard-algebra probability, the probability of an event may be in-
terpreted as the expected frequency of that event, although the interpretation is not
required for the construction of the mathematics. In max-plus probability, one may in-
terpret the probability as the additive-inverse of the relative cost to the opposing player.
For example, the max-plus conditional probability of observation y ∈ Y, given state
x ∈ X may be interpreted as (the additive-inverse of) the relative cost to the opponent
to cause us to observe y when the true state is x. This may be further interpreted as
the cost of deception. These costs are taken to be relative in that given x ∈ X , there
exists yx ∈ Y such that the conditional probability of yx given x is p⊕

∨
(yx|x) = 0 (the

multiplicative identity). Similarly, the elements of max-plus Markov chain transition
matrices may be viewed as costs in the game between ourselves and the opponent.

3.3. Min-plus convexity

For completeness of the presentation here, we recall some results from the theory of
min-plus convexity [4, 8, 12, 20, 23, 24]. In order to proceed more quickly to the delay
game model, where proofs are needed, they have been moved to the appendix.

Definition 3.4. A set C ∈ (R+)n is said to be min-plus convex if for all x, y ∈ C,
α, β ∈ R+, such that α⊕ β = 0, we have α⊗ x⊕ β ⊗ y ∈ C.

Lemma 3.5. The intersection of a collection of min-plus convex sets is a min-plus
convex set.

For f : Rn 7→ R, the epigraph of f is {(x, y) ∈ Rn × R+ | y ≥ f(x)}.
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Definition 3.6. A function f : Rn 7→ R is said to be min-plus convex if its epigraph
is a min-plus convex set. We will let the set of min-plus convex functions over Rn be
denoted by S(Rn).

Definition 3.7. A function f : Rn 7→ R is min-plus affine if it takes the form f(x) =
e⊕ b� x = e⊕ (b� x), with e ∈ R, b ∈ Rn.

The following two results are also well-known (cf. [4, 12, 24]), and proofs are not
included.

Proposition 3.8. A min-plus affine function is min-plus convex

Proposition 3.9. Let Z be a set which indexes a family fz(x) of min-plus convex
functions. Then, f̄(x) .= supz∈Z fz(x) is min-plus convex.

We employ the partial ordering on Rn given by

x � y iff xi ≥ yi for each i
.= ]1, . . . , n[ = {1, 2, . . . , n},

where throughout, we use the notation ]a, b[ to denote {a, a+1, a+2, . . . , b} when a ≤ b.
Henceforth, we also let Rn be equipped with the norm ‖x‖∞ .= maxi∈ ]1,n[ |xi|, and let
On denote the closed first octant, i. e., On .= {x ∈ Rn|x � 0}. Let

S1(Rn) .= {f : Rn 7→ R | 0 ≤ f(x+ δ)− f(x) ≤ ‖δ‖∞,∀x ∈ Rn, δ � 0}.
By a reversal of signs, the next two results follow immediately from their equivalent
results for max-plus hypo-convex functions and the min-max algebra [8]. In particular, a
function, f , is min-plus convex if and only if −f is max-plus hypo-convex. Consequently,
proofs are not included.

Theorem 3.10. S(Rn) = S1(Rn).

Theorem 3.11. There exist countable sets, Z and {bz ∈ Rn | z ∈ Z}, such that for any
f ∈ S(Rn), there exists {ez ∈ R | z ∈ Z} such that

f(x) =
∨
z∈Z

[ez ⊕ bz � x] .= sup
z∈Z

[ez ⊕ bz � x] ∀x ∈ Rn. (1)

Remark 3.12. Note that (1) can also be expressed in the form f(x) =
∨
z∈Z e

z∧(bz�x).
In this form, one can see that the min-plus linear functionals form a max-min basis for
S(Rn).

We can relax the Lipschitz requirement of Theorem 3.11 (implicit in the S1(Rn)
representation for S(Rn)).

Definition 3.13. A function f : Rn → R is generalized min-plus convex with coefficient
Ĉ, i. e., f ∈ SĈ(Rn), if Ĉ ∈ Rn×n is positive-definite, symmetric and

0 ≤ f(x+ δ)− f(x) ≤ ‖Ĉδ‖∞ ∀x ∈ Rn, δ � 0.
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We may now generalize Theorem 3.11 as follows. A proof is given in the appendix.

Corollary 3.14. There exist countable sets, Z and {bz ∈ Rn | z ∈ Z}, such that given
any f ∈ SĈ(Rn), there exists {ez ∈ R | z ∈ Z} such that

f(x) =
∨
z∈Z

[
ez ⊕ bz � (Ĉx)

] ∀x ∈ Rn. (2)

We will find it helpful to introduce the following definitions.

Definition 3.15. A function f : Rn → R is said to be a finite-complexity min-plus
convex function if it has representation (1), where Z has finite cardinality. A function
f : X → R of the form of (1) but with domain X ⊂ Rn where #X <∞ is a finite-domain
min-plus convex function.

A space is referred to as a max-min vector space [14] (otherwise referred to as a moduloid
[3] or an idempotent semimodule [4, 12]) if the standard conditions as specified in [3,
p. 108] are satisfied. Again, by reversal of signs, the next result follows exactly as the
equivalent result for max-plus hypo-convex functions and the min-max algebra in [8].

Theorem 3.16. S(Rn) is a max-min vector space.

The value of Theorem 3.16 is that it guarantees that max-min linear combinations of
functions in S(Rn) remain in S(Rn). As the following is easily obtained, a proof is not
included.

Theorem 3.17. Spaces of finite-complexity min-plus convex functions and spaces of
finite-domain min-plus convex functions are max-min vector spaces.

The next result also follows from the equivalent result for max-plus hypo-convex
functions, [8].

Lemma 3.18. Let f ∈ S(Rn). Then, for any x̄ ∈ Rn, f(x) ≥ f(x̄)⊕ [(f(x̄)⊗ (−x̄))�x]
for all x ∈ Rn.

As would be expected, when the domain has finite cardinality, one should have a finite-
complexity representation; this is guaranteed by the next result. A proof is included in
the appendix.

Theorem 3.19. Let f : X → R where X ⊂ Rn and #X < ∞, and suppose 0 ≤
f(x+ δ)− f(x) ≤ ‖δ‖∞ for all x, x+ δ ∈ X such that δ � 0. Then, it has representation
(1) where #Z ≤ #X .

The next corollary follows from Theorem 3.19 exactly as Corollary 3.14 followed from
Theorem 3.11, and a proof is not included.

Corollary 3.20. Let f : X → R where X ⊂ Rn and #X < ∞, and suppose there
exists positive-definite, symmetric Ĉ such that 0 ≤ f(x + δ) − f(x) ≤ ‖Ĉδ‖∞ for all
x, x+ δ ∈ X such that δ � 0. Then, it has representation (2) where #Z ≤ #X .
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The results presented above will be critical to the algorithm we will obtain for solution
of the delay game. In particular, the value function will lie in S(Rn) for appropriate n,
and the operations needed to propagate this value via an idempotent distributed dynamic
program will involve taking max-min linear combinations of functions in S(Rn).

4. PROBLEM DEFINITION

We now begin the mathematical construction of our network-disruption game problem.
Recall that we are modeling delays on the Blue communication network, where Red
would be expected to attempt to increase the delays, while Blue would attempt to
alleviate such increases. The state of the game will be the set of delays of information at
the nodes in the Blue network. We first develop the model for the dynamics of the delay
state. The payoff for the game will be a max-plus sum over time (i. e., the worst-case-
over-time) of the running cost. The motivation for this is that the physical Red entities
in the example application of Section 2 could be expected to act at the worst-case time
for Blue. The running cost will flow from the effects the delays have on the information-
state available at the physical Blue entities, or Blue action nodes. The development of
this running cost will be somewhat technical. We will be considering a zero-sum game,
where Blue will be the minimizing player, and we will consider the upper value of the
game, which corresponds to a worst-case analysis from the Blue perspective.

4.1. The dynamics

We now introduce the framework for modeling the delays on the Blue network. We
suppose that the Blue network will be defined as a finite undirected graph, (G, E),
where G denotes the set of nodes, and E denotes the set of edges. Letting G

.= #G,
without loss of generality, we index the set of nodes as G = ]1, G[⊂ N. We index the
set of edges, E ⊆ G × G, by i ∈ ]1,#E [ . Suppose the ith edge connects nodes g and
γ. We let g1

i
.= min{g, γ} and g2

i
.= max{g, γ}. With this indexing scheme, we have

E = {(g1
i , g

2
i ) ⊆ G × G | i ∈ ]1,#E [ }. We require (g, g) ∈ E for all g ∈ G. The set

of nodes will be decomposed as G = Gs ∪ Ga ∪ Gc where Gs denotes the set of sensing
nodes, Ga denotes the set of action nodes and Gc denotes the set of nodes at which
communication and/or analysis and/or decision take place. Let Gs = #Gs, Ga = #Ga
and Gc = #Gc. We suppose that for each action node, say α ∈ Ga, there exists a set of
relevant sensing nodes, Ĝs(α) ⊆ Gs such that information from these sensing elements
affects the min-plus probability distribution describing information relevant to action
node α. For simplicity, we assume Ĝs(α1) ∩ Ĝs(α2) = ∅ if α1 6= α2.

At each time step, Red may act to increase the network delays, while Blue may act
to counter this. We will use a fixed time-step model where, without loss of generality,
we will let time be indexed by integer k ∈ {0, 1, 2, . . . } .= I≥0. For k ∈ I≥0, g ∈ G and
σ ∈ Gs, we let dσk,g ∈ I≥0 ∪ {+∞} denote the delay in (possibly processed) information
originating from sensor node σ at node g at time k. For each g ∈ G , we let Ng ⊆ G
denote the set of neighboring nodes, that is, Ng .= {γ ∈ G | (g, γ) ∈ E or (γ, g) ∈ E}.
We suppose that under nominal operations, the delay in information as it passes from
node γ to neighbor g increases by one time-step. As #Ng may be greater than one, this
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would suggest a nominal delay dynamics model of the form

dσk+1,g =
∧
γ∈Ng

(dσk,γ + 1). (3)

However, we also expect that the dynamics may be affected by controls of the players.
Let the Blue and Red control sets be Ub and Ur, respectively, where U b .= #Ub < ∞
and Ur

.= #Ur < ∞. Control process values at time k ∈ I≥0 for Blue and Red will
be denoted by ubk ∈ Ub and urk ∈ Ur, respectively. We suppose that the Red controls
may include controls which completely block the flow of information on one or more
links of the Blue network. There might also be Blue controls which can act to clear a
backlog of information propagation along one or more links. The effect of any control
pair, (vb, vr) ∈ Ub ×Ur, on the information-propagation process at node g ∈ G \ Gs will
be modelled through the use of a function, fpg : Ub ×Ur →]− 1, J̄ [ , where J̄ will denote
the maximum possible delay-reduction in backlog that can occur in a single step at any
node. We let

fpg (vb, vr) .=


−1 if node g is blocked from receiving,

0 if node g is receiving information at the nominal rate,

J ∈]1, J̄ [
if information may flow into node g sufficiently fast
to reduce backlog by up to J units per step.

(4)

With the aid of this function, we let the delay dynamics at time k and node g ∈ G \ Gs
of information originating at sensor node σ ∈ Gs be given by F 0

g : {dσk,γ | γ ∈ Ng}×Ub×
Ur → I≥0, where

dσk+1,g= F 0({dσk,γ | γ ∈ Ng}, ubk, urk) .=
[
dσk,g− fpg (ubk, u

r
k)
] ∨ [∧

γ∈Ng

dσk,γ + 1
]
. (5)

We include some clarifying remarks regarding the model of the dynamics. First, this
is only one model, and other models maintaining this general form (roughly, taking a
maximum of the minimum over a set of delays at nodes in Ng with an additional control-
dependent amount) would fit the computational framework to appear below. Second,
one may consider different control cases to obtain a heuristic sense of the dynamics. For
example, if (ubk, u

r
k) induces “nominal flow” at g, then (5) should be equivalent to (3)

there. Note that in this case, by (4), fpg (ubk, u
r
k) = 0, and (5) becomes

dσk+1,g = dσk,g ∨
[ ∧
γ∈Ng

dσk,γ + 1
]

= dσk,g ∨
[ ∧
γ∈Ng\{g}

dσk,γ + 1
]
.

That is, the delay cannot decrease without backlog reduction control (fpg (ubk, u
r
k) ∈

]1, J̄ [ ), and the delay must also be at least the minimum over all neighbors (not including
g itself) of these delays plus one. Similarly, in the case of the node g being blocked from
receiving information, we have fpg (ubk, u

r
k) = −1, and (5) yields

dσk+1,g = (dσk,g + 1) ∨ [ ∧
γ∈Ng

dσk,γ + 1
] ≥ dσk,g + 1,
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and as g ∈ Ng, we see dσk+1,g = dσk,g + 1.
The delay-state process will take values in D .= (I≥0)GGs , and we let generic δ ∈ D

have components denoted as δσg ∈ I≥0 for σ ∈ Gs, g ∈ G. We let dk,g
.= {dσk,g |σ ∈ Gs}

and Dk
.= {dk,g | g ∈ G}, where we note that Dk takes values in D. That is, one may view

elements of D as arrays indexed by g ∈ G \Gs and σ ∈ Gs, where the (g, σ)-component of
any Dk is dσk,g. We let the collected dynamics of (5) be denoted by F̄ : D×Ub×Ur → D,
where given Dk ∈ D, ubk ∈ Ub and urk ∈ Ur, and letting

Dk+1 = F̄ (Dk, u
b
k, u

r
k), (6)

the (g, σ)-component of Dk+1 is dσk+1,g .

4.2. The running cost

In order to determine the running cost, we must first analyze the subproblem faced by
the physical Blue entities – the Blue action nodes.

4.2.1. The value of information

We suppose the physical state (as opposed to the network-delay state) can be decomposed
according to domains partitioned by the action nodes. For each α ∈ Ga, let Xα denote
the finite set of possible physical states at action node, α, and let Xα .= #Xα. Without
loss of generality, we let Xα = ]1, Xα[ . The complete physical state will be denoted by
x ∈ X , where X .= Xα1 × Xα2 . . .XαGa , where we denote the elements of Ga as αj for
j ∈]1, Ga[ . We let qα ∈ [S⊕

∨
]X

α

denote the vector of probabilities of the possible states
at action-note α. It is easily seen that for any x ∈ X , x = (x1, x2, . . . xGa), the max-plus
probability of x is given by qx =

⊗∨
α∈Ga q

α
xα ∈ [S⊕

∨
]X , where X =

∏
α∈Ga X

α. Here,
the max-plus probability, qα, may be referred to as an information state at node α, as
it describes the imperfectness of the information regarding the physical state there (see
Remark 3.3). We must see how this translates into a cost for Blue.

Let Vα denote the finite set of possible physical actions which the Blue action-node α
may take. Let `α : Xα × Vα → R, where for xα ∈ Xα and vα ∈ Vα, `α(xα, vα) denotes
the cost to Blue for applying control action vα while the true state is xα. Then, given
imperfect information described by qα ∈ [S⊕

∨
]X

α

, the minimal expected cost to Blue at
node α, assuming Blue applies a control action minimizing its cost, is

ψ̂α(qα) =
∧

vα∈Vα

{
E⊕

∨[
`α(X̂α, vα)

]}
=

∧
vα∈Vα

{ ⊕
xα∈Xα

∨ `α(xα, vα)⊗∨ qαx
}
, (7)

where X̂α denotes a random variable distributed according to qα. For vα ∈ Vα, let
Lα(vα) denote the vector of length Xα with elements `α(xα, vα), that is, [Lα(vα)]xα

.=
`α(xα, vα) for all xα ∈ Xα. Then we may rewrite (7) as

ψ̂α(qα) =
∧

vα∈Vα

{
Lα(vα)�∨ qα

}
, (8)
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where �∨ denotes the max-plus dot product. We see that ψ̂(qα) is the max-plus expected
cost to Blue at action node α given information state qα. In order to see how this
translates into a cost for delay of information along the Blue network, we must examine
how a max-plus partially-observed Markov chain propagates.

4.2.2. Max-plus conditional probability propagation

We model the dynamics of the physical Red entities using a max-plus Markov chain (see
also [16]). For heuristic purposes, note that in the example depicted in Figure 2, the
Red actions might simply be movement from one location to another, where each state,
xα ∈ Xα, might denote a specific possible configuration of Red-entity positions.

We let qαk ∈ [S⊕
∨

]X
α

denote the observation-conditioned max-plus probability dis-
tribution for the physical state at action node α and time k, where [qαk ]xα denotes the
xα component of qαk . We suppose that in the absence of observations, the distribution
propagates as a max-plus Markov chain. That is,

qαk+1 = (Pα)T ⊗∨ qαk ,

for each α ∈ Ga, where Pα is the max-plus probability transition matrix corresponding to
node α ∈ Ga, and throughout, we use ⊗∨ to denote max-plus matrix and matrix-vector
multiplication as well as scalar max-plus multiplication. Note Pαζα,xα ∈ [−∞, 0] for all
ζα, xα ∈ Xα and

⊕∨
xα∈Xα Pαζα,xα = 0. That is, each transition probability lies between

that additive and multiplicative inverses, and each rows sum is the multiplicative inverse.
We now consider the introduction of observation updates. We suppose qαk denotes

the a priori distribution at node α and time k, and let q̂αk denote the a posteriori.
Suppose that Blue obtains observation of xα, y ∈ Yα, (which we recall may be at
least partially controlled by Red). We assume that the set of possible observations at
each action-node location is finite, i. e., #Yα ∈ N for all α ∈ Ga. Let the max-plus
probability that sensor σ ∈ Ĝs(α) observes y ∈ Yα given true state xα ∈ Xα be denoted
by p⊕

∨
(y|xα;σ) ∈ [−∞, 0]. Recall that we may interpret a max-plus probability as

the additive inverse of a cost to Red (recall Remark 3.3), or equivalently, as a negative
cost for minimizing-player, Blue. Then, the max-plus probability (equivalently, cost) for
any true state xα ∈ Xα would be [q̃αk ]xα = p⊕

∨
(y|xα;σ)⊗∨[qαk ]xα . However, as we are

concerned only with relative costs, we normalize so that the max-plus sum over xα ∈ Xα
is zero. The normalized cost/max-plus probability is

[q̂αk ]xα = p⊕
∨
(y|xα;σ)⊗∨[qαk ]xα�∨

{⊕
ζα∈Xα

∨ [ p⊕∨(y|ζα;σ)⊗∨[qαk ]ζα
]}
, (9)

where �∨ indicates max-plus division (standard-sense subtraction). Note that (9) is
the max-plus equivalent of Bayes’ rule. We may interpret the change from [qαk ]xα to
[q̂αk ]xα , as the additive inverse of the minimal relative cost to Red for modification of
the observation process to yield y given true state xα. Next, for any y ∈ Yα, let Cα,yσ

be the Xα ×Xα max-plus diagonal matrix with diagonal elements p⊕
∨

(y|xα;σ) (where
we note that a square matrix is max-plus diagonal if all off-diagonal elements are −∞).
Also let Rα,yσ be the Xα-length vector with elements p⊕

∨
(y|xα;σ). Written in vector
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form, update (9) takes the form

q̂αk = Byσ[qαk ] .= [Cα,yσ ⊗∨qαk ]�∨ [(Rα,yσ )�∨ qαk ]. (10)

As the presentation is already dense, we will assume that every sensor observes at
every time step. Recalling that the set of sensors allocated to action node α ∈ Ga is
Ĝs(α), the full one-step update corresponding to α ∈ Ga is

qαk+1 = (Pα)T⊗∨
( ∏
σ∈Ĝs(α)

Byk,σσ

)
[qαk ]. (11)

4.2.3. Constructing the cost of delay

We now examine how the actual running cost will depend on the delays along the
network, where this running cost for the delay game will flow from the physical-action
costs described above. The observation-conditioned max-plus probability distribution
update of (11) was developed under the assumption that all observations made at time
k were actually available for processing at time k. Refer to Section 2, and in particular,
to Figure 1. The observation of xα obtained by σ ∈ Ĝs(α) may need to proceed through
some specified subset of the Blue network, with processing possibly occurring along the
way, before the resulting updated conditional probability and/or command decisions can
be applied by Blue action node α. We need to determine how the resulting cost to Blue
will depend on the delay-state of the network.

We will let Ĝs(α) = #Ĝs(α) and ~yk ∈ [Yα]Ĝs(α) be the vector of observations at time
k with components yk,σ for σ ∈ Ĝs(α). The total expected payoff at time k and action
node α of an action at time k + 1 given current distribution qαk then becomes

ψ̂α1 (qαk , Ĝs(α)) .= E⊕
∨

~yk∈[Yα]Ĝs(α) ψ̂
α
(

[Pα]T⊗∨
( ∏
σ∈Ĝs(α)

Byk,σσ

)
[qαk ]

)
, (12)

where ψ̂α is given in (8), and the subscript on the max-plus expectation indicates that
it is taken over the observations of the Red state at action node α and time k. For
notational simplicity, assume for the moment that there is only one sensor. Substituting
(8), (10) and (11) into (12) yields, after a bit of work,

ψ̂α1 (qαk , Ĝs(α)) =
⊕
yk∈Yα

∨
∧

vα∈Vα

{
[Lα(vα)]T⊗∨[Pα]T⊗∨Cα,ykσ ⊗∨qαk

}
=
⊕
yk∈Yα

∨
∧

vα∈Vα

{(
Cα,ykσ ⊗∨Pα⊗∨Lα(vα)

)
�∨ qαk

}
.

Now, returning to the case of multiple sensor nodes, and continuing to assume the same
observation set for each, this becomes

ψ̂α1 (qαk , Ĝs(α)) =
⊕

~yk∈[Yα]Ĝs(α)

∨
∧

vα∈Vα

{[( ⊗
σ∈Ĝs(α)

∨C
α,yk,σ
σ

)
⊗∨Pα⊗∨Lα(vα)

]
�∨ qα

}
, (13)
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where for simplicity, we henceforth take Yα = Y for all α ∈ Ga.
We now expand this to take into account that some of the observations may have

been delayed, which will require some rather technical notation. Let δ ∈ D denote
a generic delay state. If information from node σ ∈ Ĝs(α) is delayed at α ∈ Ga by
some time, δσα, then the observation updates in (13) for time-steps more recent than
δσα steps back will not take place. Corresponding to δ ∈ D, the maximum delay is
d∗(δ) =

∨
α∈Ga

∨
σ∈Ĝs(α) δ

σ
α. Let j∗(δ) .= −d∗(δ). (Recall Ĝs(α1)∩Ĝs(α2) = ∅ if α1 6= α2.)

Then, for each j ∈ ]j∗(δ), 0[ , and each α ∈ Ga, we see that the set of sensors from which
observations for −j steps back are available is G̃s,j(α, δ) .= {σ ∈ Ĝs(α) | j ≤ −δσα}, and
let G̃s,j(α, δ)

.= #G̃s,j(α, δ). Also, given α ∈ Ga, δ ∈ D and an observation-history
length −k̄ ≥ 0, let

Ŷ(α, δ, k̄) .= YG̃s,k̄(α,δ) × YG̃s,k̄+1(α,δ) × · · · YG̃s,0(α,δ),

with elements ~~y = {~yj | j ∈ ]k̄, 0[} = {yj,σ |σ ∈ G̃s,j(α, δ), j ∈ ]k̄, 0[}.
We suppose that the information state has some initial value, q̄α0 . Proceeding as in

(13) but now with information processing over time-step range ]k̄, 0[ , we see that the
max-plus expected cost of delay state δ is given by

ψ̆α(δ) = ψ̆α(δ; q̄α0 , k̄) =
∨

~~y∈Ŷ(α,δ,k̄)

∧
vα∈Vα

{[( ⊗
j∈ ]k̄,0[

∨
[( ⊗

σ∈G̃s,j(α,δ)

∨ Cα,yj,σσ

)
⊗∨ Pα

])

⊗∨Lα(vα)
]
�∨ q̄α0

}
, (14)

where we note that as the matrices in the product over j are not necessarily diagonal,
we must indicate order, and to limit space we use the following notation. For integers
a ≤ b and generic sequence of matrices, Mi, we let⊗

j∈]a,b[

∨Mi
.= Ma⊗∨Ma+1⊗∨ . . .Mb and

⊗
j∈]a,b[′

∨Mi
.= Mb⊗∨Mb−1⊗∨ . . .Ma.

Also, the left-most side of (14) is included to indicate that we will be most interested
here in the dependence on the delay state, δ, rather than on the initial max-plus proba-
bility distribution, q̄α0 . As an aside, it is interesting to note that by modifying the choice
of symbols for the idempotent operations, (14) also takes the form

ψ̆α(δ) = ψ̆α(δ; q̄α0 , k̄) =
∨

~~y∈Ŷ(α,δ,k̄)

⊕
vα∈Vα

{[( ⊗
j∈ ]k̄,0[

[( ⊗
σ∈G̃s,j(α,δ)

Cα,yj,σσ

)
⊗ Pα

])

⊗ Lα(vα)
]
� q̄α0

}
,

in which case, one sees that this is a min-plus convex function of q̄α0 . Lastly, we take the
total cost over all α ∈ Ga to be

ψ̄(δ) = ψ̄(δ; q̄0, k̄) .=
∨
α∈Ga

ψ̆α(δ; q̄α0 , k̄), (15)
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where [q̄0]x1,x2,...xGa =
⊗∨

α∈Ga [q̄α0 ]xα for all (x1, x2, . . . xGa) ∈ [Xα]Ga . Model (15)
suggests Red would act at, and only at, the worst-case location for Blue. A more
complex cost could also be considered, possibly with additional technical difficulties,
which is beyond the scope of this already-technical effort.

4.3. The payoff and value

So far, we have defined the game dynamics and the running cost. We now proceed
to define the payoff and the value. Fix a time-horizon, K < ∞. As we will be
taking a dynamic-programming perspective, we consider games with any initial time,
k0 ∈ ]0,K[ . The sets of control sequences for each player over ]k0,K − 1[ are Ũbk0

.={ {ubk}k∈ ]k0,K−1[

∣∣ubk ∈ Ub ∀k } and Ũrk0

.=
{ {urk}k∈ ]k0,K−1[

∣∣urk ∈ Ur ∀k }. We are in-
terested in the upper value, and specifically the upper value under an assumption of
nonanticipative strategies (cf. [5]). The set of nonanticipative strategies for Red given
initial time k0 will be denoted as Rk0=̇

{
ρ : Ũbk0

→ Ũrk0
| nonanticipative

}
. For use below,

we recall the definition of a nonanticipative strategy:

Definition 4.1. A map ρ : Ũbk0
→ Ũrk0

is nonanticipative if, for any k ∈]k0,K − 1[ ,
and any control strategies u1, u2 ∈ Ũbk0

such that u1
i = u2

i for all i ∈ ]k0, k[ , one has
ρi[u1] = ρi[u2] for all i ∈ ]k0, k[ .

For k0 ∈ ]0,K[ , δ ∈ D, ub ∈ Ũbk0
and ur ∈ Ũbk0

, the game payoff will be given by

J̄K(k0, δ, u
b
· , u

r
· ) = J̄K(k0, δ, u

b
· , u

r
· ; q̄0) .=

∨
k∈]k0,K[

ψ̄(Dk; q̄0,−k), (16)

where D· satisfies dynamics (6) with initial condition Dk0 = δ. The upper value is then
given by

W
K

(k0, δ) = W
K

(k0, δ; q̄0) .=
∨

ρ∈Rk0

∧
ub∈eUbk0

J̄K(k0, δ, u
b
· , ρ[ub· ]; q̄0) ∀ k0 ∈ ]0,K[, δ ∈ D.

(17)

5. DEVELOPMENT OF THE IDEMPOTENT ALGORITHM

5.1. The form of the running cost

We will demonstrate that the running cost is a min-plus convex function of delay. For
simplicity of presentation here, we let Ga = {α} so that ψ̄(δ) = ψ̄(δ; q̄0, k̄) = ψ̆α(δ; q̄α0 , k̄).

As we will be mainly interested below in the dependence of ψ̄ on δ, we will sometimes
suppress the dependence of ψ̄ on q̄0 and k̄ in the notation.

Theorem 5.1. ψ̆α(·) = ψ̆α(·; q̄α0 , k̄) ∈ SĈ(RĜs(α)) for some positive definite, diagonal
Ĉ ∈ RĜs(α)×Ĝs(α) (where we recall SĈ(RĜs(α)) is specified in definition 3.13).
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P r o o f . Recall the expression for ψ̆α(δ; q̄α0 , k̄) given in (14). Suppose 0 � δ1 � δ2.
Then, G̃s,j(α, δ2) ⊆ G̃s,j(α, δ1) for all j ∈ ]k̄, 0[ , where we recall that G̃s,j(α, δ) was
defined below (13). Let ~~y 1,∗ ∈ Ŷ(α, δ1, k̄) achieve the maximum in (14) for δ = δ1. Let
~~y 2,∗ be the element of Ŷ(α, δ2, k̄) such that

y2,∗
j,σ = y1,∗

j,σ ∀σ ∈ G̃s,j(α, δ2), j ∈ ]k̄, 0[ .

Also let

vα,∗,2 ∈ argmin
vα∈Vα

{[( ⊗
j∈ ]k̄,0[

∨
[( ⊗

σ∈G̃s,j(α,δ2)

∨ C
α,y2,∗

j,σ
σ

)
⊗∨ Pα

])
⊗∨Lα(vα)

]
�∨ q̄α0

}
.

Then,

ψ̆α(δ1; q̄α0 , k̄) ≤
[( ⊗

j∈ ]k̄,0[

∨
[( ⊗

σ∈G̃s,j(α,δ1)

∨ C
α,y1,∗

j,σ
σ

)
⊗∨ Pα

])
⊗∨Lα(vα,∗,2)

]
�∨ q̄α0

=
[( ⊗

j∈ ]k̄,0[

∨
[( ⊗

σ∈G̃s,j(α,δ1)\G̃s,j(α,δ2)

∨ C
α,y1,∗

j,σ
σ

)
⊗∨
( ⊗
σ∈G̃s,j(α,δ2)

∨ C
α,y2,∗

j,σ
σ

)
⊗∨ Pα

])
⊗∨Lα(vα,∗,2)

]
�∨ q̄α0 . (18)

Recall that the Cα,yσ matrices are max-plus diagonal, and that their diagonal elements,
being max-plus probabilities, are nonpositive. Then, recalling that a⊗∨b = a + b, (18)
implies

ψ̆α(δ1; q̄α0 , k̄) ≤
[( ⊗

j∈ ]k̄,0[

∨
[( ⊗

σ∈G̃s,j(α,δ2)

∨ C
α,y2,∗

j,σ
σ

)
⊗∨ Pα

])
⊗∨Lα(vα,∗,2)

]
�∨ q̄α0 ,

which by the choice of vα,∗,2,

=
∧

vα∈Vα

{[( ⊗
j∈ ]k̄,0[

∨
[( ⊗

σ∈G̃s,j(α,δ2)

∨ C
α,y2,∗

j,σ
σ

)
⊗∨ Pα

])
⊗∨Lα(vα)

]

�∨ q̄α0
}

≤
∨

~~y∈Ŷ(α,δ2,k̄)

∧
vα∈Vα

{[( ⊗
j∈ ]k̄,0[

∨
[( ⊗

σ∈G̃s,j(α,δ2)

∨ Cα,yj,σσ

)
⊗∨ Pα

])
⊗∨Lα(vα)

]

�∨ q̄α0
}

= ψ̆α(δ2; q̄α0 , k̄),

and we have 0 ≤ ψ̆α(δ2; q̄α0 , k̄)− ψ̆α(δ1; q̄α0 , k̄).
It remains to prove that there exists positive definite, symmetric Ĉ ∈ RĜs(α)×Ĝs(α)

such that ψ̆α(δ2; q̄α0 , k̄) − ψ̆α(δ1; q̄α0 , k̄) ≤ ‖Ĉ(δ2 − δ1)‖∞. Let ~~y 2,∗ ∈ Ŷ(α, δ2, k̄) achieve
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the maximum in (14) for δ = δ2. Let ~~y 1,∗ be the element of Ŷ(α, δ1, k̄) such that

y1,∗
j,σ

{
= y2,∗

j,σ if σ ∈ G̃s,j(α, δ2), j ∈ ]k̄, 0[
∈ argmaxy∈Y{minxα∈Xα p⊕

∨
(y |xα)} if σ 6∈ G̃s,j(α, δ2), j ∈ ]k̄, 0[ .

Let
ĉ
.= max
j∈ ]k̄,0[

max
σ 6∈G̃s,j(α,δ1)\G̃s,j(α,δ2)

max
yj,σ∈Y

min
xα∈Xα

p⊕
∨

(yj,σ |xα).

In this case, let

vα,∗,1 ∈ argmin
vα∈Vα

{[( ⊗
j∈ ]k̄,0[

∨
[( ⊗

σ∈G̃s,j(α,δ1)

∨ C
α,y1,∗

j,σ
σ

)
⊗∨ Pα

])
⊗∨Lα(vα)

]
�∨ q̄α0

}
.

Then,

ψ̆α(δ1; q̄α0 , k̄) ≥
[( ⊗

j∈ ]k̄,0[

∨
[( ⊗

σ∈G̃s,j(α,δ1)

∨ C
α,y1,∗

j,σ
σ

)
⊗∨ Pα

])
⊗∨Lα(vα,∗,1)

]
�∨ q̄α0 ,

and by the definition of max-plus matrix-vector multiplication, for all xα, ζα ∈ Xα, this
is

≥ `α(ζα, vα,∗,1) + [q̄α0 ]xα +
[ ⊗
j∈ ]k̄,0[′

∨
[
(Pα)T⊗∨

( ⊗
σ∈G̃s,j(α,δ1)

∨ C
α,y1,∗

j,σ
σ

)]]
ζα,xα

,

where we recall the Cα,yσ matrices are max-plus diagonal, and this is

= `α(ζα, vα,∗,1) + [q̄α0 ]xα +
[ ⊗
j∈ ]k̄,0[′

∨
[
(Pα)T⊗∨

( ⊗
σ∈G̃s,j(α,δ1)\G̃s,j(α,δ2)

∨ C
α,y1,∗

j,σ
σ

)
⊗∨
( ⊗
σ∈G̃s,j(α,δ2)

∨ C
α,y2,∗

j,σ
σ

)]]
ζα,xα

. (19)

Now, by the choice of y1,∗
j,σ , the diagonal elements of C

y1,∗
j,σ
σ ≥ ĉ for σ ∈ G̃s,j(α, δ1) \

G̃s,j(α, δ2). Consequently, (19) implies

ψ̆α(δ1; q̄α0 , k̄) ≥`α(ζα, vα,∗,1) + [q̄α0 ]xα +
[ ⊗
j∈ ]k̄,0[′

∨
[
(Pα)T⊗∨

( ⊗
σ∈G̃s,j(α,δ2)

∨ C
α,y2,∗

j,σ
σ

)]]
ζα,xα

+ ĉ
∑
j∈]k̄,0[

[G̃s,j(α, δ1)− G̃s,j(α, δ2)].

As this is true for all xα, ζα ∈ Xα, we have

ψ̆α(δ1; q̄α0 , k̄) ≥
⊕

xα,ζα∈Xα

∨
{
`α(ζα, vα,∗,1) + [q̄α0 ]xα +

[ ⊗
j∈ ]k̄,0[′

∨
[
(Pα)T⊗∨

( ⊗
σ∈G̃s,j(α,δ2)

∨ C
α,y2,∗

j,σ
σ

)]]
ζα,xα

}
+ ĉ

∑
j∈]k̄,0[

[G̃s,j(α, δ1)− G̃s,j(α, δ2)]
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=
[( ⊗

j∈ ]k̄,0[

∨
[( ⊗

σ∈G̃s,j(α,δ2)

∨ C
α,y2,∗

j,σ
σ

)
⊗∨ Pα

])
⊗∨Lα(vα,∗,1)

]
�∨ q̄α0

+ ĉ
∑
j∈]k̄,0[

[G̃s,j(α, δ1)− G̃s,j(α, δ2)]

which by the choice of ~~y 2,∗,

≥ψ̆α(δ2; q̄α0 , k̄) + ĉ
∑
j∈]k̄,0[

[G̃s,j(α, δ1)− G̃s,j(α, δ2)]

=ψ̆α(δ2; q̄α0 , k̄) + ĉ
∑

σ∈Ĝs(α)

(
[δ2]σ − [δ1]σ

)
and recalling that ĉ ≤ 0, this is

≥ψ̆α(δ2; q̄α0 , k̄) + ĉĜs(α)‖δ2 − δ1‖∞,

which yields the result. �

Remark 5.2. Henceforth, for simplicity of presentation, we will assume that the ψ̄ may
be normalized such that the components of δ are integer-valued, that ψ̄(δ) is integer-
valued, and that ψ̄ is Lipschitz with constant one.

Theorem 5.3. The cost of delay, ψ̄, can be expressed as a finite-domain min-plus con-
vex function. That is, there exists index set, Z, and corresponding sets of coefficients,
such that

ψ̄(δ) =
∨
z∈Z

[
ez ⊕ bz � δ

]
∀ δ ∈ D, (20)

where we recall that the � product is given by bz � δ .=
⊕

(g,σ)∈G×Gs b
z
g,σ ⊗ δσg .

P r o o f . This follows directly from Theorems 5.1 and 3.19. �

We remark here that ψ̄ depends only on the components of δ, δσg , such that g ∈ Ga
and σ ∈ Ĝs(g). In particular, the components of bzg,σ such that either g 6∈ Ga or such
that g ∈ Ga but σ 6∈ Ĝs(g) are −∞.

The value of Theorem 5.3 is that the asserted form will allow us to obtain an idem-
potent distributed dynamic program for reduced-complexity computation.

5.2. Idempotent distributed dynamic program

We first obtain the general dynamic program for the game (16) – (17). After that we
move to the idempotent distributed dynamic program (IDDP) for solution of the game.

Theorem 5.4. Value W
K

is the unique solution of the dynamic program

WK(K, δ) = ψ̄(δ) ∀ δ ∈ D, (21)



Idempotent algorithm for network-disruption games 683

WK(k, δ) =
∧

vb∈Ub

∨
vr∈Ur

[
ψ̄(δ) ∨WK(k + 1, Dk+1)

]
∀k ∈ ]k0,K − 1[, δ ∈ D, (22)

where Dk+1 = F̄ (δ, vb, vr).

P r o o f . The proof of the above theorem is similar to existing results in the area of
dynamic programming for max-plus control [7, 18], and consequently, we only sketch
it. It is sufficient to show that a solution to (22) must be identical to W

K
. Suppose

WK(k̂ + 1, ·) = W
K

(k̂ + 1, ·), which is true for k̂ + 1 = K by (21). Then, by (22),

WK(k̂, δ) =
∧

vb∈Ub

∨
vr∈Ur

[
ψ̄(δ) ∨WK

(k + 1, Dk̂+1)
]
,

where Dk̂+1 = F̄ (δ, vb, vr), and by the definition of value, (17), this is

=
∧

vb∈Ub

∨
vr∈Ur

∨
ρ∈Rk̂+1

∧
ub∈eUb

k̂+1

[ ∨
k∈ ]k̂,K[

ψ̄(Dk)
]

=
∧

vb∈Ub

∨
(vr,ρ)∈Ur×Rk̂+1

∧
ub∈eUb

k̂+1

[ ∨
k∈ ]k̂,K[

ψ̄(Dk)
]
, (23)

where D· satisfies (6) with Dk̂ = δ. Applying the min-max distributive property, Lemma
3.1, to (23), we have

WK(k̂, δ) =
∨

{(vr,ρ)
vb
}
vb∈Ub

∈(Ur×Rk̂+1)Ub

∧
vb∈Ub

∧
ub∈eUb

k̂+1

[ ∨
k∈ ]k̂,K[

ψ̄(Dk)
]

=
∨

{(vr,ρ)
vb
}
vb∈Ub

∈(Ur×Rk̂+1)Ub

∧
(vb,ub)∈Ub×eUb

k̂+1

[ ∨
k∈ ]k̂,K[

ψ̄(Dk)
]
,

where (Ur ×Rk̂+1)U
b

denotes the outer product of Ur ×Rk̂+1, U b times, and one then
shows that this is

=
∨
ρ∈Rk̂

∧
ub∈eUb

k̂

[ ∨
k∈ ]k̂,K[

ψ̄(Dk)
]

=
∨
ρ∈Rk̂

∧
ub∈eUb

k̂

J̄K(k̂, δ, ub, ρ[ub]) = W
K

(k̂, δ),

and we do not include the technical details. �

We can now obtain the IDDP (cf. [18]) for W
K

from this dynamic program. The
IDDP will be helpful in computation as it is a finite-complexity computation utilizing
idempotent algebraic operations. We assume that one has precomputed ψ̄(δ) for all δ ∈
(]0, k̄[)GGs , where we recall that (14) for computation of ψ̄(δ) requires only idempotent
matrix-vector operations.

Theorem 5.5. For k ∈ ]0,K − 1[ , there exist Zk ∈ N, Zk = ]1, Zk[ and ezk ∈ R and
bzk ∈ RGGs for all z ∈ Zk, such that

WK(k, δ) =
∨
z∈Zk

[
ezk ⊕ bzk � δ

]
∀ δ ∈ D,
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where bzk � δ .=
⊕

(g,σ)∈G×Gs [b
z
k]g,σ ⊗ δσg . Further, {ezk | z ∈ Zk} and {bzk | z ∈ Zk} may

be computed via idempotent algebraic operations.

P r o o f . We will proceed inductively, backwards in time. We have by Theorem 5.3 and

Theorem 5.4 that WK(K, δ) =
∨
z∈ZK

[
ezK⊕bzK�δ

]
for all δ ∈ D. Now, let k ∈]0,K−1[ .

We have by Theorem 5.4 that,

WK(k, δ) =
∧

vb∈Ub

∨
vr∈Ur

[
ψ̄(δ) ∨WK(k + 1, Dk+1)

]
,

where Dk+1 = F̄ (δ, vb, vr). Making the induction assumption that the result holds for
WK(k + 1, ·), we have

WK(k, δ) =
∧

vb∈Ub

∨
vr∈Ur

{
ψ̄(δ) ∨

∨
zk+1∈Zk+1

[
e
zk+1
k+1 ⊕ bzk+1

k+1 �Dk+1

]}

=
∧

vb∈Ub

∨
vr∈Ur

{
ψ̄(δ) ∨

∨
zk+1∈Zk+1

[
e
zk+1
k+1 ⊕

⊕
(g,σ)∈G×Gs

∨ b
zk+1,σ
k+1,g ⊗ dσk+1,g

]}
. (24)

Substituting delay dynamics (5) into (24) with dk = δ yields,

WK(k, δ) =
∧

vb∈Ub

∨
vr∈Ur

{
ψ̄(δ)∨

∨
zk+1∈Zk+1

[
e
zk+1
k+1 ⊕

⊕
(g,σ)∈G×Gs

∨ b
zk+1,σ
k+1,g (25)

⊗
([
δσg − fpg (vb, vr)

] ∨ [ ∧
γ∈Ng\{g}

δσγ + 1
])]}

.

Defining for γ ∈ G,

b̂
vb,vr,zk+1,0
k,g,σ,γ =

{
b
zk+1,σ
k+1,g − fpg (vb, vr) if γ = g

+∞ otherwise,
(26)

b̂
vb,vr,zk+1,1
k,g,σ,γ =

{
b
zk+1,σ
k+1,g + 1 if γ ∈ Ng\{g}

+∞ otherwise,
(27)

and observing that ψ̄(δ) is independent of vb and vr allows us to express (25) as

WK(k, δ) = ψ̄(δ) ∨
{∧
vb∈Ub

∨
vr∈Ur

∨
zk+1∈Zk+1

[
e
zk+1
k+1 ⊕

∧
(g,σ)∈G×Gs∨

i∈{0,1}

∧
γ∈G

[
b̂
vb,vr,zk+1,i
k,g,σ,γ ⊗ δσγ

]]}
,

(28)
and by the min-max distributive property, this becomes,
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= ψ̄(δ)∨
{ ∧
vb∈Ub

∨
(vr,zk+1)∈Ur×Zk+1

[
e
zk+1
k+1 ⊕

∧
(g,σ)∈G×Gs

(29)

∨
i∈{0,1}

∧
γ∈G

[
b̂
vb,vr,zk+1,i
k,g,σ,γ ⊗ δσγ

]]}
.

Applying the max-min distributive property again, we find

WK(k, δ) = ψ̄(δ)∨
{ ∧
vb∈Ub

∨
(vr,zk+1)∈Ur×Zk+1

[
e
zk+1
k+1 (30)

⊕
∨
ī·∈Ī

∧
(γ,σ)∈G×Gs

∧
g∈G

[
b̂
vb,vr,zk+1 ,̄i(g,σ)

k,g,σ,γ ⊗ δσγ
]]}

,

where Ī .= {̄i(g,σ)}(g,σ)∈G×Gs , that is, Ī is the set of sequences of elements of {0, 1}
indexed by (g, σ) ∈ G × Gs, and in particular, ī(g,σ) ∈ {0, 1} for each (g, σ) ∈ G × Gs.
This is

= ψ̄(δ)∨
{ ∧
vb∈Ub

∨
(vr,zk+1)∈Ur×Zk+1

[
e
zk+1
k+1 ⊕

∨
ī∈Ī

∧
(γ,σ)∈G×Gs

[
b̃
vb,vr,zk+1 ,̄i(·,σ)

k,γ,σ

⊗ δσγ
]]}

,

where b̃v
b,vr,zk+1 ,̄i(·,σ)

k,γ,σ
.=
∧
g∈G b̂

vb,vr,zk+1 ,̄i(g,σ)

k,g,σ,γ , which is

= ψ̄(δ)∨
{ ∧
vb∈Ub

∨
(vr,zk+1 ,̄i)∈Ur×Zk+1×Ī

[
e
zk+1
k+1 ⊕ b̄v

b,vr,zk+1 ,̄i
k � δ

]}
, (31)

where b̄v
b,vr,zk+1 ,̄i
k,γ,σ

.= b̃
vb,vr,zk+1 ,̄i(·,σ)

k,γ,σ , and we are using the � notation as indicated in the
theorem statement. Letting Ẑk+1 be an indexing of Ur×Zk+1×Ī, with eẑk+1, b̆ẑk defined
appropriately for each ẑ ∈ Ẑk+1, this is equivalently,

WK(k, δ) = ψ̄(δ)∨
{ ∧
vb∈Ub

∨
ẑ∈Ẑk+1

[
eẑk+1 ⊕ b̆ẑk � δ

]}
,

and applying the max-min distributive property again, this is

= ψ̄(δ)∨
{ ∨
{ẑ
vb
}
vb∈Ub∈(Ẑk+1)Ub

∧
vb∈Ub

[
ĕ
ẑ
vb

k+1 ⊕ b̆
ẑ
vb

k � δ
]}

= ψ̄(δ)∨
{ ∨
{ẑ
vb
}
vb∈Ub∈(Ẑk+1)Ub

[
¯̆eẑ·k+1 ⊕ ¯̆

bẑ·k � δ
]}

, (32)

where ¯̆eẑ·k+1
.=
∧
vb∈Ub ĕ

ẑ
vb

k+1 and ¯̆
bẑ·k,γ,σ

.=
∧
vb∈Ub b̆

ẑ
vb

k,γ,σ for all (γ, σ) ∈ G × Gs, and (32)
has the asserted form. �
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6. COMPUTATIONAL COMPLEXITY

Dynamic programming suffers from a curse-of-dimensionality, where the computational
cost grows exponentially with state-space dimension. The algorithm implied by The-
orem 5.5 involves only idempotent-algebraic matrix-vector operations, and does not
require propagating values on a grid over state space. This is typical for this class of
methods [13, 14, 15, 16, 18]. However, these methods suffer from an apparent “curse-
of-complexity”, where the computational cost grows at a high exponential rate as one
propagates backward in time. The curse-of-complexity is evident in (32), where one sees
an extreme complexity growth via the increasing cardinality of the index set. This is
typically attenuated by projection onto the optimal idempotent subspace of a specified
dimension at each step, cf. [8]. Here however, experimentation has demonstrated that
the overwhelming number of functionals in (32) contribute nowhere to WK(k, ·), and
it is senseless to compute them merely to throw them away later. Instead, one may
use Theorem 5.5 to demonstrate the finite-complexity min-plus convex function form of
WK(k, ·), while performing the computations without full application of the distributive
property, as for example at the level of either (29) or (31). In the next section, we in-
dicate techniques for computation of the essential min-plus affine functions in (32) with
less wasted operations. We also demonstrate some initial results indicating potential
explanations as to why one should not typically expect the extreme complexity growth
of (32). However, fuller analysis of complexity bounds appears rather technical and
beyond the scope of this effort.

6.1. Efficient computation

As the results in this section are generic, we work on Rn rather than D, and we let
N .=]1, n[ . Also, in order to conserve space, we use the abbreviation, FCMPCF, for
“finite-complexity min-plus convex function”. We will find that the notion of crux will
be quite helpful in understanding the structure of FCMPCFs.

Definition 6.1. Consider the FCMPCF given by

f(d) .=
∨
j∈J

hj(d) .=
∨
j∈J

[
ej ⊕ bj � d] ∀ d ∈ Rn, (33)

where J denotes an arbitrary finite index set. For each hj , the crux value is ej , the
crux location is cj = ej ⊗ (−bj), and the crux is the pair (cj , ej). The coefficient set is
{(bj , ej) | j ∈ J }, and the crux set {(cj , ej) | j ∈ J }.

We note that the crux is the unique point where the n+ 1 hyperplane sections that
form the graph of hj intersect. Note also that, given a crux set {(cj , ej) | j ∈ J }, one
can obtain the coefficient set elements from bj = ej ⊗ (−cj) for all j ∈ J , and hence the
FCMPCF as well. In particular, this relationship establishes one-to-one correspondences
between the FCMPCF in form (33), the coefficient set and the crux set.

Definition 6.2. Consider the FCMPCF of (33). We say a component affine functional,
hj(·), is strictly active if it is the unique maximizing function at some point.
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Remark 6.3. A component affine function which is not strictly active can be removed
from the representation without loss of accuracy. That is, if hĵ is not strictly active in
(33), then f(·) =

∨
j∈J\{ĵ} h

j(·).

Proposition 6.4. A min-plus affine functional is strictly active in (33) if and only if it
is strictly active at its crux location.

P r o o f . Sufficiency is obvious, and so we only prove necessity. Suppose affine function
hj̄ is strictly active. Then, there exists d̂ ∈ Rn such that

hj̄(d̂) = ej̄ ⊕ bj̄ � d̂ > ej ⊕ bj � d̂ = hj(d̂) ∀ j ∈ J \ {j̄}. (34)

Fix any j 6= j̄. Suppose ej ≤ bj � d̂. Then, by (34), ej̄ ⊕ bj̄ � d̂ > ej . This implies

hj̄(cj̄) = ej̄ > ej ≥ ej ⊕ bj � cj̄ = hj(cj̄),

where (cj , ej) and (cj̄ , ej̄) are the cruxes of hj and hj̄ , respectively. Now instead, suppose
ej > bj� d̂. Then, by (34), ej̄⊕bj̄� d̂ > bj� d̂, which implies bj̄� d̂ > bj� d̂. This implies
that there exists ĩ ∈ N , such that bj̄ � d̂ > bj

ĩ
⊗ d̂ĩ, which implies bj̄

ĩ
⊗ d̂ĩ > bj

ĩ
⊗ d̂ĩ,

and hence bj̄
ĩ
> bj

ĩ
. Consequently,

⊕
i∈N b

j
i − bj̄i < 0. This implies hj̄(cj̄) = ej̄ >⊕

i∈N b
j
i + ej̄ − bj̄i =

⊕
i∈N b

j
i + cj̄ = bj � cj̄ ≥ hj(cj̄). �

Definition 6.5. The right-hand side of (33) is a minimal realization if for any ĵ ∈ J ,
there exists d̂ ∈ Rn such that

∨
j∈J\{ĵ} h

j(d̂) <
∨
j∈J h

j(d̂). In that case, {(bj , ej) | j ∈
J } is a minimal coefficient set, and {(cj , ej) | j ∈ J } is a minimal crux set.

Remark 6.6. By Proposition 6.4, an FCMPCF given by (33) is a minimal realization
if for each j ∈ J , hĵ(cĵ) > hj(cĵ) for all j 6= ĵ.

Proposition 6.4 also suggests an efficient algorithm for reduction of a coefficient set
for an FCMPCF to a minimal coefficient set.

An algorithm for reduction to a minimal coefficient set.

1. Suppose we are given {(bj , ej) | j ∈ J } and {(cj , ej) | j ∈ J }, where J = ]1, J [ .
Set ĵ = 1.

2. Compute hj(cĵ) = ej ⊕ (bj � cĵ) for all j ∈ J \ {ĵ}.
3. If there exists j ∈ J \ {ĵ} such that eĵ ≤ hj(cĵ), set J to be J \ {ĵ}.
4. If all j ∈ J have been examined, we are done. Otherwise, let ĵ be the next index

in J , and return to step 2.

We will require an efficient algorithm for computation of an FCMPCF given in form

f(d) .=
∧
k∈K

[ ∨
j∈J k

ek,j ⊕ bk,j � d
]
. (35)
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Experimentation has demonstrated that this is substantially more efficiently performed
through a serial repetition of pointwise minima of pairs of FCMPCFs. Consider a generic
case of two FCMPCFs with minimal coefficient sets given by A1 .= {(b1,j , e1,j) | j ∈ J 1}
and A2 .= {(b2,j , e2,j) | j ∈ J 2}, where J 1 and J 2 denote arbitrary finite index sets,
with corresponding min-plus affine functionals h1,j and h2,j . Then, by the distributive
property, ∧

k∈{1,2}

[ ∨
j∈J k

ek,j ⊕ bk,j � d
]

=
∨

(j1,j2)∈J 1×J 2

ẽj1,j2 ⊕ b̃j1,j2 � d,

where ẽj1,j2 = e1,j1 ⊕ e2,j2 and b̃j1,j2 = b1,j1 ⊕ b2,j2 , and this is
.=
∨
j̆∈J̆

ĕj̆ ⊕ b̆j̆ � d, (36)

where J̆ = ]1, J̆ [ = ]1, (#J 1)(#J 2)[ is an indexing of J 1 × J 2, and we let Ă .=
{(b̆j̆ , ĕj̆) | j̆ ∈ J̆ } denote the reindexed coefficient set {(b̃j1,j2 , ẽj1,j2) | (j1, j2) ∈ J 1×J 2}.
An algorithm for efficient computation of (35).

1. Suppose we are given {(bk,j , ek,j) | j ∈ J k, k ∈ K}, where K = ]1,K[ and J k =
]1, Jk[ for all k ∈ K. Let Bo .= {(b1,j , e1,j) | j ∈ J 1}, and set k̂ = 2.

2. Let Bn .= {(bk̂,j , ek̂,j) | j ∈ J k̂}, Create B̃o from (36) with Bo, Bn and B̃o replacing
A1, A2 and Ă there, respectively.

3. Prune B̃o using the above “algorithm for reduction to a minimal coefficient set”,
and label the result Bo.

4. If k̂ = K, we are done; f(d) =
∨
j∈J̆ e

j̆ ⊕ bj̆ � d. Otherwise, set k̂ to be k̂+ 1, and
return to step 2.

Remark 6.7. We have not included an algorithm for computing the pointwise maxi-
mum of a set of FCMPCFs, as this is rather straight-forward. Suppose h1 and h2 are two
FCMPCFs with coefficient sets A1 = {(b1,j , e1,j) | j ∈ J 1} and A2 = {(b2,j , e2,j) | j ∈
J 2}. Then, as no new cruxes are generated by the maximization operation, a resulting
set of cruxes for h1 ∨ h2 is the union of the corresponding sets of cruxes. Consequently,
a coefficient set for h1 ∨ h2 is A1 ∪A2, and one reduces this to a minimal coefficient set
by application of the “algorithm for reduction to a minimal coefficient set”

As suggested above, we remark that application of the above algorithms for the IDDP
iteration in form (29) or (31) is generally far more efficient than using (32). In the latter
approach one applies the “Algorithm for reduction to a minimal coefficient set” only to
prune the extremely large index set obtained there.
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6.2. Some computational complexity bounds

Although the possible computational complexity growth with backward iteration of the
IDDP appears extreme, the actual complexity growth has been quite low for all examples
so far tested. This phenomenon is evident in the example included below. Before
proceeding to the example, we indicate some computational complexity growth bounds
for pointwise minima of pairs of FCMPCFs, which as indicated above, is a key step in
the IDDP propagation. Specifically, we consider complexity bounds for the computation
of the coefficient set obtained from

f(d) .= h1(d) ∧ h2(d) .=
[ ∨
j1∈J 1

e1,j1 ⊕ b1,j1 � d
]
∧
[ ∨
j2∈J 2

e2,j2 ⊕ b2,j2 � d
]

=
∨

(j1,j2)∈J 1×J 2

ēj1,j2 ⊕ b̄j1,j2 � d,

where the forms for h1 and h2 are minimal realizations, J 1 = ]1, J1[ , J 2 = ]1, J2[ ,
ēj1,j2 = e1,j1 ⊕ e2,j2 and b̄j1,j2 = b1,j1 ⊕ b2,j2 for all j1 ∈ J 1, j2 ∈ J 2. The min-
imal coefficient sets for the original FCMPCFs are A1 .= {(b1,j , e1,j) | j ∈ J 1} and
A2 .= {(b2,j , e2,j) | j ∈ J 2}, and we seek bounds on the size of the minimal coeffi-
cient subset of {(b̄j1,j2 , ēj1,j2) | j1 ∈ J 1, j2 ∈ J 2}. We let C1 .= {(c1,j , e1,j) | j ∈ J 1}
and C2 .= {(c2,j , e2,j) | j ∈ J 2} be the corresponding minimal crux sets. Also, let
J̄ ⊆ J 1 × J 2 be an index set corresponding to a minimal realization of f , that
is, let Ā .= {(b̄j1,j2 , ēj1,j2) | (j1, j2) ∈ J̄ } be a minimal coefficient set for f , and let
C̄ .= {(c̄j1,j2 , ēj1,j2) | (j1, j2) ∈ J̄ } be the corresponding minimal crux set.

Lemma 6.8. Suppose (b, e) and (b̂, ê) are in the minimal coefficient set for an FCMPCF,
and that b � b̂. Then e > ê.

P r o o f . This is obvious, as otherwise, e⊕ b� d ≤ ê⊕ b̂� d for all d ∈ Rn. �

The next two results indicate conditions where the existence of one element in a
minimal coefficient set, Ā, precludes inclusion of other possible elements. First, note
that either ēj̄1,j̄2 = e1,j̄1 or ēj̄1,j̄2 = e2,j̄2 .

Theorem 6.9. Suppose (b̄j̄1,j̄2 , ēj̄1,j̄2) ∈ Ā and ēj̄1,j̄2 = e1,j̄1 . Suppose (b2,j̄3 , e2,j̄3) ∈
A2, j̄3 6= j̄2, where b2,j̄3 � b2,j̄2 . Let (b̂, ê) .= (b̄j̄1,j̄3 , ēj̄1,j̄3) = (b1,j̄1 ⊕ b2,j̄3 , e1,j̄1 ⊕ e2,j̄3).
Then, (b̂, ê) 6∈ Ā.

P r o o f . As (b2,j̄2 , e2,j̄2), (b2,j̄3 , e2,j̄3) ∈ A2, and b2,j̄3 � b2,j̄2 , by Lemma 6.8, e2,j̄3 >
e2,j̄2 ≥ ēj̄1,j̄2 = e1,j̄1 , and consequently,

ê = e1,j̄1 = ēj̄1,j̄2 . (37)

Also, letting (ĉ, ê) denote the crux corresponding to (b̂, ê),

ĉ = ê⊗ (−b̂) = ê⊗ [−(b1,j̄1 ⊕ b2,j̄3)] ≥ ê⊗ [−(b1,j̄1 ⊕ b2,j̄2)] = ê⊗ (−b̄j̄1,j̄2),
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which by (37),

= ēj̄1,j̄2 ⊗ (−b̄j̄1,j̄2) = c̄j̄1,j̄2 . (38)

By (38) and the monotonicity of f (implied by Theorem 3.10),

f(ĉ) ≥ f(c̄j̄1,j̄2) = e1,j̄1 = ê = ê⊕ b̂� ĉ,

which implies that ê ⊕ b̂ � d is not strictly active in f at its crux, and consequently,
(b̂, ê) 6∈ Ā. �

Theorem 6.10. Suppose (b̄j̄1,j̄2 , ēj̄1,j̄2) ∈ Ā and ēj̄1,j̄2 = e1,j̄1 . Suppose (b1,j̄3 , e1,j̄3) ∈
A1, j̄3 6= j̄1, and that e1,j̄3 ≤ e1,j̄1 . Let I .= {i ∈ N | b1,j̄1i ≥ b2,j̄2i } and Î .= {i ∈
N | b1,j̄1i < b1,j̄3i }, and suppose Î ⊆ I. Let (b̂, ê) .= (b̄j̄3,j̄2 , ēj̄3,j̄2) = (b1,j̄3 ⊕ b2,j̄2 , e1,j̄3 ⊕
e2,j̄2). Then, (b̂, ê) 6∈ Ā.

P r o o f . Because Î ⊆ I, for i ∈ Î,

b̂i = b1,j̄3i ⊕ b2,j̄2i = b2,j̄2i = b̄j̄1,j̄2i . (39)

On the other hand, for i 6∈ Î.

b̂i = b1,j̄3i ⊕ b2,j̄2i ≤ b1,j̄1i ⊕ b2,j̄2i = b̄j̄1,j̄2i . (40)

Combining (39) and (40), yields
b̂ � b̄j̄1,j̄2 . (41)

Also, using our assumptions, ê = e1,j̄3 ⊕ e2,j̄2 ≤ e1,j̄1 ⊕ e2,j̄2 = ēj̄1,j̄2 . Combining this
with (41), and applying Lemma 6.8, (b̂, ê) 6∈ Ā. �

Theorems 6.9 and 6.10 provide partial motivation for the observed, unexpectedly
reasonable growth of complexity under the minimum operation on FCMPCFs. However,
analysis in support of more complete complexity growth bounds appears to be quite
technical (specifically in the main case of n > 1), and consequently, such is beyond the
scope of this effort.

7. EXAMPLE

We consider a delay game played over a network with multiple sensor nodes. Figure 3

depicts the network in relation to physical space. The corresponding network graph is
given in Figure 4. The network contains three sensor nodes (nodes 1,10,13) with corre-
sponding action nodes (nodes 8,7,6). The remaining nodes are general communication,
analysis and/or decision nodes. The network mimics a battlefield where information is
conveyed from the sensors to commanders and analysts, and where processed informa-
tion and commands are then propagated to the action nodes. We consider the network
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Higher level commander
Local commander
Blue action unit
Red action unit
Sensing asset

Fig. 3. Physical network.

1

8

2

3
4 5

9

10

7

11 14 13

6

1215
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1

Fig. 4. Labelled graphical network.

delay-game played over K = 3 time steps where U b = Ur = 3. The control function
fpg (ubk, u

r
k) has the form:

fpg (ubk, u
r
k) =


1 if (g, ubk, u

r
k) ∈ {(16, 1, 2), (17, 2, 1), (15, 3, 2)},

−1 if (g, ubk, u
r
k) ∈ {(16, 1, 1), (17, 2, 2), (15, 1, 3)},

0 otherwise.

Note that the value is defined over the very-high-dimensional space, D, and consequently,
the solution is difficult to visualize. In order to provide some intuitive sense of the
solution propagation, we plot the value over a two-dimensional affine subspace at three
times. This is depicted in Figures 5, 6 and 7.

8. COMMENTS ON COMPUTATION

The main component of the computation is the backward propagation of the value
function, WK , via the IDDP, and here we include some comments on the implementation
of that algorithm. It may be helpful to refer to Figure 8, which provides a high-level
flow chart of this backward propagation. Suppose one has constructed a terminal payoff
function, ψ̄, in the form of an FCMPCF as in (20). Without loss of generality, we have
the value at the terminal time given, as in (20) – (21), by

WK(K, δ) = ψ̄(δ) =
∨

zK∈ZK

[
ezKK ⊕ bzKK � δ

]
∀ δ ∈ D,
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Fig. 5. WK(K, δ).
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Fig. 6. WK(K − 1, δ).
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Fig. 7. WK(K, δ).

Start WK(K, δ) = ψ̄(δ),
k = K − 1.

Construct
ŴK(k, δ, vb, vr, zk+1) and ap-
ply the min-max distributive

property to obtain (44).

Apply “an algorithm
for reduction to a min-

imal coefficient set”
to (44) to obtain (45).

Construct WK(k, δ) as
in (46) and apply “an

algorithm for efficient com-
putation of (35)” and then

apply “an algorithm for
reduction to a minimal co-
efficient set” to obtain (47).

k = k0?

Stop

k = k − 1

yes

no

1

Fig. 8. Computation of solution.
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More generally, suppose we have

WK(k + 1, δ) =
∨

zk+1∈Zk+1

[
e
zk+1
k+1 ⊕ bzk+1

k+1 � δ
]
∀ δ ∈ D,

which is certainly true at time-step k + 1 = K. One then employs (29) from the proof
of Theorem 5.5 to obtain

WK(k, δ) = ψ̄(δ)∨
∧

vb∈Ub

∨
(vr,zk+1)∈Ur×Zk+1

[
ŴK(k, δ, vb, vr, zk+1)

]
∀ δ ∈ D, (42)

where each

ŴK(k, δ, vb, vr, zk+1) = e
zk+1
k+1 ⊕

∧
(g,σ)∈G×Gs

∨
i∈{0,1}

∧
γ∈G

[
b̂
vb,vr,zk+1,i
k,g,σ,γ ⊗ δσγ

]
, (43)

and the values of the b̂v
b,vr,zk+1,i
k,g,σ,γ coefficients are given in (26),(27). Continuing as in the

proof of Theorem 5.5 one applies the min-max distributive property to (43) to obtain

ŴK(k, δ, vb, vr, zk+1) =
∨
ī∈Ī

[
e
zk+1
k+1 ⊕ b̄v

b,vr,zk+1 ,̄i
k � δ

]
∀ δ ∈ D, (44)

where b̄v
b,vr,zk+1 ,̄i
k and Ī are given above (31) in the proof of Theorem 5.5. Observing

that for each k ∈]0,K − 1[ , vb ∈ Ub, vr ∈ Ur and zk+1 ∈ Zk+1, (44) is an FCMPCF,
one applies “an algorithm for reduction to a minimal coefficient set” to obtain

ŴK(k, δ, vb, vr, zk+1) =
∨

j∈J (vb,vr,zk+1)

[
ě
zk+1
k+1 ⊕ b̌v

b,vr,zk+1,j
k � δ

]
∀ δ ∈ D, (45)

where J (vb,vr,zk+1) .= ]1, J (vb,vr,zk+1)[ and J (vb,vr,zk+1) represents the complexity of the
ŴK(k, δ, vb, vr, zk+1) after reduction to a minimal coefficient set. Substituting this into
(42) yields

WK(k, δ) =
∧

vb∈Ub

[
ψ̄(δ) ∨

∨
vr,zk+1∈Ur×Zk+1

∨
j∈J (vb,vr,zk+1)

(
ě
zk+1
k+1 ⊕ b̌v

b,vr,zk+1,j
k � δ

)]
(46)

for all δ ∈ D. We observe that the right-hand side of (46) is in the form of (35).
Applying “an algorithm for efficient computation of (35)”, will result in an FCMPCF
representation that is equivalent to (46). Another application of “an algorithm for
reduction to a minimal coefficient set” will compute the minimal coefficient set of that
FCMPCF, resulting in

WK(k, δ) =
∨
z∈Zk

[
ezk ⊕ bzk � δ

]
∀ δ ∈ D, (47)

where Zk = ]1, Zk[ , and Zk is the minimal complexity of WK(k, ·). This is in the same
form as WK(k+ 1, ·). If k = k0, then the computation is finished; otherwise one repeats
the procedure detailed here with k → k − 1.
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A. SOME DELAYED PROOFS

P r o o f . [Proof of Corollary 3.14.] Let f̂ : Rn → R be given by f̂(x) .= f(Ĉ−1x) for all
x ∈ Rn. Then,

|f̂(x)− f̂(y)| = |f(Ĉ−1x)− f(Ĉ−1y)| ≤ ‖Ĉ(Ĉ−1x− Ĉ−1y)‖∞ = ‖x− y‖∞.

Noting that f̂ also maintains the monotonicity of f , f̂ satisfies the conditions of Theorem
3.11, and consequently, there exist countable sets, Ẑ and {b̂z ∈ Rn | z ∈ Z}, such that
for any such f̂ , there exist {êz ∈ R | z ∈ Z} such that f̂(x) =

∨
z∈Ẑ

[
êz ⊕ b̂z � x] for all

x ∈ Rn. This implies f(x) =
∨
z∈Ẑ

[
êz ⊕ b̂z � (Ĉx)

]
. �

P r o o f . [Proof of Theorem 3.19.] For x̄ ∈ X , let ex̄ .= f(x̄) and bx̄ = ex̄ ⊗ (−x̄). Let
hx̄(x) .= ex̄ ⊕ bx̄ � x for all x ∈ X . Then,

∨
x̄∈X h

x̄(x) ≥ hx(x) = f(x) for all x ∈ X .
On the other hand, by Lemma 3.18, hx̄(x) ≤ f(x) for all x, x̄ ∈ X , and consequently,∨
x̄∈X h

x̄(x) ≤ f(x) for all x ∈ X . �
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