
Kybernetika

Patrick Florchinger
Stabilization of nonlinear stochastic systems without unforced dynamics via
time-varying feedback

Kybernetika, Vol. 52 (2016), No. 6, 988–1002

Persistent URL: http://dml.cz/dmlcz/146001

Terms of use:
© Institute of Information Theory and Automation AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/146001
http://dml.cz


KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 6 , P AGES 9 8 8 – 1 0 0 2

STABILIZATION OF NONLINEAR STOCHASTIC SYSTEMS
WITHOUT UNFORCED DYNAMICS VIA TIME–VARYING
FEEDBACK

Patrick Florchinger

In this paper we give sufficient conditions under which a nonlinear stochastic differential
system without unforced dynamics is globally asymptotically stabilizable in probability via
time–varying smooth feedback laws. The technique developed to design explicitly the time–
varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy
used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic
differential systems. The interest of this work is that the class of stochastic systems considered
in this paper contains a lot of systems which cannot be stabilized via time–invariant feedback
laws.

Keywords: stochastic differential systems, smooth time–varying feedback law, global
asymptotic stability in probability

Classification: 60H10, 93C10, 93D05, 93D15, 93E15

1. INTRODUCTION

The aim of this paper is to design explicitly time–varying feedback laws for global asymp-
totic stabilization in probability of nonlinear stochastic differential systems without un-
forced dynamics. The results obtained in this work lie on an extension to the stochastic
context of the stabilization techniques via time–varying feedback laws for determinis-
tic driftless systems developed by Lin in [15]. The impossibility to stabilize by means
of time–invariant feedback laws control systems without unforced dynamics has been
noticed on many occasions. For deterministic systems, Samson [17] has overcome this
difficulty by stabilizing some nonholonomic robots by using time–varying feedback laws.
The present paper follows this line or research for a class of stochastic systems which
cannot be stabilized via time–invariant feedback laws.

Deterministic nonlinear driftless systems is an important class of nonlinear systems
including mechanical systems with nonholonomic constraints studied by many authors in
the past decades. The stabilization of driftless affine systems has received a great deal of
attention in the literature. In [4], Brockett has given a necessary condition which shows
that controllable driftless nonlinear systems may fail to be asymptotically stabilizable
by time–invariant feedback laws. This fact has been noticed at many occasions when
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studying the stabilizability of mechanical systems with nonholonomic constraints (see
Samson [17] or Campion, d’Andréa–Novel and Bastin [5] for example). The problem of
asymptotic stabilization for some nonholonomic systems has been solved by Samson [17]
by using time–varying feedback controls. This result has lead to a fruitful line of research
on the stabilization of control nonlinear systems by time–varying feedback laws. In [6],
Coron has proved that driftless deterministic affine systems can be globally asymptoti-
cally stabilized by periodic state feedback laws provided the Lie algebra generated by the
system coefficients has full rank. However, the question on how to design explicitly the
stabilizing time–varying feedback laws has remained unsolved. This question has been
solved later on by Pomet [16] and Coron and Pomet [7] by using an approach based on
the Lyapunov stability theory combined with the La Salle invariance principle, similar
to that developed by Jurdjevic–Quinn in [12]. The results reported in the previously
cited papers show that a time–varying control strategy is a natural solution to overcome
some topological obstruction which may occur in smooth state feedback stabilization.
A geometric interpretation on why the topological obstruction can be weakened by us-
ing time–varying feedback has been given by Sepulchre, Campion and Wertz [18] and
Sontag [19]. Note that the results obtained by Pomet in [16] has been extended to the
stochastic context by Florchinger in [11].

In this work, we are concerned with the problem of global asymptotic stabilization
in probability for nonlinear stochastic differential systems without unforced dynamics.
By using the techniques developed in [9] to obtain a stochastic version of the Jurdjevic–
Quinn theorem with the approach used by Pomet [16] and Lin [15] to design time–varying
stabilizers for deterministic driftless controllable systems, we propose a constructive
method to design a stabilizing time–varying feedback law provided some rank condition
involving the drift coefficients is satisfied. The main tools used in this paper are the
stochastic Lyapunov stability theory introduced by Khasminskii in [13] combined with
the stochastic La Salle invariance principle proved by Kushner [14] and the bounded
feedback design technique for passive stochastic differential systems developed in [10].
The class of systems considered in this paper cannot be incorporated in the framework
handled by the works exposed in [1]–[3] on the stabilization of time–varying stochastic
systems developed in the past years.

This paper is divided into four sections and is organized as follows. In section one,
we recall a result on global asymptotic stabilization in probability for affine stochastic
differential systems proved in [10] by using a methodology developed to design bounded
smooth feedback stabilizers for passive stochastic systems. In section two, we introduce
the class of nonlinear stochastic differential systems we are dealing with in this paper
and we provide a global stabilization result by time–varying feedback for affine stochas-
tic differential systems without unforced dynamics that extends Theorem 1 in [16] to the
stochastic context. In section three, we pursue the idea initiated in the previous section
to obtain global asymptotic stabilization in probability via time–varying feedback for
the class of stochastic differential systems without unforced dynamics considered in this
paper. With this aim, we design explicitly a time–varying stabilizer with a degree of
freedom represented by a tuning function when assuming that the Lie algebra generated
by the drift coefficients has full rank. The proof is constructive and is carried out by
combining the periodic time–varying design technique for deterministic system proposed
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by Lin in [15] with the bounded state feedback strategy for stochastic differential systems
reported in [10]. This result is illustrated with an example for which we design explicitly
a time–varying stabilizer. In section four, we turn our attention to the global asymp-
totic stabilization in probability for the class of nonlinear stochastic differential systems
considered in this paper via time–varying dynamic feedback. The result proved in this
section provides a nice alternative to the global asymptotic stabilization in probability
via state feedback obtained in the previous sections.

2. STABILIZABILITY OF AFFINE STOCHASTIC SYSTEMS

In this section, we recall a stabilizability result for affine stochastic differential systems
proved in [10] by using the concept of passivity for stochastic systems.

Let (Ω,F , P ) be a complete probability space on which all the processes considered
in this work are defined. Consider the IRn–valued stochastic process (xt)t≥0 solution of
the stochastic differential system written in the sense of Itô,

xt = x0 +
∫ t

0

(
f(xs) +

m∑
i=1

uif
i
(xs)

)
ds+

r∑
k=1

∫ t

0

(
gk(xs) +

m∑
i=1

uig
i
k(xs)

)
dwks (1)

where

1. x0 is given in IRn,

2. (wt)t≥0 is a standard Wiener process with values in IRr,

3. u is a measurable control law with values in IRm,

4. f , f
i
, 1 ≤ i ≤ m, gk, 1 ≤ k ≤ r, and gik, 1 ≤ k ≤ r, 1 ≤ i ≤ m, are smooth

Lipschitz functions mapping IRn into IRn, vanishing in the origin and such that
there exists a nonnegative constant K such that for any x ∈ IRn,

|f(x)|+
m∑
i=1

|f i(x)|+
r∑

k=1

|gk(x)|+
r∑

k=1

m∑
i=1

|gik(x)| ≤ K(1 + |x|).

With the stochastic differential system (1) introduce the second order differential oper-
ators Λi, 1 ≤ i ≤ m, defined for any function ϕ in C2(IRn, IR) by

Λiϕ(x) = ∇ϕ(x)f
i
(x) +

r∑
k=1

Tr
(
gk(x)gik(x)τ∇2ϕ(x)

)
and the first order differential operators Gk, 1 ≤ k ≤ r, defined for any function ϕ in
C1(IRn, IR) by

Gkϕ(x) = ∇ϕ(x)gk(x).

Then, denoting by L0 the infinitesimal generator of the stochastic process solution of
the stochastic differential system (1) when u = 0, the following stabilization result has
been proved in [10].
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Theorem 2.1. Assume that there exists a proper smooth Lyapunov function V defined
on IRn such that L0V (x) = 0 for every x ∈ IRn, the matrix

D(x) = Idm +
1
2

r∑
k=1

gk(x)τ∇2V (x)gk(x)

is invertible for every x ∈ IRn and the set

Γ =
{
x ∈ IRn / Gα0

i0
Lβ0

0 . . .Gαk
ik
Lβk

0 ΛjV (x) = 0 and Gα0
i0
Lβ0

0 . . .Gαk
ik
Lβk+1

0 V (x) = 0,

∀j ∈ {1, . . . ,m},∀k ∈ IN, (2)

∀i0, . . . , ik ∈ {1, . . . , r},∀α0, β0, . . . , αk, βk ∈ {0, . . . , k} s.t.
k∑
i=0

(αi + βi) = k
}

is reduced to {0}. Then, the stochastic differential system (1) is globally asymptotically
stabilizable in probability by the smooth feedback law defined on IRn by

u(x) = −β D(x)−1 (ΛV (x))τ

1 + ||D(x)−1 (ΛV (x))τ ||2

for any β > 0 where ΛV (x) is the matrix ΛV (x) = (Λ1V (x), . . . ,ΛmV (x)).

3. PROBLEM SETTING

Consider the stochastic process (xt)t≥0 with values in IRn solution of the stochastic
differential system written in the sense of Itô,

xt = x0 +
m∑
i=0

∫ t

0

uif
i
(xs) ds+

m∑
i,j=1

∫ t

0

uiF
ij

(xs, u)uj ds+
r∑

k=1

m∑
i=1

∫ t

0

uig
i
k(xs) dwks

+
r∑

k=1

m∑
i,j=1

∫ t

0

uiG
ij

k (xs, u)uj dwks (3)

where

1. x0 is given in IRn,

2. (wt)t≥0 is a standard Wiener process with values in IRr,

3. u is a measurable control law with values in IRm+1,

4. f
i
, 0 ≤ i ≤ m, and gik, 1 ≤ k ≤ r, 1 ≤ i ≤ m, are smooth functions mapping IRn

into IRn, vanishing in the origin and with less than linear growth,

5. F
ij

, 1 ≤ i, j ≤ m, and G
ij

k , 1 ≤ k ≤ r, 1 ≤ i, j ≤ m, are smooth functions mapping
IRn× IRm+1 into IRn which do not depend on u0, with less than linear growth and
such that F

ij
(x, 0) = G

ij

k (x, 0) = 0 for every x ∈ IRn.
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With the stochastic differential system (3) introduce the first order differential operators
Λi, 0 ≤ i ≤ m, defined for any function ϕ in C0,1 (IR+ × IRn, IR) by

Λiϕ(t, x) = ∇xϕ(t, x)f
i
(x).

In the following, by using Theorem 2.1 we give a refinement of Theorem 3.1 in [10] for
global asymptotic stabilization in probability of the stochastic differential system

xt = x0 +
m∑
i=0

∫ t

0

uif
i
(xs) ds+

r∑
k=1

m∑
i=1

∫ t

0

uig
i
k(xs) dwks (4)

by time–varying feedback law.

Theorem 3.1. Let α be the function defined on IR× IRn by

α(t, x) =
||x||2

(1 + ||x||2)(1 + ||f0
(x)||2)

sin(t) (5)

and V be a proper smooth Lyapunov function defined on IR× IRn such that

(C1) V is 2π–periodic with respect to time

V (t+ 2π, x) = V (t, x), ∀(t, x) ∈ IR× IRn,

(C2) (V (t, x) = 0)⇔ (x = 0)

(C3) (∇xV (t, x) = 0)⇔ (x = 0)

(C4) ∇tV (t, x) +∇xV (t, x)α(t, x)f
0
(x) = 0, ∀(t, x) ∈ IR× IRn,

(C5) V has an infinitesimal upper limit

lim
x→0

sup
0<t

V (t, x) = 0,

(C6) The matrix ∆(t, x) = Idm +
1
2

r∑
k=1

gk(x)τ∇2
xV (t, x)gk(x) is invertible for every

(t, x) ∈ IR× IRn.

Then, if
(H) rank span

{
adk
f
0f
i
, 0 ≤ i ≤ m, k ∈ IN

}
= n

the stochastic differential system (4) is globally asymptotically stabilizable in probability
by the smooth time–varying feedback law

u(t, x) = (α(t, x), 0, . . . , 0)τ − β ∆(t, x)−1 (ΛV (t, x))τ

1 + ||∆(t, x)−1 (ΛV (t, x))τ ||2

for any β > 0 where ∆(t, x) is the matrix
(

1 0
0 ∆(t, x)

)
and ΛV (t, x) is the matrix

ΛV (t, x) = (Λ0V (t, x), . . . ,ΛmV (t, x)).
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P r o o f . Since the functions α and V are 2π periodic with respect to time, setting

u(t, x) = (α(t, x), 0, . . . , 0)τ + u(t, x)

we deduce that the stochastic differential system (4) can be considered as the time–
invariant stochastic differential system on S1 × IRn, where S1 = IR/2πZ,

dXt = R(Xt) dt+
m∑
i=0

uiR
i
(Xt) dt+

r∑
k=1

m∑
i=1

uiH
i

k(Xt) dwkt (6)

with

Xt =
(

t
xt

)
, R(X) =

(
1

α(t, x)f
0
(x)

)
, R

i
(X) =

(
0

f
i
(x)

)
, 0 ≤ i ≤ m,

and

H
i

k(X) =
(

0
gik(x)

)
, 1 ≤ k ≤ r, 1 ≤ i ≤ m.

Then, if L0 denotes the infinitesimal generator of the stochastic process solution of the
stochastic differential system (6) when u = 0, we have

L0V (t, x) = ∇tV (t, x) +∇xV (t, x)α(t, x)f
0
(x)

and taking assumption (C4) into account, it yields

L0V (t, x) = 0

for every (t, x) ∈ S1 × IRn.
Moreover, noticing that for every X ∈ S1 × IRn, the matrix

D(X) = Idm+1 +
1
2

r∑
k=1

Hk(X)τ∇2V (X)Hk(X) =
(

1 0
0 ∆(t, x)

)
we deduce from assumption (C6) that the matrix D(X) is invertible for every X ∈
S1 × IRn.

In addition, using inductive computations as those used in the proof of Theorem 1
in [16] and following the same line of reasoning, we deduce that assumptions (H), (C2)
and (C3) imply that the set

Γ =
{
X ∈ S1 × IRn / Lk0ΛiV (X) = 0, ∀i ∈ {0, . . . ,m}, ∀k ∈ IN

}
is reduced to {0}.

Therefore, Theorem 2.1 asserts that the stochastic differential system (6) is globally
asymptotically stabilizable in probability by the smooth feedback law u defined by

u(t, x) = −β ∆(t, x)−1 (ΛV (t, x))τ

1 + ||∆(t, x)−1 (ΛV (t, x))τ ||2

for any β > 0 which completes the proof of Theorem 3.1. �
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Remark 3.2. The time–varying stabilizing controller proposed in the above result in-
cludes a single compensator α that can be chosen in the class of time–varying functions
mapping IR× IRn into IR satisfying the following conditions,

1. α is 2π–periodic with respect to time

α(t+ 2π, x) = α(t, x), ∀(t, x) ∈ IR× IRn,

2. α is odd with respect to time

α(−t, x) = −α(t, x), ∀(t, x) ∈ IR× IRn,

3. α vanishes for x = 0
α(t, 0) = 0, ∀t ∈ IR,

4. There exists K > 0 such that

|α(t, x)| ||f0
(x)|| ≤ K (1 + ||x||) , ∀(t, x) ∈ IR× IRn.

4. TIME–VARYING STABILIZATION OF GENERAL STOCHASTIC SYSTEMS

In this section, we pursue the idea initiated in Theorem 3.1 to solve the problem of global
stabilization in probability via time–varying feedback law for more general stochastic
differential systems without unforced dynamics in the form (3).

After a preliminary compensation with the function α defined by (5), we apply the
technique developed in [10] to design a bounded smooth stabilizer for the resulting
nonlinear stochastic differential system.

Theorem 4.1. Let V be a proper smooth Lyapunov function defined on IR× IRn which
satisfies conditions (C1) to (C5) of Theorem 3.1. Then, if condition (H) of Theorem 3.1
is satisfied, the stochastic differential system (3) is globally asymptotically stabilizable
in probability by the bounded smooth time–varying feedback law

u(t, x) = (α(t, x), 0, . . . ., 0)τ − βε(t, x)
(ΛV (t, x))τ

1 + ||ΛV (t, x)||2

where

βε(t, x) =
ε/mr

1 + ρε(x)4 (||∇xV (t, x)||+ ||∇2
xV (t, x)||)2

, 0 < ε < 1, (7)

and ρε(x) is a smooth function mapping IRn into IR such that for every x ∈ IRn,

ρε(x) ≥ max
i,j∈{1,...,m}

max
k∈{1,...,r}

sup
||u||<ε

(
||F ij(x, u)||, ||gik(x)||, ||Gijk (x, u)||

)
. (8)
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P r o o f . Setting for every (t, x) ∈ IR× IRn,

u(t, x) = (α(t, x), 0, . . . , 0)τ + u(t, x)

the stochastic differential system (3) can be considered, since the functions α and V are
2π periodic with respect to time, as the time–invariant stochastic differential system on
S1 × IRn,

dXt = R(Xt) dt+
m∑
i=0

uiR
i
(Xt) dt+

m∑
i,j=1

uiR̃
ij(Xt, u)uj dt+

r∑
k=1

m∑
i=1

uiH
i

k(Xt) dwtk

+
r∑

k=1

uiH̃
ij
k (Xt, u)uj dwkt (9)

where

Xt =
(

t
xt

)
, R(X) =

(
1

α(t, x)f
0
(x)

)
, R

i
(X) =

(
0

f
i
(x)

)
, 0 ≤ i ≤ m,

R̃ij(X,u) =
(

0
F
ij

(x, u)

)
, 1 ≤ i, j ≤ m, H

i

k(X) =
(

0
gik(x)

)
, 1 ≤ k ≤ r, 1 ≤ i ≤ m,

and

H̃ij
k (X,u) =

(
0

G
ij

k (x, u)

)
, 1 ≤ k ≤ r, 1 ≤ i, j ≤ m.

Then, if L denotes the infinitesimal generator of the stochastic process solution of the
stochastic differential system (9) we have, for every (t, x) ∈ S1 × IRn,

LV (t, x) = ∇tV (t, x) +∇xV (t, x)α(t, x)f
0
(x) + ΛV (t, x)u

+
m∑

i,j=1

ui∇xV (t, x)F
ij

(x, u)uj +
1
2
uτ
(

0
KuV (t, x)

)
u

where

KuV (t, x) =
r∑

k=1

(
Hk(X)τ∇2

xV (t, x)Hk(X) + 2uτHk(X)∇2
xV (t, x)H̃k(X,u)

+uτ H̃k(X,u)τu∇2
xV (t, x)H̃k(X,u)

)
and taking assumption (C4) into account, it yields

LV (t, x) = ΛV (t, x)u+
m∑

i,j=1

ui∇xV (t, x)F
ij

(x, u)uj +
1
2
uτ
(

0
KuV (t, x)

)
u.

On the other hand, if for every (t, x) ∈ IR× IRn,

u(t, x) = −βε(t, x)
(ΛV (t, x))τ

1 + ||ΛV (t, x)||2
(10)
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where βε is given by (7) we have

||u|| ≤ βε
2
≤ ε

2

and hence, taking (8) into account, it is easy to prove that∣∣∣∣∣∣
m∑

i,j=1

ui(t, x)∇xV (t, x)F
ij

(x, u)uj(t, x)

∣∣∣∣∣∣ ≤ ||u||2mρε(x)||∇xV (t, x)||

and
||KuV (t, x)|| ≤ mrρε(x)2||∇2

xV (t, x)||.

Therefore, with the above estimates, we deduce that

LV (t, x) ≤ βε(t, x)
||ΛV (t, x)||τ

1 + ||ΛV (t, x)||2
(
−1 + βε(t, x)mrρε(x)2

(
||∇xV (t, x)||+ ||∇2

xV (t, x)||
))

and invoking (8) it yields

LV (t, x) ≤ βε(t, x)
||ΛV (t, x)||τ

1 + ||ΛV (t, x)||2
(
−1 +

ε

2

)
≤ 0. (11)

The latter estimate implies, according with the stochastic Lyapunov theorem (Theorem
5.3.1 in [13]) that the equilibrium solution of the closed–loop system deduced from the
stochastic differential system (9) with the feedback law u given by (10) is stable in
probability.

Furthermore, the stochastic La Salle theorem proved by Kushner in [14] asserts that
the stochastic process solution Xt of the closed–loop system deduced from the stochastic
differential system (9) with the feedback law u given by (10) tends with probability one
to the largest invariant set whose support is contained in the locus LV (t, xt) = 0 for
every t ≥ 0.

But, if LV (t, xt) = 0 for every t ≥ 0, inequality (11) implies that ΛV (t, xt) = 0 for
every t ≥ 0, that is ΛiV (t, xt) = 0 for every t ≥ 0 and i ∈ {0, . . . ,m} and also, as a
consequence, u (t, xt) = 0 for every t ≥ 0.

Then, if L0 denotes the infinitesimal generator of the stochastic process solution of
the stochastic differential system (9) when u = 0; i. e. the first order differential operator
defined for every function ϕ ∈ C1,1 (IR× IRn, IR) by

L0ϕ(t, x) = ∇tϕ(t, x) +∇xϕ(t, x)α(t, x)f
0
(x)

we have, by application of Itô’s formula to the stochastic process ΛiV (t, xt), i ∈ {0, . . . ,m},

L0ΛiV (t, xt) = 0

and, since L0V (t, xt) = 0 by assumption (C4),

adL0ΛiV (t, xt) = 0
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for every t ≥ 0 and i ∈ {0, . . . ,m}.
Therefore, by successive iterations of the above procedure, one can prove that if

ΛV (t, xt) = 0 for every t ≥ 0, one has

adkL0
ΛiV (t, xt) = 0

for every t ≥ 0, i ∈ {0, . . . ,m} and k ∈ IN.
Moreover, following the same line of reasoning as in the proof of Theorem 1 in [16]

straightforward inductive computations show that assumption (H) implies that for every
(t, x) ∈ IR× IRn such that α(t, x) 6= 0,

rank span
{

adkL0
Λi, 0 ≤ i ≤ m, k ∈ IN

}
= n.

This, in turn, implies that the equations

adkL0
ΛiV (t, xt) = 0

for every t ≥ 0, i ∈ {0, . . . ,m} and k ∈ IN have, under assumptions (C2) and (C3), a
unique solution xt = 0.

Thus, the stochastic La Salle theorem asserts that the equilibrium solution of the
closed–loop system deduced from the stochastic differential system (9) with the feedback
law u given by (10) is globally asymptotically stable in probability which completes the
proof of Theorem 4.1. �

Remark 4.2. In general it is not easy to find a Lyapunov function V satisfying as-
sumptions (C1) to (C3) in Theorem 4.1. However, as already noticed by Pomet in [16],
when f

0
= (1, 0, . . . , 0)τ a possible choice for V is

V (t, x) =
1
2

((
x1 +

(
x2

2 + · · ·+ x2
n

)
cos t

)2
+ x2

2 + · · ·+ x2
n

)
using

α(t, x) =
(
x2

2 + · · ·+ x2
n

)
sin t

instead of the function defined in (5).

Example 4.3. Let x0 be given in IR3 and denote by (xt)t≥0 the stochastic process with
values in IR3 solution of the stochastic differential system

dxt =

 u0

ex1,tu1 − 1
u1

 dt+ u1

 x1,t

x2
2,t

ex3,t

 dwt (12)

where (wt)t≥0 is a standard real–valued Wiener process and u is a measurable control
law with values in IR2.

Obviously, the stochastic differential system (12) can be rewritten as

dxt = u0

 1
0
0

 dt+ u1

 0
x1,t

1

 dt+

 0
ex1,tu1 − 1− x1,tu1

0

 dt+ u1

 x1,t

x2
2,t

ex3,t

 dwt
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and hypothesis (H) is satisfied with the coefficients f
0
(x) = (1, 0, 0)τ and f

1
(x) =

(0, x1, 1)τ .
Furthermore, if we take

V (t, x) =
1
2

((
x1 +

(
x2

2 + x2
3

)
cos t

)2
+ x2

2 + x2
3

)
and

α(t, x) =
(
x2

2 + x2
3

)
sin t

hypothesis (C1) to (C5) in Theorem 3.1 are satisfied. As a consequence, we obtain the
stabilizing time–varying feedback law

u0(t, x) =
(
x2

2 + x2
3

)
sin t− βε(t, x)

x1 +
(
x2

2 + x2
3

)
cos t

1 + ||ΛV (t, x)||2

and

u1(t, x) = −βε(t, x)
(x3 + x1x2)

(
1 + 2

(
x1 +

(
x2

2 + x2
3

)
cos t

)
cos t

)
1 + ||ΛV (t, x)||2

where

||ΛV (t, x)||2 =
(
x1 +

(
x2

2 + x2
3

)
cos t

)2
+(x3 + x1x2)2

(
1 + 2

(
x1 +

(
x2

2 + x2
3

)
cos t

)
cos t

)2
and

βε(t, x) =
ε

2

(
1 + ρε(x)4

(
||∇xV (t, x)||+ ||∇2

xV (t, x)||
)2)−1

, 0 < ε < 1

with
ρε(x) =

(
x2

1 + x4
2 + e2x3

)1/2
+ e1+x2

1 .

5. STABILIZATION VIA TIME–VARYING DYNAMIC FEEDBACK

The stabilizability via dynamic state feedback law has been introduced for deterministic
nonlinear systems by Sontag and Sussmann in [20] and later on extended to nonlinear
stochastic differential systems by Florchinger in [8].

In this section, we focus our attention to the global asymptotic stabilization in prob-
ability for the class of nonlinear stochastic differential systems studied in this paper via
time–varying dynamic feedback. With this aim, we use a methodology in the spirit of
the previous section which relies on the stochastic Lyapunov second method and the
stochastic La Salle invariance principle.

First note that if Lu denotes the infinitesimal generator of the stochastic process
solution of the stochastic differential system (3) it is obvious that for any function ϕ in
C1,2(IR+× IRn, IR) the quantity Luϕ(t, x)−∇tϕ(t, x) is linear in u and consequently, it
can be expressed as

Luϕ(t, x)−∇tϕ(t, x) = Tuϕ(t, x)u. (13)

Then, with the previous notation, the following result holds.
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Theorem 5.1. Let V be a proper smooth Lyapunov function defined on IR× IRn which
satisfies conditions (C1) to (C5) of Theorem 3.1. Then, if condition (H) of Theorem 3.1
is satisfied, the stochastic differential system (3) is globally asymptotically stabilizable
in probability by the time–varying dynamic feedback

u(t, x, ζ) = (α(t, x), 0, . . . , 0)τ + ζt (14)

ζ̇t = −ζt − Tζt
V (t, x)τ . (15)

P r o o f . First note that the function V defined for any (t, x, ζ) ∈ IR× IRn × IRm by

V (t, x, ζ) = V (t, x) +
1
2
||ζ||2

is a proper smooth Lyapunov function which has an infinitesimal upper limit.
Then, denoting by K the infinitesimal generator of the stochastic process solution

(xt, ζt) of the closed–loop system deduced from the stochastic differential system (3)
when u is given by (14) with (15), we have for every (t, x, ζ) ∈ IR+ × IRn × IRm,

KV (t, x, ζ) = ∇xV (t, x)α(t, x)f
0
(x) + LζV (t, x) + ζ̇τζ.

Taking into account hypothesis (C5) and (13), we get

KV (t, x, ζ) = TζV (t, x)ζ + ζ̇τζ

which implies, according with (15), that

KV (t, x, ζ) = TζV (t, x)ζ − (ζ + TζV (t, x)τ )τ ζ = −||ζ||2 ≤ 0. (16)

Therefore, the stochastic Lyapunov theorem asserts that the equilibrium solution of the
closed–loop system deduced from the stochastic differential system (3) when u is given
by (14) with (15) is stable in probability.

Furthermore, the stochastic La Salle theorem implies that the stochastic process
solution (xt, ζt) of the closed–loop system deduced from the stochastic differential system
(3) when u is given by (14) with (15) tends with probability one to the largest invariant
set whose support is contained in the locus KV (t, xt, ζt) = 0 for every t ≥ 0.

But, if KV (t, xt, ζt) = 0 for every t ≥ 0, we deduce from inequality (16) that ζt = 0
for every t ≥ 0 which implies that ζ̇t = 0 for every t ≥ 0 and hence, from (15), we deduce
that T0V (t, xt) = 0 for every t ≥ 0.

Then, noticing that for every (t, x) ∈ IR× IRn,

T0V (t, x) = ΛV (t, x)

we obtain that if KV (t, xt, ζt) = 0 for every t ≥ 0 it yields ΛV (t, xt) = 0 for every t ≥ 0.
Now, arguying as in the proof of Theorem 4.1, we deduce by successive iterations of

Itô’s formula that under assumptions (C2), (C3) and (H), we have xt = 0 for every
t ≥ 0.

Thus, the stochastic La Salle theorem asserts that the equilibrium solution of the
closed–loop system deduced from the stochastic differential system (3) when u is given
by (14) with (15) is globally asymptotically stable in probability which completes the
proof of Theorem 5.1. �
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Example 5.2. Let x0 be given in IR3 and denote by (xt)t≥0 the stochastic process with
values in IR3 solution of the stochastic differential system

dxt =

 u0

ex1,tu1 − 1
u1

 dt+ u1

 x1,t

0
0

 dwt (17)

where (wt)t≥0 is a standard real–valued Wiener process and u is a measurable control
law with values in IR2.

Obviously, the stochastic differential system (17) can be rewritten as

dxt = u0

 1
0
0

 dt+ u1

 0
x1,t

1

 dt+

 0
ex1,tu1 − 1− x1,tu1

0

 dt+ u1

 x1,t

0
0

 dwt

and hypothesis (H) is satisfied with the coefficients f
0
(x) = (1, 0, 0)τ and f

1
(x) =

(0, x1, 1)τ .
Moreover, with the stochastic differential system (17), for every (t, x, u) ∈ IR× IR3 ×

IR2 and ϕ ∈ C1,2(IR+ × IRn, IR) , we have

Tuϕ(t, x) =


∂ϕ

∂x1
(t, x)

x1
∂ϕ

∂x2
(t, x) +

∂ϕ

∂x3
(t, x) +

ex1u1 − 1− x1u1

u1

∂ϕ

∂x2
(t, x) + u1x

2
1

∂2ϕ

∂x2
1

(t, x)

 .

Therefore, if we take

V (t, x) =
1
2

((
x1 +

(
x2

2 + x2
3

)
cos t

)2
+ x2

2 + x2
3

)
and

α(t, x) =
(
x2

2 + x2
3

)
sin t

hypothesis (C1) to (C5) in Theorem 3.1 are satisfied. Thus, one concludes from The-
orem 5.1 that the time–varying dynamic feedback law

u(t, x, ζ) = (α(t, x), 0, . . . , 0)τ + ζt

with

ζ̇0,t = −ζ0,t −
(
x1,t +

(
x2

2,t + x2
3,t

)
cos t

)
ζ̇1,t = −ζ1,t −

(
x1,tx2,t + x3,t +

ex1,tζ1,t − 1− x1,tζ1,t
ζ1,t

x2,t

)
.(

1 + 2
(
x1,t +

(
x2

2,t + x2
3,t

)
cos t

)
cos t

)
+ ζ1,tx

2
1,t

renders the stochastic differential system (17) globally asymptotically stable in proba-
bility.

(Received May 27, 2016)
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