Applications of Mathematics

María Isabel García-Planas
Exact controllability of linear dynamical systems: A geometrical approach

Applications of Mathematics, Vol. 62 (2017), No. 1, 37-47
Persistent URL: http://dml.cz/dmlcz/145988

Terms of use:

© Institute of Mathematics AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

EXACT CONTROLLABILITY OF LINEAR DYNAMICAL SYSTEMS: A GEOMETRICAL APPROACH

María Isabel García-Planas, Barcelona

(Received December 3, 2015)

Abstract

In recent years there has been growing interest in the descriptive analysis of complex systems, permeating many aspects of daily life, obtaining considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Concretely, for complex systems it is of interest to study the exact controllability; this measure is defined as the minimum set of controls that are needed in order to steer the whole system toward any desired state. In this paper, we focus the study on the obtention of the set of all B making the system (A, B) exact controllable.

Keywords: controllability; exact controllability; eigenvalue; eigenvector; linear system MSC 2010: 93B05, 93B27, 93B60

1. Introduction

In these recent years, the study of the control of complex networks with linear dynamics has gained importance in both science and engineering. Controllability of a dynamical system has been largely studied by several authors and under many different points of view, see [1], [2], [3], [5], [6], [4], [9] for example. Among different aspects in which we can study the controllability we have the notion of structural controllability that has been proposed by Lin [7] as a framework for studying the controllability properties of directed complex networks where the dynamics of the system is governed by a linear system: $\dot{x}(t)=A x(t)+B u(t)$; usually the matrix A of the system is linked to the adjacency matrix of the network, $x(t)$ is a time dependent vector of the state variables of the nodes, $u(t)$ is the vector of input signals, and B defines how the input signals are connected to the nodes of the network and is called the input matrix. Structurally controllable means that there exists a matrix \bar{A} which is not allowed to contain a nonzero entry when the corresponding entry in A is zero
such that the network can be driven from any initial state to any final state by appropriately choosing the input signals $u(t)$. Recent studies over the structural controllability can be found in [8].

In this paper, we analyze the exact controllability concept that, following [11], [10], is based on the maximum multiplicity, to identify the minimum set of driver nodes required to achieve full control of networks with arbitrary structures and linkweight distributions; we focus the study on the obtention of the set of all matrices B making the system $\dot{x}(t)=A x(t)+B u(t)$ exactly controllable. We have included several examples in order to make the work easier readable and it is completed with an example in the case of an undirected network.

2. Exact controllability

It is well known that many complex networks have linear dynamics and have a state space representation for its description:

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) . \tag{2.1}
\end{equation*}
$$

For simplicity, from now on we will write the system (2.1) as the pair of matrices (A, B).

There are many possible control matrices B in the system (2.1) that satisfy the controllability condition. The goal is to find the set of all possible matrices B, having the minimum number of columns corresponding to the minimum number $n_{D}(A)$ of independent controllers required to control the whole network.

Definition 1. Let A be a matrix. The exact controllability $n_{D}(A)$ is the minimum of the rank of all possible matrices B making the system 2.1 controllable:

$$
n_{D}(A)=\min \left\{\operatorname{rank} B: \forall B \in M_{n \times i}, 1 \leqslant i \leqslant n,(A, B) \text { controllable }\right\} .
$$

If no confusion is possible we will write simply n_{D}.
It is straightforward that n_{D} is invariant under similarity, that is to say: for any invertible matrix S we have $n_{D}(A)=n_{D}\left(S^{-1} A S\right)$. As a consequence, if necessary, we can consider A in its canonical Jordan form.

Example 1.1) If $A=0, n_{D}=n$.
2) If $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i} \neq \lambda_{j}$ for all $i \neq j$, then $n_{D}=1$ (it suffices to take $\left.B=(1 \ldots 1)^{t}\right)$.
3) Not every matrix B having n_{D} columns makes the system controllable. For example if $A=\operatorname{diag}(1,2,3)$ and $B=(1,0,0)^{t}$, the system (A, B) is not controllable: $\operatorname{rank}\left(\begin{array}{lll}B & A B & A^{2} B\end{array}\right)=1<3$, or equivalently $\operatorname{rank}\left(\begin{array}{cc}A-\lambda I & B\end{array}\right)=2$ for $\lambda=2,3$.

Proposition 1 ([11]). We have

$$
n_{D}=\max _{i}\left\{\mu\left(\lambda_{i}\right)\right\}
$$

where $\mu\left(\lambda_{i}\right)=\operatorname{dim} \operatorname{Ker}\left(A-\lambda_{i} I\right)$ is the geometric multiplicity of the eigenvalue λ_{i}.

3. Constructing the controllability space

Given a matrix A, we will try to get all matrices B with the smallest possible size, making the system (A, B) controllable. This study is of interest, because as we saw in 1) -3) not every matrix B is useful for the system being controllable.

Following Proposition 1, the problem is linked to the eigenstructure of the ma$\operatorname{trix} A$.

First of all we want to note that given a vector subspace F of a vector space E, if we consider two projections $P_{i}, i=1,2$, onto any two complementary subspaces G_{i}, $i=1,2$, along the subspace F we have that for all $v \in E, P_{1}(v) \neq 0$ if and only if $P_{2}(v) \neq 0$. So, in the case where the required information is only whether a vector is in F or not, we can define the projection P onto $E \backslash F$ along F as the projection over any complementary subspace G of F along F.

Proposition 2. Let A be a matrix having r eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ with geometric multiplicity one for each of them, and with algebraic multiplicities n_{1}, \ldots, n_{r}. Then $n_{D}=1$. Moreover, for $i=1, \ldots, r$ let P_{i} be the projection onto $\operatorname{Ker}\left(A-\lambda_{i} I\right)^{n_{i}} \backslash$ $\operatorname{Ker}\left(A-\lambda_{i} I\right)^{n_{i}-1}$ along $\bigoplus_{j \neq i} \operatorname{Ker}\left(A-\lambda_{i} I\right)^{n_{j}} \oplus \operatorname{Ker}\left(A-\lambda_{i} I\right)^{n_{i}-1}$. Then, for an $n \times 1$ matrix B, the pair (A, B) is controllable if and only if $P_{i} B \neq 0$ for every $i=1, \ldots, r$.

Proof. We consider the equivalent Jordan form

$$
J=\left(\begin{array}{ccccccccccc}
\lambda_{1} & 0 & \cdots & 0 & 0 & & & & & & \\
1 & \lambda_{1} & \cdots & 0 & 0 & & & & & & \\
& \ddots & \ddots\left(n_{1}\right) & & & & & & & & \\
0 & 0 & \cdots & \lambda_{1} & 0 & & & & & & \\
0 & 0 & \cdots & 1 & \lambda_{1} & & & & & & \\
& & & & & \ddots & & & & & \\
& & & & & & \lambda_{r} & 0 & \cdots & 0 & 0 \\
& & & & & & 1 & \lambda_{r} & \cdots & 0 & 0 \\
& & & & & & & \ddots & \ddots & \left(n_{r}\right) & \\
& & & & & & 0 & 0 & \cdots & \lambda_{r} & 0 \\
& & & & & & 0 & \cdots & 1 & \lambda_{r}
\end{array}\right),
$$

and the associated Jordan basis constructed as follows:

$$
\begin{aligned}
v_{1_{i}} & \in \operatorname{Ker}\left(A-\lambda_{i} I\right)^{n_{i}} \backslash \operatorname{Ker}\left(A-\lambda_{i} I\right)^{n_{i}-1}, \\
v_{2_{i}} & =\left(A-\lambda_{i} I\right) v_{1_{i}} \\
& \vdots \\
v_{n_{i}} & =\left(A-\lambda_{i} I\right)^{n_{i}-1} v_{1_{i}},
\end{aligned}
$$

for each $i=1, \ldots, r$.
Clearly,

$$
\operatorname{rank}(A-\lambda I)=\operatorname{rank}(J-\lambda I)= \begin{cases}n & \text { for } \lambda \neq \lambda_{1}, \ldots, \lambda_{r} \\ n-1 & \text { for } \lambda=\lambda_{1}, \ldots, \lambda_{r}\end{cases}
$$

Then $n_{D}=1$.
For any $u \in \mathbb{R}^{n}$ we consider $B=[u]$. Then $u=\sum_{j i} \alpha_{j i} v_{j i}$ and $P_{i} u=\alpha_{1 i} v_{1 i}$.
Finally, it is easy to compute

$$
\operatorname{rank}\left(A-\lambda_{i} I \quad B\right)=n \quad \text { if and only if } P_{i} B \neq 0
$$

Example 2. Let

$$
A=\left(\begin{array}{lllll}
2 & 3 & 4 & 5 & 6 \\
0 & 2 & 3 & 4 & 5 \\
0 & 0 & 2 & 3 & 4 \\
0 & 0 & 0 & 3 & 4 \\
0 & 0 & 0 & 0 & 3
\end{array}\right)
$$

be the matrix with eigenvalues $\lambda_{1}=2, \lambda_{2}=3$ and the respective multiplicities $n_{1}=3$ and $n_{2}=2$.

Let $v_{11}=(0,0,1,0,0) \in \operatorname{Ker}(A-2 I)^{3} \backslash \operatorname{Ker}(A-2 I)^{2}$ and $v_{12}=(-139,-14,1,1,1) \in$ $\operatorname{Ker}(A-2 I)^{2} \backslash \operatorname{Ker}(A-2 I)$. The Jordan basis is $v_{11}=(0,0,1,0,0), v_{21}=(4,3,0,0,0)$, $v_{31}=(9,0,0,0,0), v_{12}=(-139,-14,1,1,1), v_{22}=(112,26,6,2,0)$.

Then $\operatorname{Im} B=[u]$ with $u=\alpha_{11} v_{11}+\alpha_{21} v_{21}+\alpha_{31} v_{31}+\alpha_{12} v_{12}+\alpha_{22} v_{22}$ is such that

$$
\begin{array}{ll}
\operatorname{rank}(A-\lambda I B)=5 & \forall \lambda \neq 2,3 \\
\operatorname{rank}(A-2 I B)=5 & \text { if and only if } \alpha_{11} v_{11}=P_{1} B \neq 0 \\
\operatorname{rank}(A-3 I B)=5 & \text { if and only if } \alpha_{12} v_{12}=P_{2} B \neq 0
\end{array}
$$

In the previous results it can be observed that we cannot control the system with a single control if the matrix A has more than one independent eigenvector
corresponding to the same eigenvalue. Then we will try to write for this case all the matrices B which control the system. As we can see in the following example, the study is slightly more sensitive.

Example 3. Let

$$
A=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

be the matrix with a unique eigenvalue $\lambda_{0}=0$. We have

$$
\operatorname{rank}(A)=5<8
$$

Then $n_{D}=3$.
If we consider $u_{1}=(1,1,1,1,1,1,1,1)$, $u_{2}=(2,1,1,1,1,1,1,1) \in \operatorname{Ker}\left(A-\lambda_{0} I\right)^{3} \backslash$ $\operatorname{Ker}\left(A-\lambda_{0} I\right)^{2}$ and $u_{3}=(0,1,2,0,1,1,1,1) \in \operatorname{Ker}\left(A-\lambda_{0} I\right)^{2} \backslash \operatorname{Ker}\left(A-\lambda_{0} I\right)$, then

$$
B=\left(\begin{array}{ccc}
1 & 2 & 0 \\
1 & 1 & 1 \\
1 & 1 & 2 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), \quad \operatorname{rank}(B)=3, \operatorname{rank}\left(A-\lambda_{0} I \quad B\right)=8
$$

But, if we consider $v_{1}=(1,1,1,1,1,1,1,1), v_{2}=(1,2,2,1,2,2,1,2) \in \operatorname{Ker}(A-$ $\left.\lambda_{0} I\right)^{3} \backslash \operatorname{Ker}\left(A-\lambda_{0} I\right)^{2}$ and $v_{3}=(0,1,2,0,1,1,1,1) \in \operatorname{Ker}\left(A-\lambda_{0} I\right)^{2} \backslash \operatorname{Ker}\left(A-\lambda_{0} I\right)$, then

$$
B=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 2 & 2 \\
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 2 & 1 \\
1 & 1 & 1 \\
1 & 2 & 1
\end{array}\right), \quad \operatorname{rank}(B)=3, \operatorname{rank}\left(A-\lambda_{0} I \quad B\right)=7<8
$$

Therefore, we should specify a little more how to determine the matrix B.
Proposition 3. Let A be a matrix with a single eigenvalue λ_{0} with geometric multiplicity δ and the orders of the Jordan blocks $k_{1} \geqslant \ldots \geqslant k_{\delta}$. Then $n_{D}=\delta$. Moreover, for any $n \times \delta$ matrix $B=\left[u_{1}, \ldots, u_{\delta}\right]$, the pair (A, B) is controllable if and only if $P_{j} u_{i_{j}} \neq 0$ for all $j=1, \ldots, \delta\left(\left(i_{1}, \ldots, i_{\delta}\right)\right.$ being some possible required reordering of $(1, \ldots, \delta)$), where P_{j} is the projection onto $\operatorname{Ker}\left(A-\lambda_{0} I\right)^{k_{j}} \backslash \operatorname{Ker}(A-$ $\left.\lambda_{0} I\right)^{k_{j}-1} \bigoplus_{l=1, \ldots, j-1}\left[\left(A-\lambda_{0} I\right)^{k_{l}-k_{j}} u_{l}\right]$ along $\left(A-\lambda_{0} I\right)^{k_{j}-1} \bigoplus_{l=1, \ldots, j-1}\left[\left(A-\lambda_{0} I\right)^{k_{l}-k_{j}} u_{l}\right]$.

Proof. The matrix A in the basis

$$
\begin{array}{cccc}
u_{1} & \left(A-\lambda_{0} I\right) u_{1} & \ldots & \left(A-\lambda_{0} I\right)^{k_{1}-1} u_{1} \\
\vdots & & & \\
u_{\delta} & \left(A-\lambda I_{0}\right) u_{\delta} & \ldots & \left(A-\lambda_{0} I\right)^{k_{\delta}-1} u_{\delta}
\end{array}
$$

where u_{i} are chosen in such a way that the collection of the vectors are linearly independent, has the Jordan form

$$
J\left(\lambda_{0}\right)=\left(\begin{array}{ccccccc}
\lambda_{0} & & & & & & \\
1 & \ddots .\left(k_{1}\right) & & & & & \\
& 1 & \lambda_{0} & & & & \\
& & & \ddots & & & \\
& & & & \lambda_{0} & & \\
& & & & 1 & \ddots\left(k_{\delta}\right) & \\
& & & & & 1 & \lambda_{0}
\end{array}\right)
$$

Clearly $\operatorname{rank}\left(J-\lambda_{0} I\right)=n-\delta$. Then $n_{D}=\delta$.
If $P_{j} u_{i_{j}} \neq 0$ for all $j=1, \ldots, \delta$, then

$$
\begin{array}{cccc}
u_{i_{1}} & \left(A-\lambda_{0} I\right) u_{i_{1}} & \ldots & \left(A-\lambda_{0} I\right)^{k_{1}-1} u_{i_{1}} \\
\vdots & & & \\
u_{i_{\delta}} & \left(A-\lambda I_{0}\right) u_{i_{\delta}} & \ldots & \left(A-\lambda_{0} I\right)^{k_{\delta}-1} u_{i_{\delta}}
\end{array}
$$

is a Jordan basis and in this basis $\left(\begin{array}{ll}A-\lambda_{0} I & B\end{array}\right)$ takes the form

$$
\left(\begin{array}{ccccccccccc}
\lambda_{0} & & & & & & & 1 & 0 & \ldots & 0 \\
1 & \ddots .\left(k_{1}\right) & & & & & & 0 & \vdots & & \vdots \\
& 1 & \lambda_{0} & & & & & \vdots & 1 & & 0 \\
& & & \ddots & & & & \vdots & 0 & & 0 \\
& & & & \lambda_{0} & & & 0 & 0 & & 1 \\
& & & & 1 & \ddots{ }_{\left(k_{\delta}\right)} & & \vdots & \vdots & & \vdots \\
& & & & & 1 & \lambda_{0} & 0 & 0 & \ldots & 0
\end{array}\right)
$$

whose rank is n and the pair (A, B) is controllable.
Conversely, let $B=\left(\begin{array}{ccc}\alpha_{11} & \ldots & \alpha_{\delta_{1}} \\ \vdots & & \vdots \\ \alpha_{1 n} & \ddots & \alpha_{\delta n}\end{array}\right)$ be the matrix in the Jordan basis.
If

$$
\operatorname{rank}\left(A-\lambda_{0} I \quad B\right)=n,
$$

then the minor Δ^{1} is

$$
\Delta^{1}=\left|\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{\delta 1} \\
\alpha_{1 k_{1}+1} & & \alpha_{\delta k_{1}+1} \\
\vdots & & \vdots \\
\alpha_{1 \sum_{1}^{\delta-1} k_{i}+1} & & \alpha_{\delta \sum_{1}^{\delta-1} k_{i}+1}
\end{array}\right| \neq 0 .
$$

Let $u_{i_{1}}$ be such that $\alpha_{i_{1}} \neq 0$ and $\Delta^{2}=\Delta_{i_{1}}^{1} \neq 0$. Then $P_{1} u_{i_{1}} \neq 0$.
Taking into account that $\Delta^{2} \neq 0$, there is $u_{j_{2}} \neq u_{i_{1}}$ such that $\alpha_{j k_{1}+1} \neq 0$ and $\Delta^{3}=\Delta_{j k_{1}+1}^{2} \neq 0$, so $P_{2} u_{j_{2}} \neq 0$. Following this process, we show the result.

Example 4. Following Example 3, we have that in the first case $u_{2} \in \operatorname{Ker}(A-$ $\left.\lambda_{0} I\right)^{3} \backslash \operatorname{Ker}\left(A-\lambda_{0} I\right)^{2} \oplus\left[u_{1}\right]$ and $P_{2} u_{2} \neq 0$; and $u_{3}=(0,1,2,0,1,1,1,1) \in \operatorname{Ker}(A-$ $\left.\lambda_{0} I\right)^{2} \backslash \operatorname{Ker}\left(A-\lambda_{0} I\right) \oplus\left[\left(A-\lambda_{0}\right) u_{1}\right] \oplus\left[\left(A-\lambda_{0}\right) u_{2}\right]$ and $P_{3} u_{3} \neq 0$.

Nevertheless, in the second case $v_{2} \in \operatorname{Ker}\left(A-\lambda_{0} I\right)^{2} \oplus\left[v_{1}\right]$ and $P_{2} v_{2}=0$.
Finally, we analyze the general case, where the matrix A has multiple eigenvalues with multiple independent eigenvectors for some (or all) eigenvalues.

Proposition 4. Let A be a matrix having r eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ with algebraic multiplicities $n_{1} \geqslant \ldots \geqslant n_{r}$, geometric multiplicities $\delta_{1} \geqslant \ldots \geqslant \delta_{r}$, respectively, and order of Jordan blocks for each eigenvalue $k_{11} \geqslant \ldots \geqslant k_{1 \delta_{1}}, \ldots, k_{r 1} \geqslant \ldots \geqslant k_{r \delta_{r}}$. Then $n_{D}(A)=\delta_{1}$. Moreover, for any $n \times \delta_{1}$ matrix $B=\left[u_{1}, \ldots u_{\delta_{1}}\right]$, the pair (A, B) is controllable if and only if $P_{l j} u_{i j} \neq 0$ for $j \leqslant \delta_{l}\left(\left(i_{1}, \ldots, i_{\delta_{l}}\right)\right.$ being some possible required reordering of $\left(1, \ldots, \delta_{l}\right)$), where $P_{l j}$ is the projection onto $\operatorname{Ker}\left(A-\lambda_{l} I\right)^{k_{l j}} \backslash$ $\operatorname{Ker}\left(A-\lambda_{l} I\right)^{k_{l j}-1} \bigoplus_{\nu_{j}=1, \ldots, l_{j}-1}\left[\left(A-\lambda_{l} I\right)^{k_{\nu j}-k_{l j}} u_{\nu}\right] \bigoplus_{\mu \neq l} \operatorname{Ker}\left(A-\lambda_{\mu} I\right)^{n_{\mu}}$.

Proof. Writing the pair (A, B) in a Jordan basis, we have

$$
(J, B)=\left(\left(\begin{array}{ccc}
J_{1} & & \\
& \ddots & \\
& & J_{r}
\end{array}\right),\left(\begin{array}{c}
B_{1} \\
\vdots \\
B_{r}
\end{array}\right)\right)
$$

where $J_{i}\left(\lambda_{i}\right)$ is as $J\left(\lambda_{0}\right)$ in Proposition 3 and B_{i} are blocks corresponding to the block sizes $J_{i}\left(\lambda_{i}\right)$ of J.

It is easy to observe that (J, B) is controllable if and only if $\left(J_{i}\left(\lambda_{i}\right), B_{i}\right)$ is controllable. Then it suffices to apply Proposition 3.

Example 5. Let

$$
A=\left(\begin{array}{ccccccccccccccc}
\lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \lambda_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \lambda_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \lambda_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \lambda_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3}
\end{array}\right) .
$$

Taking $\operatorname{Im} B=\left[u_{1}, u_{2}\right]$ with $u_{1}=(1,0,0,0,0,0,0,0,1,0,0,0,0,0,1)$ and $u_{2}=$ $(0,0,0,0,0,1,0,0,0,0,0,0,1,0,0)$, it is easy to observe that $\operatorname{rank}(A-\lambda I \quad B)=15$ for all λ.

4. Example of description of the set of drivers FOR AN UNDIRECTED NETWORK

We illustrate the work applying it to a simple example of an undirected graph represented in Figure 1.

The adjacency matrix of the graph is

$$
A=\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

whose eigenvalues are $\lambda_{1}=-2.0861, \lambda_{2}=-1.0000, \lambda_{3}=0.0000, \lambda_{4}=0.0000$, $\lambda_{5}=0.5720, \lambda_{6}=2.5141$, and $\operatorname{dim} \operatorname{Ker} A=2$. Then $n_{D}=2$.

Figure 1. Example of an undirected graph.
The corresponding eigenvectors are

$$
\begin{aligned}
& u_{1}=(0.7256,-0.2351,-0.2351,-0.3478,-0.3478,-0.3478), \\
& u_{2}=(0,-0.7071,0.7071,0.0000,-0.0000,0), \\
& u_{3}=(-0.0000,0.0000,0.0000,-0.6643,-0.0790,0.7433), \\
& u_{4}=(0.0000,-0.0000,-0.0000,0.4747,-0.8127,0.3379), \\
& u_{5}=(-0.2178,0.5088,0.5088,-0.3807,-0.3807,-0.3807), \\
& u_{6}=(0.6527,0.4311,0.4311,0.2596,0.2596,0.2596) .
\end{aligned}
$$

The set of matrices B having minimal number of columns making the system (A, B) controllable is

$$
B=\left(\begin{array}{ll}
\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{3} u_{3}+\alpha_{5} u_{5}+\alpha_{6} u_{6} & \alpha_{4} u_{4}
\end{array}\right)
$$

with $\alpha_{i} \neq 0$ for all $i=1, \ldots, 6$.
The controllability matrix \mathcal{C} is
columns 1 and 2

$$
\left(\begin{array}{cc}
0.7256 \alpha_{1}-0.2178 \alpha_{5}+0.6527 \alpha_{6} & 0 \\
0.5088 \alpha_{5}-0.7071 \alpha_{2}-0.2351 \alpha_{1}+0.4311 \alpha_{6} & 0 \\
0.7071 \alpha_{2}-0.2351 \alpha_{1}+0.5088 \alpha_{5}+0.4311 \alpha_{6} & 0 \\
0.2596 \alpha_{6}-0.6643 \alpha_{3}-0.3807 \alpha_{5}-0.3478 \alpha_{1} & 0.4747 \alpha_{4} \\
0.2596 \alpha_{6}-0.079 \alpha_{3}-0.3807 \alpha_{5}-0.3478 \alpha_{1} & -0.8127 \alpha_{4} \\
0.7433 \alpha_{3}-0.3478 \alpha_{1}-0.3807 \alpha_{5}+0.2596 \alpha_{6} & 0.3379 \alpha_{4}
\end{array}\right.
$$

columns 3 and 4

$$
\begin{array}{cc}
1.641 \alpha_{6}-0.1245 \alpha_{5}-1.5136 \alpha_{1} & -0.0001 \alpha_{4} \\
0.4905 \alpha_{1}+0.7071 \alpha_{2}+0.291 \alpha_{5}+1.0838 \alpha_{6} & 0 \\
0.4905 \alpha_{1}-0.7071 \alpha_{2}+0.291 \alpha_{5}+1.0838 \alpha_{6} & 0 \\
0.7256 \alpha_{1}-0.2178 \alpha_{5}+0.6527 \alpha_{6} & 0 \\
0.7256 \alpha_{1}-0.2178 \alpha_{5}+0.6527 \alpha_{6} & 0 \\
0.7256 \alpha_{1}-0.2178 \alpha_{5}+0.6527 \alpha_{6} & 0
\end{array}
$$

columns 5 and 6

$$
\begin{array}{cc}
3.1578 \alpha_{1}-0.0714 \alpha_{5}+4.1257 \alpha_{6} & 0 \\
0.1665 \alpha_{5}-0.7071 \alpha_{2}-1.0231 \alpha_{1}+2.7248 \alpha_{6} & -0.0001 \alpha_{4} \\
0.7071 \alpha_{2}-1.0231 \alpha_{1}+0.1665 \alpha_{5}+2.7248 \alpha_{6} & -0.0001 \alpha_{4} \\
0.1641 \alpha_{6}-0.1245 \alpha_{5}-1.5136 \alpha_{1} & -0.0001 \alpha_{4} \\
1.641 \alpha_{6}-0.1245 \alpha_{5}-1.5136 \alpha_{1} & -0.0001 \alpha_{4} \\
1.641 \alpha_{6}-0.1245 \alpha_{5}-1.5136 \alpha_{1} & -0.0001 \alpha_{4}
\end{array}
$$

columns 7 and 8

$$
\begin{array}{cc}
10.3726 \alpha_{6}-0.0405 \alpha_{5}-6.587 \alpha_{1} & -0.0005 \alpha_{4} \\
2.1347 \alpha_{1}+0.7071 \alpha_{2}+0.0951 \alpha_{5}+6.8505 \alpha_{6} & -0.0001 \alpha_{4} \\
2.1347 \alpha_{1}-0.7071 \alpha_{2}+0.0951 \alpha_{5}+6.8505 \alpha_{6} & -0.0001 \alpha_{4} \\
3.1578 \alpha_{1}-0.0714 \alpha_{5}+4.1257 \alpha_{6} & 0 \\
3.1578 \alpha_{1}-0.0714 \alpha_{5}+4.1257 \alpha_{6} & 0 \\
3.1578 \alpha_{1}-0.0714 \alpha_{5}+4.1257 \alpha_{6} & 0
\end{array}
$$

columns 9 and 10
$\left.\begin{array}{cc}13.7428 \alpha_{1}-0.0240 \alpha_{5}+26.0781 \alpha_{6} & -0.0002 \alpha_{4} \\ 0.0546 \alpha_{5}-0.7071 \alpha_{2}-4.4523 \alpha_{1}+17.2231 \alpha_{6} & -0.0006 \alpha_{4} \\ 0.7071 \alpha_{2}-4.4523 \alpha_{1}+0.0546 \alpha_{5}+17.2231 \alpha_{6} & -0.0006 \alpha_{4} \\ 10.3726 \alpha_{6}-0.0405 \alpha_{5}-6.587 \alpha_{1} & -0.0005 \alpha_{4} \\ 10.3726 \alpha_{6}-0.0405 \alpha_{5}-6.587 \alpha_{1} & -0.0005 \alpha_{4} \\ 10.3726 \alpha_{6}-0.0405 \alpha_{5}-6.587 \alpha_{1} & -0.0005 \alpha_{4}\end{array}\right)$
with $\operatorname{rank}(\mathcal{C})$ if and only if $\alpha_{i}=6$ for all $i=1, \ldots, 6$.
In particular, for $\alpha_{i}=1$ for all $i=1, \ldots, 6$ the controllability matrix is

$$
\mathcal{C}=\left(\begin{array}{ccccccccc}
1.1605 & 0 & 0.0029 & -0.0001 & 7.2121 & 0 & 3.7451 & -0.0005 & 39.7969
\end{array}-0.0002\right)
$$

It is easy to observe that if some $\alpha_{i}=0$ in the matrix \mathcal{C}, then the matrix does not have a full rank, as well as if we consider $\operatorname{Im} B=\left[\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{3} u_{3}+\alpha_{5} u_{5}+\right.$ $\left.\alpha_{6} u_{6}+\alpha_{4} u_{4}\right]$, the system is not controllable.

5. Conclusion

In this work, given an n-order square matrix A, we have explicitly described a way how to obtain all possible matrices B having the minimum number of columns, making the system (A, B) controllable. Several examples have been included in order to make the work easier to read and it is completed with an example in the case of an undirected network.

Acknowlegments. The author is indebted to the referee for several constructive comments which improved remarkably the work.

References

[1] J. Assan, J. F. Lafay, A. M. Perdon: Computation of maximal pre-controllability submodules over a Noetherian ring. Syst. Control Lett. 37 (1999), 153-161.

Zbl MR doi
[2] F. Cardetti, M. Gordina: A note on local controllability on Lie groups. Syst. Control Lett. 57 (2008), 978-979.
zbl MR doi
[3] C. Chen: Introduction to Linear System Theory. Holt, Rinehart and Winston Inc., New York, 1970.
[4] M. I. García-Planas, J. L. Domínguez-García: Alternative tests for functional and pointwise output-controllability of linear time-invariant systems. Syst. Control Lett. 62 (2013), 382-387.
[5] A. Heniche, I. Kamwa: Using measures of controllability and observability for input and output selection. IEEE International Conference on Control Applications 2 (2002), 1248-1251.
zbl MR doi
b] P. Kundur: Power System Stability and Control. McGraw-Hill, New York, 1994.
[7] C.-T. Lin: Structural controllability. IEEE Trans. Autom. Control 19 (1974), 201-208.
[8] Y. Liu, J. Slotine, A. Barabási: Controllability of complex networks. Nature 473 (2011), 167-173.
zbl MR doi
[9] R. W. Shields, J. B. Pearson: Structural controllability of multiinput linear systems. IEEE Trans. Autom. Control 21 (1976), 203-212.
zbl MR doi
[10] Z. Yuan, C. Zhao, Z. R. Di, W. X. Wang, Y. C. Lai: Exact controllability of complex networks. Nature Communications 4 (2013), 1-12.
[11] Z. Yuan, C. Zhao, W. X. Wang, Z. R.Di, Y. C. Lai: Exact controllability of multiplex networks. New J. Phys. 16 (2014), 103036, 24 pages.

MR doi
Author's address: María Isabel García-Planas, Matemàtica Aplicada I, (MA1), Universitat Politècnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona, Spain, e-mail: maria.isabel.garcia@upc.edu.

