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Abstract. A new error correction method for the stationary Navier-Stokes equations
based on two local Gauss integrations is presented. Applying the orthogonal projection
technique, we introduce two local Gauss integrations as a stabilizing term in the error
correction method, and derive a new error correction method. In both the coarse solution
computation step and the error computation step, a locally stabilizing term based on two
local Gauss integrations is introduced. The stability and convergence of the new error
correction algorithm are established. Numerical examples are also presented to verify the
theoretical analysis and demonstrate the efficiency of the proposed method.
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1. Introduction

The Navier-Stokes equations provide a mathematical model of an incompressible

Newtonian viscous fluid. It can describe many physical phenomena such as indoor

air flow, weather variations, flow around airfoils. Therefore, it is very important in

studying the efficient numerical methods for the Navier-Stokes equations, see more

details in [9], [25], [6]. However, it is well known that the classical finite element

method may fail for the Navier-Stokes equations at high Reynolds number and may

exhibit global spurious oscillations and yield inaccurate approximation. The reason

for this is essentially the dominance of the convection [7], [24]. So some stabilized
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methods for the simulation of the Navier-Stokes equations at high Reynolds num-

ber were proposed; for example, in [29], the artificial viscosity method (AV) adds an

artificial viscosity to the inverse Reynolds number as a stabilization factor. The vari-

ational multiscale method (VMS) is based on the decomposition of the flow scales and

defines the large scales by projection into appropriate subspaces, see [16], [15], [17],

[8] for more details. The defect correction method (DCM) for the Navier-Stokes equa-

tions at high Reynolds number was proposed, which first solves a nonlinear system

and gets a coarse solution in a relative coarse grid, and then obtains a fine solution

by solving a linear system in the same grid. It is very efficient, see for example, [20],

[3] for the steady Navier-Stokes equations and [18] for the unsteady Navier-Stokes

equations. A stabilized finite element method based on two local Gauss integrations

was first proposed for the Stokes problem in [21], where the authors applied it to

overcome the inf-sup condition restriction between the velocity and pressure. In [28],

the authors proved the equivalence of the classical variational multiscale method and

the variational multiscale method based on two local Gauss integrations (TGVMS).

In [23], the authors combine the two-level method with the defect correction method

to solve the Navier-Stokes equations at high Reynolds number. A two-level varia-

tional multiscale method for the Navier-Stokes equations based on two local Gauss

integrations was presented in [22]. A new defect correction method based on the

two-level method was proposed in [13]. In [26], the authors proposed the error cor-

rection method (EC) to solve the Navier-Stokes equations at high Reynolds number

which can keep a rapid rate of convergence.

The significant feature of our method is that we add a stabilization term based on

two local Gauss integrations in both the coarse solution computation step and the

error computation step in the error correction method [26]. Compared with other

stabilized methods, the stabilization term in our method leads to computing locally

at element level, and it is not necessary to introduce any extra variables. It reduces

the degrees of freedom of the discrete system, and thus it can save storage. Under

the appropriate choice of the stabilization parameter, this method is computationally

cheaper than the other methods, and we only need relatively coarse grid to solve the

Navier-Stokes equations at high Reynolds number, which can reduce the cost of

computation. The numerical examples illustrate that the proposed method is very

efficient.

The article is organized as follows. In Section 2, the governing equations together

with some notation and some well-known results used throughout this article are

given. In Section 3, a new error correction algorithm based on two local Gauss

integrations and its stability and error analysis are presented. A series of numeri-

cal examples is also given to validate the theoretical analysis and demonstrate the

efficiency of our method in Section 4. Finally, some conclusions are presented.
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2. Preliminaries

We denote by (·, ·) the inner product on L2(Ω) or L2(Ω)d×d. The norm in (L2(Ω))d

(d = 2, 3) and in the standard Sobolev space Hk(Ω) are ‖·‖ and ‖·‖k, respectively.

2.1. Some results for the Navier-Stokes equations. Let Ω ⊂ R
d be an open

bounded convex polygonal or polyhedral domain with Lipschitz-continuous boundary

∂Ω. We consider the stationary incompressible Navier-Stokes equations

−ν∆u+ (u · ∇)u +∇p = f in Ω,

∇ · u = 0 in Ω,(2.1)

u = 0 on ∂Ω,

which describle a steady flow of the incompressible viscous Newtonian fluid in

a bounded domain. Here u is the fluid velocity and p is the fluid pressure, f is the

prescribed body force, and ν > 0 is the kinematic viscosity. Given a characteristic

length scale L and velocity scale U , the Reynolds number is defined by Re = UL/ν.

For the mathematical setting of problem (2.1), we define the function spaces for

the velocity u and pressure p, respectively: Consider Hilbert spaces

X = H1
0 (Ω)

d = {v ∈ H1(Ω)d : v = 0 on Γ},

M = L2
0(Ω) =

{

ϕ ∈ L2(Ω):

∫

Ω

ϕdx = 0

}

,

Y = L2(Ω)d,

V = {v ∈ X : (ϕ,∇ · v) = 0 ∀ϕ ∈ M}.

The spaces X and M are equipped with the usual L2-scalar product (·, ·) and

norm ‖·‖. And the space H−1(Ω), the dual space of H1
0 (Ω), is endowed with the

negative norm

‖f‖−1 = sup
v∈H1

0
(Ω)

(f, v)

‖∇v‖
.

Moreover, we define the trilinear form

b(u, v, w) = ((u · ∇)v, w) +
1

2
((div u)v, w) =

1

2
((u · ∇)v, w) −

1

2
((u · ∇)w, v),

which has the following properties (see [25], [6]),

b(u, v, w) = −b(u,w, v) ∀u, v, w ∈ X,(2.2)

b(u, v, w) 6 N‖∇u‖‖∇v‖‖∇w‖ ∀u, v, w ∈ X.(2.3)
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The weak formulation of problem (2.1) reads: Find (u, p) ∈ (X,M) such that

ν(∇u,∇v) + b(u, u, v)− (p,∇ · v) = (f, v),(2.4)

(∇ · u, q) = 0,

for all (v, q) ∈ (X,M).

We need some assumptions on the domain Ω as in [25], [6]:

(A1) Assume that Ω is sufficiently smooth and g ∈ Hk−2(Ω)d, so that the unique

solution (v, q) ∈ (X,M) of the steady Stokes problem

−∆v +∇q = g, div v = 0 in Ω, v|∂Ω = 0

exists and satisfies

‖v‖k + ‖q‖k−1 6 c‖g‖k−2, k = 2, 3.

Theorem 2.1 (see [25], [6]). Given f ∈ X ′, if the assumption (A1) holds, then

there exists at least one solution pair (u, p) ∈ (X,M) which satisfies (2.4) and

(2.5) ‖∇u‖ 6
‖f‖−1

ν
, ‖p‖ 6 c‖f‖−1.

If ν and f satisfy the uniqueness condition

(2.6)
N‖f‖−1

ν2
< 1,

then the solution of (2.4) is unique.

2.2. Finite element approximation. Let τh be a regular, conforming mesh of Ω

with maximum element diameter h. We use the classical Taylor-Hood FE [9] for the

approximation in the space of (u, p): P2-continuous in velocity, P1-continuous in

pressure. The corresponding FE spaces are

Xh = {v ∈ X ∩ C0(Ω)d : v|K ∈ P2(K)d ∀K ∈ τh},

Mh = {q ∈ M ∩ C0(Ω): q|K ∈ P1(K) ∀K ∈ τh},

which satisfy the discrete LBB condition

(2.7) inf
qh∈Mh

sup
vh∈Xh

(qh,∇ · vh)

‖qh‖‖∇vh‖
> β > 0.
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Further, the space of weakly divergence-free functions is defined by

(2.8) Vh = {vh ∈ Xh : (∇ · vh, qh) = 0 ∀ qh ∈ Mh}.

Let uh, ph be the finite element solutions of the Navier-Stokes equations. The finite

element approximation of the Navier-Stokes equations is: Find (uh, ph) ∈ (Xh,Mh)

such that for all (vh, qh) ∈ (Xh,Mh)

ν(∇uh,∇vh) + b(uh, uh, vh)− (ph,∇ · vh) = (f, vh),(2.9)

(∇ · uh, qh) = 0.

We also need the space of piecewise constant functions

R0 = {vh ∈ L2(Ω): vh|K ∈ P0(K) ∀K ∈ τh},

and define

Rh = Rd×d
0 .

Assume that the couple finite element space (Xh,Mh) satisfies the following ap-

proximation properties [25], [6]:

(A2) For each v ∈ Hk(Ω)2 ∩ V and q ∈ Hk−1(Ω) ∩M , there exist approximations

πhv ∈ Xh, ̺hq ∈ Mh such that

(2.10) ‖∇(v − πhv)‖ 6 chk−1‖v‖k, ‖q − ̺hq‖ 6 chk−1‖q‖k−1, k = 2, 3.

In addition, we also assume that the mesh is sufficiently regular so that the inverse

inequality holds [1]:

(2.11) ‖∇vh‖ 6 Ch−1‖vh‖ ∀ vh ∈ Xh.

2.3. Two local Gauss integrations. The stabilization term is defined by the

difference between two local Gauss integrations

(2.12) G(uh, vh) = α
∑

K

{
∫

K,r

∇uh · ∇vh dx−

∫

K,1

∇uh · ∇vh dx

}

;

here
∫

K,s
(·) dx denotes an appropriate Gauss integral on the element K, which is

exact for polynomials of degree s (here s = r, 1 with r > 2), α > 0 is a user-defined

stabilization parameter. It is equivalent to the stabilized term in the common varia-

tional multiscale method; for more details, the reader can see [28], [21]. We introduce
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the standard L2-orthogonal projection Πh : L2(Ω)d×d → Rh with the following prop-

erties:

(Πh∇u, v) = (∇u, v) ∀u ∈ X, v ∈ Rh,(2.13)

‖Πh∇v‖ 6 ‖∇v‖ ∀ v ∈ X.(2.14)

Noting that we can choose r such that the first Gauss integration in (2.12) is exactly

that of
∫

K
∇uh·∇vh dx on the elementK, we can rewrite the stabilization term (2.12)

as

(2.15) G(uh, vh) = α(∇uh,∇vh)− α(Πh∇uh,∇vh),

which has the property

(2.16) G(uh, vh) 6 2α‖∇uh‖‖∇vh‖.

3. Error correction method based on two local Gauss integrations

As mentioned earlier, the standard Galerkin finite element method for (2.4) may

fail due to the dominance of convection. Therefore, stabilized methods are required.

We first recall the classical variational multiscale method (VMS), which was proposed

in [19], [16] for the stationary Navier-Stokes equations. Denote two spaces by L =

L2(Ω)d×d and Lh ⊂ L. The VMS method is determined by the choices of Lh and

the stabilization parameter α. There are different choices of selecting Lh, which lead

to different VMS methods. One case is choosing Lh = Rh, which is defined on the

same grid as Xh. Then, the classical VMS method is: Find (uh, ph) ∈ (Xh,Mh),

gh ∈ Lh satisfying

(ν + α)(∇uh,∇vh)− α(gh,∇vh) + b(uh, uh, vh)− (ph,∇ · vh)(3.1)

= (f, vh) ∀ vh ∈ Xh,

(∇ · uh, qh) = 0 ∀ qh ∈ Mh,

(gh −∇uh, lh) = 0 ∀ lh ∈ Lh.

Besides, the stabilization parameter α in this method acts only on small scales.

Although the VMS method above has been shown to preserve stability and high

efficiency, the extra storage might be significant, since it introduces four additional

variables in the two-dimensional case and nine additional variables in the three-

dimensional case. In [28], the authors proposed a very efficient method to reduce
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the extra storage without introducing any additional variables. After defining the

standard L2-orthogonal projection Πh : L2(Ω)d×d → Rh with properties (2.13) and

(2.14), we can rewrite system (3.1) as

ν(∇uh,∇vh) + α((I−Πh)∇uh, (I−Πh)∇vh) + b(uh, uh, vh)(3.2)

−(ph,∇ · vh) = (f, vh) ∀ vh ∈ Xh,

(∇ · uh, qh) = 0 ∀ qh ∈ Mh,

where I denotes the identity operator.

As discussed in [28], system (3.2) has an equivalent version based on two local

Gauss integrations: Find (uh, ph) ∈ (Xh,Mh) such that

ν(∇uh,∇vh) +G(uh, vh) + b(uh, uh, vh)− (ph,∇ · vh) = (f, vh) ∀ vh ∈ Xh,(3.3)

(∇ · uh, qh) = 0 ∀ qh ∈ Mh.

For this stabilization method (3.3), some results have been given, and we recall them

in the following theorem.

Theorem 3.1 ([11], [14]). Let the exact solution (u, p) of (2.4) be in (H3(Ω)d∩X ,

H2(Ω) ∩ M). Then the solution (uh, ph) of (3.3) satisfies the stability and error

estimates

‖∇uh‖ 6
‖f‖−1

ν
,(3.4)

ν‖u− uh‖+ h(ν‖∇(u− uh)‖+ ‖p− ph‖) 6 ch3(ν‖u‖3 + ‖p‖2).(3.5)

We can choose the Oseen iteration to solve (3.3) as follows (see [10]):

ν(∇um
h ,∇vh) +G(um

h , vh) + b(um−1
h , um

h , vh)− (pmh ,∇ · vh) = (f, vh),(3.6)

(∇ · um
h , qh) = 0.

Here (u0
h, p

0
h) ∈ (Xh,Mh) is solved by

ν(∇u0
h,∇vh) +G(u0

h, vh)− (p0h,∇ · vh) = (f, vh),(3.7)

(∇ · u0
h, qh) = 0.

Supposing that um−1
h is given, the course solution (Um

h , Pm
h ) is computed by using

(3.6) as

ν(∇Um
h ,∇vh) +G(Um

h , vh) + b(um−1
h , Um

h , vh)− (Pm
h ,∇ · vh) = (f, vh),(3.8)

(∇ · Um
h , qh) = 0.
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Subtracting (3.8) from (3.3), we get the error equation

ν(∇εmh ,∇vh) +G(εmh , vh) + b(uh, uh, vh)− b(um−1
h , Um

h , vh)− (θmh ,∇ · vh) = 0,(3.9)

(∇ · εmh , qh) = 0,

where εmh = uh − Um
h , θ

m
h = ph − Pm

h .

With simple calculation, we get

(3.10) b(uh, uh, vh)− b(um−1
h , Um

h , vh)

= b(uh, uh, vh)− b(uh, U
m
h , vh) + b(uh, U

m
h , vh)− b(um−1

h , Um
h , vh)

= b(uh, ε
m
h , vh) + b(uh − um−1

h , Um
h , vh)

= b(εmh + Um
h , εmh , vh) + b(εmh + Um

h , Um
h , vh)− b(um−1

h , Um
h , vh)

= b(εmh , εmh , vh) + b(Um
h , εmh , vh) + b(εmh , Um

h , vh)

+ b(Um
h , Um

h , vh)− b(um−1
h , Um

h , vh).

Replacing b(εmh , εmh , vh) by b(εm−1
h , εmh , vh) in the RHS of (3.10), the error cor-

rection algorithm based on two local Gauss integrations (TGEC) for solving the

stationary Navier-Stokes equations is derived as follows:

Algorithm (TGEC):

Step 1. Given (u0
h, p

0
h), find a relative coarse solution (Um

h , Pm
h ) ∈ (Xh,Mh) by

the scheme

ν(∇Um
h ,∇vh) +G(Um

h , vh) + b(um−1
h , Um

h , vh)− (Pm
h ,∇ · vh) = (f, vh),(3.11)

(∇ · Um
h , qh) = 0.

Step 2. Find the error (εmh , θmh ) ∈ (Xh,Mh) by the scheme

ν(∇εmh ,∇vh) +G(εmh , vh) + b(εm−1
h , εmh , vh) + b(Um

h , εmh , vh)(3.12)

+b(εmh , Um
h , vh) + b(Um

h , Um
h , vh)− b(um−1

h , Um
h , vh)− (θmh ,∇ · vh) = 0,

(∇ · εmh , qh) = 0.

Step 3. Set um
h = Um

h + εmh , p
m
h = Pm

h + θmh . If the stopping criterion is satisfied,

stop. Else, set m = m+ 1, go to step 1.

R em a r k 3.1. Our algorithm is based on two local Gauss integrations. It is

different from the error correct algorithm (EC) in [26], since in each step, a locally

stabilized technique based on the Gaussian quadrature rule is used. This allows to

solve the stationary Navier-Stokes equations at high Reynolds number on a relatively

coarse grid, and to reduce the cost of computation. Our numerical experiments in

Section 4 will verify this good property.
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R em a r k 3.2. The initial value (u0
h, p

0
h) ∈ (Xh,Mh) of TGEC algorithm is cho-

sen by solving problem (3.7) and we set U0
h = u0

h, P
0
h = p0h.

We first give the stability estimates of TGEC algorithm in the following theorem.

Theorem 3.2. Given f ∈ X ′, if the assumptions (A1), (A2) and the uniqueness

condition (2.6) hold, then we have

(3.13) ‖∇Um
h ‖ 6

‖f‖−1

ν

and

(3.14) ‖∇um
h ‖ 6

3

µ
‖f‖−1 +

2α

νµ
‖f‖−1 +

1

ν
‖f‖−1,

where µ = ν −N‖f‖−1/ν.

P r o o f. Taking (vh, qh) = (Um
h , Pm

h ) ∈ (Vh,Mh) in (3.11) and using (2.2), (2.8),

(2.14), and (2.15), we get

(3.15) (ν + α)‖∇Um
h ‖2 = (f, Um

h ) + α(Πh∇Um
h ,∇Um

h )

6 ‖f‖−1‖∇Um
h ‖+ α‖Πh∇Um

h ‖‖∇Um
h ‖

6 ‖f‖−1‖∇Um
h ‖+ α‖∇Um

h ‖2.

Then estimate (3.13) follows obviously.

Next, setting vh = εmh in (3.12), by virtue of (2.2) and (2.8), we arrive at

(3.16) ν‖∇εmh ‖2 +G(εmh , εmh ) + b(εmh , Um
h , εmh )

+ b(Um
h , Um

h , εmh )− b(um−1
h , Um

h , εmh ) = 0.

Taking vh = εmh in (3.11), we obtain

(3.17) ν(∇Um
h ,∇εmh ) +G(Um

h , εmh ) + b(um−1
h , Um

h , εmh ) = (f, εmh ).

Adding (3.16) and (3.17) yields

(3.18) ν‖∇εmh ‖2 + ν(∇Um
h ,∇εmh ) +G(εmh , εmh ) +G(Um

h , εmh )

+ b(εmh , Um
h , εmh ) + b(Um

h , Um
h , εmh ) = (f, εmh ).

Making use of (2.3), (2.14), (2.15), (2.16), and the Cauchy-Schwarz inequality in

(3.18), we get

(3.19) ν‖∇εmh ‖2 6 ν‖∇Um
h ‖‖∇εmh ‖+N‖∇Um

h ‖‖∇εmh ‖2 +N‖∇Um
h ‖2‖∇εmh ‖

+ 2α‖∇Um
h ‖‖∇εmh ‖+ ‖f‖−1‖∇εmh ‖.
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Using (3.13) and the uniqueness condition (2.6) in (3.19) yields

‖∇εmh ‖ 6
3

µ
‖f‖−1 +

2α

µν
‖f‖−1,

where µ = ν−N‖f‖−1/ν. Combining the above inequality with (3.13), with help of

the triangle inequality we obtain (3.14). �

Next, we will give the error estimates of TGEC algorithm. To do this, we first

establish the error equation of TGEC algorithm. By adding (3.11) and (3.12), we

obtain

ν(∇um
h ,∇vh) +G(um

h , vh) + b(um
h , um

h , vh) + b(εm−1
h , εmh , vh)(3.20)

−b(εmh , εmh , vh)− (pmh ,∇ · vh) = (f, vh),

(∇ · um
h , qh) = 0.

Let emh = uh − um
h and ηmh = ph − pmh . Then subtracting (3.20) from (3.3) and

using the identity

b(uh, uh, vh)− b(um
h , um

h , vh) = b(uh, e
m
h , vh)− b(emh , emh , vh) + b(emh , uh, vh),

we arrive at

ν(∇emh ,∇vh) +G(emh , vh) + b(uh, e
m
h , vh)− b(emh , emh , vh)(3.21)

+b(emh , uh, vh)− b(εm−1
h − εmh , εmh , vh)− (ηmh ,∇ · vh) = 0,

(∇ · emh , qh) = 0.

Let Em
h = uh − Um

h and Θm
h = ph − Pm

h . Then subtracting (3.11) from (3.3) and

using the identity

b(uh, uh, vh)− b(um−1
h , Um

h , vh)

= b(uh, uh, vh)− b(um−1
h , uh, vh) + b(um−1

h , uh, vh)− b(um−1
h , Um

h , vh)

= b(em−1
h , uh, vh) + b(um−1

h , Em
h , vh),

we obtain

ν(∇Em
h ,∇vh) +G(Em

h , vh) + b(em−1
h , uh, vh) + b(um−1

h , Em
h , vh)(3.22)

−(Θm
h ,∇ · vh) = 0 ∀ vh ∈ Xh,

(∇ · Em
h , qh) = 0 ∀ qh ∈ Mh.
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And we can easily get the identity,

(3.23) εmh = um
h − Um

h = Em
h − emh .

Using the error equations (3.21), (3.22), and the identity (3.23), we can obtain the

error estimates for our algorithm (TGEC).

Lemma 3.1. Under the assumptions of Theorem 3.2, we have

(3.24) ‖∇e0h‖ 6
‖f‖−1

ν − 2α

N‖f‖−1

ν2
.

P r o o f. Subtracting (3.7) from (3.3), we obtain

ν(∇e0h,∇vh) +G(e0h, vh) + b(uh, uh, vh)− (η0h,∇ · vh) = 0,(3.25)

(∇ · e0h, qh) = 0.

Choosing (vh, qh) = (e0h, η
0
h) ∈ (Vh,Mh) in (3.25) and using (2.3), (2.16), and the

Cauchy-Schwarz inequality, we get

(3.26) ν‖∇e0h‖
2 6 2α‖∇e0h‖

2 +N‖∇uh‖
2‖∇e0h‖.

After using Theorem 3.1, we obtain estimates (3.24). �

Lemma 3.2. Under the assumptions of Theorem 3.2, for m > 1, if ν and f satisfy

the condition

(

N‖f‖−1

ν2

)3m−7(

1 +

(

N‖f‖−1

ν2

)3

+

(

N‖f‖−1

ν2

)2)

6 µ− 2α,

where µ = ν−N‖f‖−1/ν as previously, the solution of the TGEC algorithm satisfies

(3.27) ‖∇emh ‖ 6 c

(

N‖f‖−1

ν2

)3m

and

(3.28) ‖∇Em
h ‖ 6 c

(

N‖f‖−1

ν2

)3m−2

,

where c = c(ν, α, f,Ω) is an appropriate constant, which is independent of the mesh

parameter, and may take on different values at different places.
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P r o o f. We prove the theorem by the inductive method. For m = 1, the conclu-

sion holds. In fact, setting m = 1 and (vh, qh) = (E1
h, θ

1
h) ∈ (Vh,Mh) in (3.22), we

arrive at

(3.29) ν‖∇E1
h‖

2 +G(E1
h, E

1
h) + b(e0h, uh, E

1
h) = 0.

By using (2.3) and (2.16), we obtain

(3.30) ν‖∇E1
h‖

2 6 2α‖∇E1
h‖

2 +N‖∇e0h‖‖∇uh‖‖∇E1
h‖.

Applying Theorem 3.1, Lemma 3.1, and the uniqueness condition (2.6), we get

(3.31) ‖∇E1
h‖ 6

N

ν − 2α

‖f‖−1

v − 2α

N‖f‖−1

ν2
‖f‖−1

ν
6

ν‖f‖−1

(ν − 2α)2
N‖f‖−1

ν2
.

Setting m = 1 and (vh, qh) = (e1h, η
1
h) ∈ (Vh,Mh) in (3.21), and using (2.2)

and (3.23), we obtain

(3.32) ν‖∇e1h‖
2 +G(e1h, e

1
h) + b(e1h, uh, e

1
h)− b(E0

h − e0h − E1
h + e1h, E

1
h, e

1
h) = 0.

With the help of Theorem 3.2, (2.16), (2.2), and (2.3), we get

(3.33) ν‖∇e1h‖
2 = −G(e1h, e

1
h)− b(e1h, uh, e

1
h) + b(E0

h − e0h − E1
h + e1h, E

1
h, e

1
h)

= −G(e1h, e
1
h)− b(e1h, U

1
h , e

1
h) + b(E0

h − e0h − E1
h, E

1
h, e

1
h)

6 2α‖∇e1h‖
2 +N‖∇U1

h‖‖∇e1h‖
2 +N‖∇E1

h‖
2‖∇e1h‖.

Using (3.31), we obtain

(3.34)

(

ν − 2α−
N‖f‖−1

ν

)

‖∇e1h‖ 6 N

(

ν‖f‖−1

(ν − 2α)2

)2(
N‖f‖−1

ν2

)2

=
ν3‖f‖−1

(ν − 2α)4

(

N‖f‖−1

ν2

)3

which yields

(3.35) ‖∇e1h‖ 6
1

µ− 2α

ν4‖f‖−1

(ν − 2α)4

(

N‖f‖−1

ν2

)3

.

Assume that the estimates (3.27) and (3.28) hold for 1 < k 6 m − 1, namely,

‖∇ekh‖ 6 c1(N‖f‖−1/ν
2)3k, ‖∇Ek

h‖ 6 c2(N‖f‖−1/ν
2)3k−2, k = 2, 3, . . . ,m − 1.

Next, we need to prove that (3.27) and (3.28) also hold for k = m.
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Taking (vh, qh) = (Em
h , θmh ) ∈ (Vh,Mh) in (3.22) yields

(3.36) ν‖∇Em
h ‖2 6 2α‖∇Em

h ‖2 +N‖∇uh‖‖∇em−1
h ‖‖∇Em

h ‖

6 2α‖∇Em
h ‖2 +N

‖f‖−1

ν
‖∇em−1

h ‖‖∇Em
h ‖.

Thus

(3.37) ‖∇Em
h ‖ 6

1

ν − 2α

N‖f‖−1

ν
‖∇em−1

h ‖.

Inserting the bounds of ‖∇em−1
h ‖ into (3.37) produces

(3.38) ‖∇Em
h ‖ 6

c1ν

ν − 2α

(

N‖f‖−1

ν2

)3m−2

6 c1

(

N‖f‖−1

ν2

)3m−2

.

Setting (vh, qh) = (emh , ηmh ) ∈ (Vh,Mh) in (3.21), and using (3.23) and (2.2), we

obtain

(3.39) ν‖∇emh ‖2 +G(emh , emh ) + b(emh , Um
h , emh )

− b(Em−1
h − Em

h , Em
h , emh )− b(em−1

h , Em
h , emh ) = 0.

So

(3.40) ν‖∇emh ‖2 6 2α‖∇emh ‖2 +N‖∇emh ‖2‖∇Um
h ‖

+N(‖∇Em−1
h ‖+ ‖∇Em

h ‖)‖∇Em
h ‖‖∇emh ‖

+N‖∇em−1
h ‖‖∇Em

h ‖‖∇emh ‖.

Inserting the bounds of ‖∇em−1
h ‖, ‖∇Em−1

h ‖ and ‖∇Em
h ‖ into (3.40), we get

(

ν − 2α−
N‖f‖−1

ν

)

‖∇emh ‖(3.41)

6 N(‖∇Em−1
h ‖+ ‖∇Em

h ‖)‖∇Em
h ‖+N‖∇em−1

h ‖‖∇Em
h ‖

6 N

(

‖∇Em−1
h ‖+

1

ν − 2α

N‖f‖−1

ν
‖∇em−1

h ‖

)

1

ν − 2α

N‖f‖−1

ν
‖∇em−1

h ‖

+
N

ν − 2α

N‖f‖−1

ν
‖∇em−1

h ‖2

6 N

(

c2

(

N‖f‖−1

ν2

)3m−5

+
c1

ν − 2α

N‖f‖−1

ν

(

N‖f‖−1

ν2

)3m−3)

×
c1

ν − 2α

N‖f‖−1

ν

(

N‖f‖−1

ν2

)3m−3

+
Nc1

ν − 2α

N‖f‖−1

ν

(

N‖f‖−1

ν2

)6m−6
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6 N

(

c2ν

ν − 2α

(

N‖f‖−1

ν2

)6m−7

+
c1ν

2

(ν − 2α)2

(

N‖f‖−1

ν2

)6m−4)

+
Nνc1
ν − 2α

(

N‖f‖−1

ν2

)6m−5

6 c3

((

N‖f‖−1

ν2

)6m−7

+

(

N‖f‖−1

ν2

)6m−4

+

(

N‖f‖−1

ν2

)6m−5)

6 c3

(

N‖f‖−1

ν2

)3m(

N‖f‖−1

ν2

)3m−7(

1 +

(

N‖f‖−1

ν2

)3

+

(

N‖f‖−1

ν2

)2)

,

where

c3 = max
{ Nc2ν

ν − 2α
,

Nc1ν
2

(ν − 2α)2
,
Nνc1
ν − 2α

}

.

Thanks to the assumption in this lemma, we have

(3.42) ‖∇emh ‖ 6 c3

(

N‖f‖−1

ν2

)3m

.

Now we choose

c = max
{ ν‖f‖−1

(ν − 2α)2
,

ν4‖f‖−1

(µ− 2α)(ν − 2α)4
,

νc1
ν − 2α

, c3

}

in our proof. From (3.38) and (3.42) we know that (3.27) and (3.28) also hold for

k = m. The proof is completed. �

Lemma 3.3. Under the assumptions of Theorem 3.2 and Lemma 3.2, we have

that the iteration error of pressure satisfies

‖ηmh ‖ 6 c

(

N‖f‖−1

ν2

)3m

, ‖Θm
h ‖ 6 c

(

N‖f‖−1

ν2

)3m−2

.

P r o o f. Using (3.21) and (3.23), we find

(3.43) (ηmh ,∇ · vh) = ν(∇emh ,∇− b(emh , emh , vh)vh) +G(emh , vh) + b(uh, e
m
h , vh)

+ b(emh , uh, vh)− b(Em−1
h − em−1

h − Em
h + emh , Em

h + emh , vh)

6 ν‖∇emh ‖‖∇vmh ‖+ 2α‖∇emh ‖‖∇vmh ‖+N(2‖∇uh‖‖∇emh ‖

+ ‖∇emh ‖2)‖∇vh‖+N(‖∇Em−1
h ‖+ ‖∇em−1

h ‖+ ‖∇Em
h ‖

+ ‖∇emh ‖)(‖∇Em
h ‖+ ‖∇emh ‖)‖∇vh‖.
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With help of the discrete LBB condition (2.7), Theorem 3.1, Theorem 3.2, and

Lemma 3.2, we get

‖ηmh ‖ 6 c

(

N‖f‖−1

ν2

)3m

, c = c(ν, f, β, α).

Using (3.22), we get

(3.44) (Θm
h ,∇ · vh) = ν(∇Em

h ,∇vh) +G(Em
h , vh)

+ b(em−1
h , uh, vh) + b(um−1

h , Em
h , vh)

6 ν‖∇Em
h ‖‖∇vh‖+ 2α‖∇Em

h ‖‖∇vh‖

+N‖∇em−1
h ‖‖∇uh‖‖∇vh‖+N‖∇um−1

h ‖‖∇Em
h ‖‖∇vh‖.

Applying similar techniques as above, we obtain

‖Θm
h ‖ 6 c

(

N‖f‖−1

ν2

)3m−2

, c = c(ν, f, β, α).

�

Finally, by using Theorem 3.1, Lemma 3.2, and Lemma 3.3, with help of the

triangle inequality we get the following results.

Theorem 3.3. Let the exact solution (u, p) of (2.4) be in (H3(Ω)2 ∩ X,

H2(Ω) ∩ M), then the solution (um
h , pmh ) generated by the TGEC algorithm sat-

isfies the error estimate

‖u− um
h ‖ 6 ch3 + c

(

N‖f‖−1

ν2

)3m

,

‖∇(u− um
h )‖+ ‖p− pmh ‖ 6 ch2 + c

(

N‖f‖−1

ν2

)3m

,

and the relative coarse solution (Um
h , Pm

h ) satisfies

‖u− Um
h ‖ 6 ch2 + c

(

N‖f‖−1

ν2

)3m−2

,

‖∇(u− Um
h )‖+ ‖p− Pm

h ‖ 6 ch2 + c

(

N‖f‖−1

ν2

)3m−2

.
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4. Numerical experiments

In this section, we present numerical experiments to verify the theory analysis and

illustrate the effectiveness of our method (TGEC). Here we choose Taylor-Hood FE

to approximate the velocity and pressure. The code was implemented by using the

public finite element software package Freefem++ [12].

The numerical examples are divided into four parts. The first part presents the

rates of convergence for a smooth problem with analytical solution. The second part

deals with the problem of 2D lid-driven cavity flow. We will discuss the choices of the

stabilization parameter of our method, and also compare them with the benchmark

data in [2]. The third part is the numerical simulation of the backward-facing step

flow. We compare the numerical results with the benchmark data in [4]. Finally, the

3D lid-driven cavity model will be studied.

4.1. Rates of convergence study. In the first test, we consider Ω = [0, 1]2.

The analytical solution for the velocity u = (u1, u2) and the pressure p is given as

follows:
u1(x, y) = 10x2(x − 1)2y(y − 1)(2y − 1),

u2(x, y) = −10x(x− 1)(2x− 1)y2(y − 1)2,

p(x, y) = 10(2x− 1)(2y − 1),

where f(x, y) = (f1(x, y), f2(x, y)) is determined by (2.1). We consider the case of

viscosity ν = 1, and choose α = 0.1h2. The experimental rates of convergence with

respect to the mesh size h are calculated by the formula log(Ei/Ei+1)/ log(hi/hi+1),

where Ei and Ei+1 are the relative errors corresponding to the mesh width hi and

hi+1, respectively. We can see from Table 1 and Figure 1 that our method confirms

the convergence rates just like the theoretical analysis.

1

h

‖u− uh‖L2

‖u‖L2

uL2-Rate
‖u− uh‖H1

‖u‖H1

uH1 -Rate
‖p− ph‖L2

‖p‖L2

pL2-Rate

4 0.0402779 0.164769 0.0485817

8 0.00493378 3.02922 0.0442181 1.89774 0.0121142 2.00372

12 0.00144403 3.03026 0.0199874 1.95833 0.00538951 1.99751

16 0.000611914 2.98455 0.0113183 1.97676 0.00304275 1.98724

20 0.000322583 2.86915 0.00726897 1.98441 0.00196265 1.96494

Table 1. Rates of convergence using TGEC algorithm.

4.2. The 2D lid-driven cavity flow. The 2D lid-driven cavity flow is a popular

benchmark problem for testing the numerical schemes of incompressible flow, which

has been analyzed in [5] and [2]. In this problem, computations are carried out in
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Two Gauss VMS
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Our method (TGEC)

Figure 1. Convergence analysis for the velocity and pressure. Left: L2-error for the velocity;
right: H1-error for the velocity; lower right: L2-error for the pressure.

the domain Ω = (0, 1)2. The flow is driven by the tangential velocity field on the top

boundary in the absence of other body forces. For more detailed information, we

can see Figure 2. The presented numerical results are compared with the benchmark

data of Erturk et al. [2].

u1 = 0, u2 = 0

u1 = 1, u2 = 0

u1 = 0,

u2 = 0

u1 = 0,

u2 = 0

L = 1

L = 1

Figure 2. Schematic diagram of the lid-driven cavity flow.
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We first study how to choose a best stabilization parameter in the computation.

We test Reynolds numbers (Re = 1000, 3200, 5000, 7500, 10000, 12500, 15000,

17500) corresponding to the mesh width (h = 1/24, 1/32, 1/48, 1/64, 1/84, 1/90,

1/100, 1/125). From Tables 2 and 3 (the symbol ‘–’ denotes divergence, the same as

below), we can find that the stabilization parameter has a close relationship with the

Reynolds number and the mesh width. With the decrease of the mesh width, while

Re < 10000, α = νh is the best choice, since both the CPU time and the iterations

are smallest relatively. While Re > 10000, α = 0.1h2 is the best choice, because both

the CPU time and the iterations are smallest relatively. We can find α = 0.1h is the

worst choice in our method.

Re 1000 3200 5000 7500 10000 12500 15000 17500

h 1
24

1
32

1
48

1
64

1
84

1
90

1
100

1
125

α = 0.1h 122.83 1318.33 – – – – – –

α = νh 17.34 53.375 129.14 348.33 – – – –

α = 0.1h2 23.30 60.73 159.10 463.45 620.77 863.44 745.10 1745.16

Table 2. CPU time at different stabilization parameters.

Re 1000 3200 5000 7500 10000 12500 15000 17500

h 1
24

1
32

1
48

1
64

1
84

1
90

1
100

1
125

α = 0.1h 68 154 – – – – – –

α = νh 9 17 17 27 – – – –

α = 0.1h2 12 19 19 23 21 38 26 26

Table 3. Iterations at different stabilization parameters.

Next, in order to show the stability and high efficiency of our method, we present

the velocity streamlines and the pressure contours in Figures 3–5. In addition, we

draw the horizontal velocity (u1-velocity) along the vertical centerline and the vertical

velocity (u2-velocity) along the horizontal centerlines, and compare them with those

of Erturk et al. [2] at Re = 10000, 15000, and 17500, respectively. Noting that the

benchmark data of Erturk et al. [2] were computed on a much finer 601× 601 grid

mesh, Figures 6–8 show the accuracy of TGEC algorithm.

4.3. Backward-facing step flow. To show the stability and efficiency of our

method, we test another benchmark problem, the backward-facing step flow model,

which has been analyzed in [4]. The problem is defined on a long channel [0, 30]×

[−0.5, 0.5] with no-slip conditions on the top and bottom walls, as well as on the lower

half part of the left wall. The parabolic horizontal component of velocity is given by

u1 = 24y(0.5 − y) for 0 6 y 6 0.5 at the inlet boundary, and the outlet boundary

92



0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

x

y

(b) Pressure

0.550

0.500

0.450

0.400

0.350

0.300

0.250

0.200

0.150

0.100

0.050

0.035

0.035

0.035

0.027

0.026

0.024

0.018

0.011

0.000
−0.010

−0.013

−0.020

−0.029

−0.038

−0.045

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

x

y

(a) Streamline

Figure 3. Contour lines of the streamline and pressure with Re = 10000.

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

x

y

(b) Pressure

0.550

0.500

0.450

0.400

0.350

0.300

0.250

0.200

0.150

0.100

0.079

0.050

0.040

0.039

0.029

0.028

0.028

0.026

0.018

0.000
−0.012

−0.022

−0.036

−0.045

−0.050

−0.052

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

x

y

(a) Streamline

Figure 4. Contour lines of the streamline and pressure with Re = 15000.
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Figure 5. Contour lines of the streamline and pressure with Re = 17500.
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Figure 6. The u1-velocity at vertical centerline (left) and the u2-velocity at horizontal cen-
terline (right) for Re = 10000.
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Figure 7. The u1-velocity at vertical centerline (left) and the u2-velocity at horizontal cen-
terline (right) for Re = 15000.
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Figure 8. The u1-velocity at vertical centerline (left) and the u2-velocity at horizontal cen-
terline (right) for Re = 17500.
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condition is set as −p + ν∂u1/∂x = 0, u2 = 0. For more detailed information, see

Figure 9. The Reynolds number for this problem is defined as Re = uaveH/ν, where

uave = 1 is the average velocity at the inlet boundary and L = 1 is the channel

height.

L = 1

(30,−0.5)

(30, 0.5)

(0,−0.5)

(0, 0.5)

u1 = u2 = 0

u1 = u2 = 0

u1 = u2 = 0

−p+ ν∂u1/∂x = 0

u2 = 0

u1 = 24y(0.5− y)

u2 = 0

Figure 9. Schematic diagram of the backward-facing step flow.

We set the mesh size h = 1/30 and α = 0.1h2. We first compute an approx-

imate solution at Re = 800 by using our method TGEC, and then compare the

computed velocity and pressure across the channel at x = 7 and x = 15 with those of

Gartling [4]. From Figure 10 we can see that our numerical results coincide well with

those of Gartling [4]. Figure 11 describes the computed pressure and shear stress

along the upper and lower channel walls, which are also consistent with those of [4].

The numerical results illustrate the effectiveness of the method.

4.4. The 3D lid-driven cavity flow. Our final numerical example is the 3D lid-

driven cavity flow problem, which is tested in [27]. The domain of this problem is the

unit cube [0, 1]3, equipped with horizontal velocity as boundary conditions for the

top face (z = 1) and homogeneous Dirichlet boundary conditions on the other faces.

We implement our method (TGEC) with the mesh width h = 1/8, the stabilization

parameter α = 0.1h2.

In Figure 12, we draw the centerline x-velocity at Re = 100, 400, and 1000, re-

spectively, comparing it with the reference values given by Wone and Baker [27].

Figures 13–15 plot the mid-plane velocity streamline pictures for Re = 100, 400 and

1000, respectively, which illustrates the effectiveness of our proposed method. All

these numerical results are in good agreement with the reference solution in [27].

95



−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

u1-velocity

y

−20 −15 −10 −5 0 5× 10−3
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

u2-velocity

y

0.16 0.18 0.2 0.22 0.24
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Pressure

y

−6 −4 −2 0 2 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Vorticity

y

−0.08 −0.04 0 0.02 0.06 0.1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

∂u1/∂x

y

−4 −2 0 2 4 6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

∂u1/∂y

y

0 0.02 0.04 0.06 0.08
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

∂u2/∂x

y Gartling (x = 7)
Our method (TGEC) (x = 7)
Gartling (x = 15)
Our method (TGEC) (x = 15)

Figure 10. Comparison of u1, u2, p, w = ∂u2/∂x−∂u1/∂y, ∂u1/∂x, ∂u1/∂y, ∂u2/∂x (from
top to bottom, left to right); profiles at different locations for backward-facing
step flow at Re = 800.
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Figure 15. The yz-plane velocity streamline pictures of the 3D lid-driven cavity flow at
x = 0.5: Re = 100, 400, and 1000 (from left to right).
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5. Conclusions

A new finite element error correction method based on two local Gauss integrations

(TGEC) for the Navier-Stokes equations has been proposed and analyzed in this

article. This method possesses the advantages of both the EC and TGVMS methods,

which makes it very efficient in solving the Navier-Stokes equations at high Reynolds

number. Stability and error analysis of this method is given. Numerical tests verified

the theoretical preconditions and demonstrated the effectiveness of the method. The

application of the method to 3D coupled fluid flows simulation problem and the

combination with the two-level method will be considered in the future.
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