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Abstract. We analyse multivalued stochastic differential equations driven by semimartin-
gales. Such equations are understood as the corresponding multivalued stochastic integral
equations. Under suitable conditions, it is shown that the considered multivalued stochastic
differential equation admits at least one solution. Then we prove that the set of all solutions
is closed and bounded.
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1. Introduction

Multivalued mappings are used in models coming from economics, control theory,

optimization, biomathematics, physics, game theory, artificial intelligence (see e.g. [9]

and references therein). Also, the dynamical systems with incomplete, uncertain

information and dynamical systems with velocities that are not uniquely determined

are often formulated by involving multivalued mappings, see e.g. [1], [2], [13], [7],

[17], [19], [21], [20], [26]. To model uncertain systems, the multivalued stochastic

differential equations (abbreviation MSDEs) [3], [6], [8], [12], [22], [24], [27]–[29] are

also applied and they generalize the classical (single-valued) stochastic differential

equations. Here the uncertainties, which are incorporated in MSDEs, are a stochastic

uncertainty coming from random noises and an uncertainty driven by multivalued

mappings.

In this paper we consider MSDEs driven by a large class of integrators—

semimartingales, and propose a new formulation of the notion of MSDE. Namely,

we consider a more general form of MSDEs in comparison to the classical studies,
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see [27]–[29], where the driving process is the Wiener process and the coefficients

are mappings acting from I × R
d (I denotes an interval [0, T ]). In particular, in

an integral form of MSDEs we consider multivalued integrands which are mappings

acting from the set I × Ω × L2, where L2 := L2(Ω,A, P ;Rd) and (Ω,A, P ) is an

underlying probability space. Hence in our framework we allow the coefficients to

depend on ω ∈ Ω, which is also an extension allowing for consideration of truely

nonautonomous equations. Moreover, we deal with the infinite dimensional space L2

instead of the finite dimensional Euclidean space Rd. The studies which we present

are more general, since the space R
d can be emdedded into L2 in the sense that

x ∈ R
d can be viewed as a random vector X ∈ L2 such that X(ω) = x with

probability one.

Under the Lipschitz type condition and the linear growth condition, we prove that

the set of solutions to MSDEs driven by semimartingales is nonempty, i.e. there

exists at least one solution. In multivalued framework considered in this paper, it is

not possible to have unique solutions. Hence we investigate properties of the set of

all solutions. We prove that this set is closed and bounded.

2. Preliminaries

Let (X , ‖·‖X ) be a separable Banach space, K(X ) the family of all nonempty,

compact and convex subsets of X . The Hausdorff metric HX in K(X ) is defined by

HX (A,B) = max
{
sup
a∈A

distX (a,B), sup
b∈B

distX (b, A)
}
,

where distX (a,B) = inf
b∈B

‖a−b‖X . It is known (cf. [16]) that (K(X ), HX ) is a complete

and separable metric space. Also, the set K(X ) has a semilinear structure under

addition and scalar multiplication defined as

A+B = {a+ b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A}, A,B ∈ K(X ), λ ∈ R.

Let (U,U , µ) be a measure space. A multivalued mapping F : U → K(X ) is said

to be measurable if it satisfies

{u ∈ U : F (u) ∩O 6= ∅} ∈ U for every open set O ⊂ X .

A measurable multivalued mapping F : U → K(X ) is said to be Lp
U(µ)-integrally

bounded, p > 1, if there exists h ∈ Lp(U,U , µ;R) such that ‖a‖X 6 h(ω) for any a

and ω with a ∈ F (ω). It is known (see [15]) that F is Lp
U(µ)-integrally bounded if

and only if ω 7→ |||F (ω)|||X is in Lp(U,U , µ;R), where

|||A|||X := HX (A, {0}) = sup
a∈A

‖a‖X for A ∈ K(X ).

12



Denote I = [0, T ], where T < ∞. Let B denote the Borel sigma-algebra of subsets
of I, and Bt denote the Borel sigma-algebra of subsets of [0, t] for each t ∈ I. Let

(Ω,A, {At}t∈I , P ) be a complete filtered probability space satisfying the usual hy-

potheses, i.e., {At}t∈I is an increasing and right continuous family of sub-σ-algebras

of A and A0 contains all P -null sets. Later on we will also assume that the σ-algebra

A is separable with respect to the probability measure P .
Let P denote the σ-algebra of progressive elements in I × Ω, i.e.

P := {A ∈ B ⊗A : A ∩ [0, t]× Ω ∈ Bt ⊗At ∀ t ∈ I}.

A stochastic process f : I × Ω → R
d is called progressive if f(·, ·) is P-measurable.

A multivalued stochastic process F : I × Ω → K(Rd) is progressive if it is a P-
measurable multivalued mapping.

Let Z : I × Ω → R be a continuous semimartingale with Z(0) = 0. It is known

that Z has a unique representation

(2.1) Z = A+M, M(0) = 0, A(0) = 0,

where A : I × Ω → R is an {A}t-adapted continuous stochastic process of finite
variation, M : I × Ω → R is a local continuous {At}-martingale.
Since A is of finite variation, almost each (with respect to P ) sample path A(·, ω)

generates a measure ΓA(·,ω) with the total variation on the interval [0, t] given by

|A(ω)|t =
∫ t

0 ΓA(·,ω)(ds). For a local martingale M one can define the quadratic

variation process [M ] : I × Ω → R (cf. [10]). Now we denote by H2 the set of all

semimartingales Z : I × Ω → R with finite norm ‖·‖H2 , where

‖Z‖H2 := ‖[M ]
1/2
T ‖L2 + ‖|A|T ‖L2

and L2 := L2(Ω,A, P ;Rd).

It is known that for a continuous semimartingale Z ∈ H2 the processM in (2.1) is

a continuous square integrable martingale (see [25] Chapter II, Section 6, Corollary 4)

and E|A|2T < ∞.
The processes A,M from the representation (2.1) of the semimartingale Z induce

two measures µA, µM on (I × Ω,P). The measure µA is defined similarly to [8], i.e.

µA(C) :=

∫

Ω

(∫

I

1C(t, ω)|A(ω)|TΓA(·,ω)(dt)

)
P (dω) for C ∈ P .

For f ∈ L2
P(µA), where L

2
P(µA) := L2(I×Ω,P , µA;R

d) one can define the stochastic

Lebesgue-Stieltjes integral
∫ t

0
f(s) dA(s) sample path by sample path (cf. [25]). Note
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that

(2.2) E

∥∥∥∥
∫ t

η

f(s) dA(s)

∥∥∥∥
2

Rd

6

∫

Ω

(∫ t

η

‖f(s, ω)‖RdΓA(·,ω)(ds)

)2
P (dω)

6

∫

Ω

(
(|A(ω)|t − |A(ω)|η)

∫ t

η

‖f(s, ω)‖2
RdΓA(·,ω)(ds)

)
P (dω)

6

∫

Ω

(
|A(ω)|T

∫ t

η

‖f(s, ω)‖2
RdΓA(·,ω)(ds)

)
P (dω) =

∫

[η,t]×Ω

‖f‖2
Rd dµA.

A more expanded insight into the proof of (2.2) yields the following property.

Corollary 2.1. Assume that f ∈ L2
P(µA). Then

(2.3) E sup
u∈[η,t]

∥∥∥∥
∫ u

η

f(s) dA(s)

∥∥∥∥
2

Rd

6

∫

[η,t]×Ω

‖f‖2
Rd dµA.

The second measure µM is the well-known Doléan-Dade measure (cf. [10]) such

that

µM ({0} ×A0) = 0, µM ((s, t]×A) = E1A(M(t)−M(s))2,

where A0 ∈ A0, 0 6 s < t 6 T , A ∈ As. For f ∈ L2
P(µM ), where L2

P(µM ) :=

L2(I × Ω,P , µM ;Rd), and t ∈ I one can define the stochastic integral
∫ t

0 f(s) dMs

and we have (cf. [10])

(2.4) E

∥∥∥∥
∫ t

0

f(s) dM(s)

∥∥∥∥
2

Rd

=

∫

[0,t]×Ω

‖f‖2
Rd dµM = E

∫ t

0

‖f(s)‖2
Rd d[M ](s).

Moreover, for f ∈ L2
P(µM ) we have by the Doob inequality

(2.5) E sup
u∈[0,t]

∥∥∥∥
∫ u

0

f(s) dM(s)

∥∥∥∥
2

Rd

6 4

∫

[0,t]×Ω

‖f‖2
Rd dµM .

For a semimartingale Z ∈ H2 with the representation (2.1) one can define a finite

measure µZ on (I × Ω,P) as

µZ(C) := µA(C) + µM (C), C ∈ P .
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Denote L2
P(µZ) := L2(I × Ω,P , µZ ;R

d). For f ∈ L2
P(µZ) one can define the

single-valued stochastic integral
∫ t

0 f(s) dZ(s) with respect to a semimartingale Z as

follows: ∫ t

0

f(s) dZ(s) :=

∫ t

0

f(s) dA(s) +

∫ t

0

f(s) dM(s).

Due to (2.2)–(2.4) and (2.3)–(2.5) we claim that the following assertions hold true.

Corollary 2.2. If f ∈ L2
P(µZ) then for every η, t ∈ I, η < t, we have

E

∥∥∥∥
∫ t

η

f(s) dZ(s)

∥∥∥∥
2

Rd

6 2

∫

[η,t]×Ω

‖f‖2
Rd dµZ ,

E sup
u∈[η,t]

∥∥∥∥
∫ u

η

f(s) dZ(s)

∥∥∥∥
2

Rd

6 2

∫

[η,t]×Ω

‖f‖2
Rd dµA + 8

∫

[η,t]×Ω

‖f‖2
Rd dµM

6 8

∫

[η,t]×Ω

‖f‖2
Rd dµZ .

Denote L2
t := L2(Ω,At, P ;Rd) for t ∈ I. Let F : I ×Ω → Kb

c(R
d) be a progressive

set-valued stochastic process which is L2
P(µZ)-integrally bounded. For such a process

let us define the set S2
P(F, µZ) := {f ∈ L2

P(µZ) : f ∈ F, µZ-a.e.}. Due to the
Kuratowski and Ryll-Nardzewski selection theorem (see [18]) we have S2

P(F, µZ ) 6= ∅.
Therefore we can define the following stochastic integral of Aumann type (cf. [23]).

Definition 2.3. For a progressive and L2
P(µZ)-integrally bounded multivalued

stochastic process F : I × Ω → Kb
c(R

d) and for τ, t ∈ R+, τ < t the set-valued

stochastic trajectory integral (over the interval [τ, t]) of F with respect to the semi-

martingale Z is the following subset of L2
t :

∫

[τ,t]

F (s) dZ(s) :=

{∫ t

τ

f(s) dZ(s) : f ∈ S2
P(F, µZ)

}
.

Since we consider Z continuous, the integrals
∫
[τ,t]

F (s) dZ(s),
∫
(τ,t]

F (s) dZ(s)

coincide. For their common value we will write
∫ t

τ F (s) dZ(s). It is known that∫ t

τ
F (s) dZ(s) is a nonempty, bounded, convex, closed and weakly compact subset

of L2
t .

Remark 2.4. If we consider processes A,M from decomposition (2.1) then simi-

larly to the above we can define the multivalued stochastic integral
∫ t

τ
G(s) dA(s) for

the L2
P(µA)-integrally bounded progressive multivalued stochastic process G : I ×

Ω → K(Rd), and the multivalued stochastic integral
∫ t

τ
Q(s) dM(s) for the L2

P(µM )-

integrally bounded progressive multivalued stochastic process Q : I × Ω → K(Rd).

15



Lemma 2.5. Let F : I × Ω → K(Rd) be a progressive and L2
P(µZ)-integrally

bounded multivalued stochastic process. Then for every s, a, t ∈ I such that s 6 a 6 t

we have ∫ t

s

F (τ) dZ(τ) =

∫ a

s

F (τ) dZ(τ) +

∫ t

a

F (τ) dZ(τ).

In our investigations we will need some known results which are collected below

as lemmata.

Lemma 2.6 ([14], Chapter V.3, Theorem 15). Let T be a linear mapping of

a Banach space X into a Banach space Y. Then T is continuous with respect to the
metric topologies in X and Y if and only if it is continuous with respect to the weak
topologies.

Lemma 2.7 ([5], Corollary 8.2.13). Let (U,U , µ) be a complete σ-finite measure
space and (X , d) a complete and separable metric space. Assume that F : U → K(X )

is measurable and f : U → X is measurable. Then there exists a measurable selection
g of F such that d(f(u), g(u)) = distX (f(u), F (u)) for every u ∈ U .

3. Main results

We begin this part of the paper with presenting some motivations to study MSDEs.

They should reflect a potential utility of this theory in modeling the dynamics of

real-world phenomena. To this end let us suppose that an investigated quantity x

at instant t can be described using a stochastic integral equation with control u

(3.1) x(t) = x0 +

∫ t

0

f(x(s), u(s)) ds+

∫ t

0

g(x(s), u(s)) dW (s), t ∈ I, P -a.e.,

where x0 : Ω → R is an initial value and f : R
2 → R denotes a drift coefficient,

g : R
2 → R is a diffusion coefficient, u denotes a strategy, u ∈ U , U is a set of

controls, W denotes the Wiener process. If it is assumed that x(t) ∈ L2 for t ∈ I

then we can transform (3.1) to an equation in the space L2, i.e. to the equation

(3.2) x(t) = x0 +

∫ t

0

f̃(s, x(s), u) ds+

∫ t

0

g̃(s, x(s), u) dW (s), t ∈ I,

where the mappings f̃ , g̃ : I × Ω× L2 × U → R are defined as

f̃(s, ω, a, u) := f(a(ω), u(s, ω)) and g̃(s, ω, a, u) := g(a(ω), u(s, ω)).
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Now, a quest for a solution to the controlled stochastic integral equation (3.2) in L2

could be replaced by seeking the solution for MSDE

(3.3)

x(t)− x(s) ∈
∫ t

s

F (τ, x(τ)) dτ +

∫ t

s

G(τ, x(τ)) dW (s), s, t ∈ I, s < t, x(0) = x0,

where F,G : I × Ω× L2 → K(R) are defined as

F (s, ω, a) := co

( ⋃

u∈U

f̃(s, ω, a, u)

)
and G(s, ω, a) := co

( ⋃

u∈U

g̃(s, ω, a, u)

)
.

The symbol co(A) denotes the closed and convex hull of the set A. The relation (3.3)

is an MSDE driven by the two-dimensional semimartingle Z(τ) = (τ,W (τ))′. The

problem of existence of a solution to (3.3) is a natural question.

After such a discussion on some motivations we start theoretical examinations

of MSDEs driven by a one-dimensional semimartingale. From now on we assume

that the σ-algebra A is separable with respect to the probability measure P . In the
paper we consider MSDEs driven by a continuousH2-semimartigale Z which has the

representation Z = A+M described in (2.1), i.e., we consider the relation

dx(t) ∈ F (t, x(t)) dZ(t), t ∈ I, x(0) = x0,

where F : I × Ω× L2 → K(Rd), x0 ∈ L2
0.

In fact, this notation has a symbolic meaning only, because it will be understood

as the integral relation

x(t)− x(s) ∈
∫ t

s

F (τ, x(τ)) dZ(τ) for 0 6 s < t 6 T,(3.4)

x(0) = x0,

where the inclusion “∈” above is understood in the sense: “a point x(t)−x(s) from L2

belongs to the subset
∫ t

s
F (τ, x(τ)) dZ(τ) of L2.”

This formulation of MSDE is new and more general than the classical one. In

the classical setting the multivalued mapping F acts from I × R
d ([28], [29]). Now,

we consider F to be a multivalued mapping acting from I × Ω× L2 and extend the

studies that way.

Denote by C(I, L2) the set of all ‖·‖L2-continuous mappings x : I → L2. The set

C(I, L2) endowed with the supremum metric becomes a complete metric space.

Definition 3.1. An element x ∈ C(I, L2) is said to be a solution to MSDE (3.4)

if x(0) = x0 and for any s, t ∈ I, s < t, the element x(t)− x(s) of L2 belongs to the

subset
∫ t

s
F (τ, x(τ)) dZ(τ) of L2.
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Remark 3.2. Let x ∈ C(I, L2). It can be shown that x is a solution to

MSDE (3.4) if and only if there exists f ∈ S2
P(F ◦ x, µZ) such that for every t ∈ I

x(t) = x0 +

∫ t

0

f(τ) dZ(τ).

Let SOL(x0, F, Z) denote the set of all solutions to MSDE (3.4). For x ∈
SOL(x0, F, Z), due to the properties of stochastic integrals, we have

x(t) ∈ L2
t , t ∈ I.

The first aim of this part of the paper is to show that MSDE (3.4) possesses

solutions, i.e., SOL(x0, F, Z) 6= ∅.
In the investigations of MSDE (3.4) we will assume that F : I ×Ω×L2 → K(Rd)

satisfies:

(H1) for every a ∈ C(I, L2) such that a(t) ∈ L2
t for every t ∈ I, the multivalued

stochastic processes I × Ω ∋ (t, ω) 7→ F (t, ω, a(t)) ∈ K(Rd) is progressive,

(H2) there exists m ∈ L2(I ×Ω,P , µZ ;R) such that for µZ-a.a. (t, ω) and for every

a ∈ L2
t

|||F (t, ω, a)|||Rd 6 m(t, ω)(1 + ‖a‖L2),

(H3) there exists K ∈ L2(I ×Ω,P , µZ ;R) such that for µZ-a.a. (t, ω) and for every

a1, a2 ∈ L2
t

HRd(F (t, ω, a1), F (t, ω, a2)) 6 K(t, ω)‖a1 − a2‖L2.

In the paper we will also use a stronger condition than (H2). Namely, we will

consider the following condition:

(H2′) there exists m ∈ L2(I ×Ω,P , µZ ;R) such that for µZ-a.a. (t, ω) and for every

a ∈ L2
t

|||F (t, ω, a)|||Rd 6 m(t, ω).

The assumptions imposed on the multivalued mapping F ensure the existence of

a progressive and Lipschitz selection of F . In fact, we can formulate the following

assertion which will be used later on.
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Lemma 3.3. Assume that F : I × Ω × L2 → K(Rd) satisfies (H1)–(H3). Then

there exists f̃ : I × Ω× L2 → R
d such that

(i) f̃(t, ω, a) ∈ F (t, ω, a) for every (t, ω, a) ∈ I × Ω× L2,

(ii) the mapping I × Ω ∋ (t, ω) 7→ f̃(t, ω, a(t)) ∈ R
d is a progressive stochastic

process for every a ∈ C(I, L2) such that a(t) ∈ L2
t for every t ∈ I,

(iii) there exists m̃ ∈ L2(I × Ω,P , µZ ;R) such that for µZ-a.a. (t, ω) and for every

a ∈ L2
t

‖f̃(t, ω, a)‖Rd 6 m̃(t, ω)(1 + ‖a‖L2),

(iv) there exists K̃ ∈ L2(I × Ω,P , µZ ;R) such that for µZ-a.a. (t, ω) and for every

a1, a2 ∈ L2
t

‖f̃(t, ω, a1)− f̃(t, ω, a2)‖Rd 6 K̃(t, ω)‖a1 − a2‖L2 .

The proof of this lemma will be omitted, since it is immediate. It is enough to

define f̃ as f̃(t, ω, a) = sd(F (t, ω, a)), where sd(A) denotes the Steiner point of the

convex compact set A ⊂ R
d (see [5], Chapter 9). Then sd(F (t, ω, a)) ∈ F (t, ω, a)

and the Steiner selection f̃ preserves the properties of the multivalued mapping F .

For η, τ ∈ I, η < τ let us denote

L2
P,η,τ (µZ) := L2([η, τ ] × Ω,P|[η,τ ]×Ω, µZ ;R

d).

Then for a P|[η,τ ]×Ω-measurable and L2
P,η,τ(µZ)-integrally bounded multivalued

stochastic process F : [η, τ ]× Ω → K(Rd) we define

S2
P|[η,τ]×Ω

(F, µZ) := {f ∈ L2
P,η,τ(µZ) : f ∈ F µZ-a.e.}.

Remark 3.4. Let F : [η, τ ] × Ω → K(Rd) be P|[η,τ ]×Ω- measurable and

L2
P,η,τ (µZ)-integrally bounded. Then these assumptions on F imply immediately

that the set S2
P|[η,τ]×Ω

(F, µZ) is a nonempty, bounded, convex, closed and weakly

compact subset of L2
P,η,τ (µZ).

Let η, τ ∈ I, η < τ , xη ∈ L2
η, F : I × Ω × L2 → K(Rd) and x ∈ C([η, τ ], L2). We

define the set Λη,τ,xη
(x) as

Λη,τ,xη
(x) :=

{
y : [η, τ ] → L2 such that y(t) = xη +

∫ t

η

f(s) dZ(s) in L2 for t ∈ [η, τ ],

f ∈ S2
P|[η,τ]×Ω

((F |[η,τ ]×Ω×L2) ◦ x, µZ)

}
,

where F |[η,τ ]×Ω×L2 : [η, τ ]× Ω× L2 → K(Rd) is defined as

F |[η,τ ]×Ω×L2(t, ω, a) = F (t, ω, a) for (t, ω, a) ∈ [η, τ ]× Ω× L2.
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Lemma 3.5. Let F : I×Ω×L2 → K(Rd) satisfy (H1)–(H3). Let x ∈ C(I, L2) be

such that x(t) ∈ L2
t for every t ∈ I and let η, τ ∈ I, η < τ . Then the set Λη,τ,xη

(x)

is a nonempty subset of C([η, τ ], L2).

P r o o f. For the mappings F and x we have (due to assumption (H1)) that

I × Ω ∋ (t, ω) 7→ F (t, ω, x(t)) ∈ K(Rd) is P-measurable. Hence [η, τ ]× Ω ∋ (t, ω) 7→
F (t, ω, x(t)) ∈ K(Rd) is a P|[η,τ ]×Ω-measurable multivalued stochastic process. From

now on we will denote this latter process by (F ◦ x)|[η,τ ]×Ω. Note that due to (H2)

for almost all (t, ω) with respect to µZ we have

|||F (t, ω, x(t)|||Rd 6 m(t, ω)(1 + ‖x(t)‖L2) 6 m(t, ω)
(
1 + sup

t∈[η,τ ]

‖x(t)‖L2

)
.

Thus
∫

[η,τ ]×Ω

|||F (t, ω, x(t))|||2
RdµZ(dt, dω)

6 2
(
1 + sup

t∈[η,τ ]

‖x(t)‖2L2

)∫

[η,τ ]×Ω

m2(t, ω)µZ(dt, dω),

which means that (F ◦ x)
∣∣
[η,τ ]×Ω

: [η, τ ] × Ω → K(Rd) is L2
P,η,τ (µZ)-integrally

bounded. Hence the Kuratowski and Ryll-Nardzewski selection theorem [18] al-

lows us to claim that the set S2
P|[η,τ]×Ω

((F ◦ x)|[η,τ ]×Ω, µZ) is nonempty and

we can consider a mapping [η, τ ] ∋ t 7→ xη +
∫ t

η f(s) dZ(s) ∈ L2, where f ∈
S2
P|[η,τ]×Ω

((F ◦ x)|[η,τ ]×Ω, µZ). �

Lemma 3.6. Under the assumptions of Lemma 3.5 the set Λη,τ,xη
(x) is

a bounded, convex and closed subset of C([η, τ ], L2).

P r o o f. Observe that for y ∈ Λη,τ,xη
(x) and t1, t2 ∈ [η, τ ], t1 < t2, we have

‖y(t2)− y(t1)‖2L2 = E

∥∥∥∥
∫ t2

t1

f(s) dZ(s)

∥∥∥∥
2

Rd

,

where f ∈ S2
P|[η,τ]×Ω

((F ◦ x)|[η,τ ]×Ω, µZ). By Corollary 2.2

‖y(t2)− y(t1)‖2L2 6 2

∫

[t1,t2]×Ω

‖f(s, ω)‖2
RdµZ(ds, dω)

6 2

∫

[t1,t2]×Ω

|||F (s, ω, x(s))|||2
RdµZ(ds, dω)

and by assumption (H2)

‖y(t2)− y(t1)‖2L2 6 4
(
1 + sup

s∈[η,τ ]

‖x(s)‖2L2

)∫

[t1,t2]×Ω

m2(s, ω)µZ(ds, dω).
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Since
∫
I×Ω

m2 dµZ < ∞, we can infer that
∫
[t1,t2]×Ω

m2(s, ω)µZ(ds, dω) → 0 as

|t1 − t2| → 0. This proves that y : I → L2 is uniformly continuous.

B o u n d e d n e s s . Note that for y ∈ Λη,τ,xη
(x) we have

‖y‖2C([η,τ ],L2) 6 2‖xη‖2L2 + 2 sup
t∈[η,τ ]

∥∥∥∥
∫ t

η

f(s) dZ(s)

∥∥∥∥
2

L2

6 2‖xη‖2L2 + 4 sup
t∈[η,τ ]

∫

[η,t]×Ω

‖f(s, ω)‖2
RdµZ(ds, dω)

6 2‖xη‖2L2 + 4

∫

[η,τ ]×Ω

|||F (s, ω, x(s))|||2
RdµZ(ds, dω)

6 2‖xη‖2L2 + 8(1 + ‖x‖2C([η,τ ],L2))

∫

[η,τ ]×Ω

m2(s, ω)µZ(ds, dω).

Thus Λη,τ,xη
(x) is bounded.

C o n v e x i t y. Since (F ◦ x)|[η,τ ]×Ω has convex values, the set

S2
P|[η,τ]×Ω

((F ◦ x)|[η,τ ]×Ω, µZ)

is a convex subset of L2
P,η,τ (µZ) and convexity of Λη,τ,xη

(x) follows easily.

C l o s e d n e s s . Let {yn}∞n=1 ⊂ Λη,τ,xη
(x) be such that

yn
n→∞−→ y in the space C([η, τ ], L2),

y ∈ C([η, τ ], L2). Thus for every t ∈ [η, τ ] the sequence {yn(t)}∞n=1 converges to y(t)

in the norm topology of the space L2. Since yn ∈ Λη,τ,xη
(x) we have

yn(t) = xη +

∫ t

η

fn(s) dZ(s), where fn ∈ S2
P|[η,τ]×Ω

((F ◦ x)|[η,τ ]×Ω, µZ) for n ∈ N.

Since the set S2
P|[η,τ]×Ω

((F ◦x)|[η,τ ]×Ω, µZ) is weakly compact in the space L
2
P,η,τ (µZ),

we infer that there exist a subsequence {fnk
}∞k=1 and

f ∈ S2
P|[η,τ]×Ω

((F ◦ x)|[η,τ ]×Ω, µZ)

such that

fnk
⇀ f in L2

P,η,τ (µZ), as k → ∞,

where the symbol ⇀ denotes convergence in weak topology. Obviously

(3.5) xη +

∫ t

η

fnk
(s) dZ(s)

k→∞−→ y(t) in L2 for every t ∈ [η, τ ].
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For t ∈ [η, τ ] let us define the linear operator Ot : L2
P,η,τ (µZ) → L2 as follows:

Ot(f) :=

∫ t

η

f(s) dZ(s).

Since for h, j ∈ L2
P,η,τ (µZ) we have

∥∥∥∥
∫ t

η

h(s) dZ(s)−
∫ t

η

j(s) dZ(s)

∥∥∥∥
2

L2

= E

∥∥∥∥
∫ t

η

h(s) dZ(s)−
∫ t

η

j(s) dZ(s)

∥∥∥∥
2

Rd

6 2‖h− j‖2L2
P,η,τ

(µZ ),

we infer that Ot is norm-to-norm continuous. Now, by Lemma 2.6 we obtain

Ot(fnk
) =

∫ t

η

fnk
(s) dZ(s) ⇀ Ot(f) =

∫ t

η

f(s) dZ(s).

Hence

xη +

∫ t

η

fnk
(s) dZ(s) ⇀ xη +

∫ t

η

f(s) dZ(s) in L2, t ∈ [η, τ ].

Due to this convergence and (3.5) we infer that

∥∥∥∥y(t)−
(
xη +

∫ t

η

f(s) dZ(s)

)∥∥∥∥
L2

= 0, t ∈ [η, τ ].

Hence y ∈ Λη,τ,xη
(x). �

Now we are in a position to formulate the first main result on the existence of

solutions to (3.4).

Theorem 3.7. Assume that F : I × Ω× L2 → K(Rd) satisfies (H1)–(H3). Then

the set SOL(x0, F, Z) is nonempty.

P r o o f. Since the semimartingale Z is continuous and K ∈ L2(I ×Ω,P , µZ ;R),

we can choose a partition 0 = t0 < t1 < t2 < . . . < tN−1 < tN = T of the interval I

such that

(3.6) max

{∫

[tk,tk+1]×Ω

K2(s, ω)µZ(ds, dω) : k = 0, 1, . . . , N − 1

}
<

1

2
.

Now we will show that for every k ∈ {0, 1, . . . , N − 1} and every xtk ∈ L2
tk the

mapping

x 7→ Λtk,tk+1,xtk
(x),

where x ∈ C([tk, tk+1], L
2), is a multivalued contraction.
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Denote η = tk and τ = tk+1 for convenience. Let x1, x2 ∈ C([η, τ ], L2). Then for

y(1) ∈ Λη,τ,xη
(x1) there exists a sequence {yn}∞n=1 ⊂ Λη,τ,xη

(x1) such that

‖yn − y(1)‖C([η,τ ],L2)
n→∞−→ 0

and for every n ∈ N

yn(t) = xη +

∫ t

η

fn(s) dZ(s), where fn ∈ S2
P|[η,τ]×Ω

((F ◦ x1)|[η,τ ]×Ω, µZ).

Applying Lemma 2.7 we infer that there exists a sequence

{gn}∞n=1 ⊂ S2
P|[η,τ]×Ω

((F ◦ x2)|[η,τ ]×Ω, µZ)

such that for every n ∈ N and for every (s, ω) ∈ [η, τ ]× Ω

‖fn(s, ω)− gn(s, ω)‖Rd = distRd(fn(s, ω), F (s, ω, x2(s))).

Hence for every n ∈ N we get

‖fn(s, ω)− gn(s, ω)‖Rd 6 HRd(F (s, ω, x1(s)), F (s, ω, x2(s))), (s, ω) ∈ [η, τ ]× Ω.

Now for n ∈ N we define y
(2)
n : [η, τ ] → L2 as

y(2)n (t) = xη +

∫ t

η

gn(s) dZ(s).

Then we obtain y
(2)
n ∈ Λη,τ,xη

(x2). Further observe that for n ∈ N

‖yn − y(2)n ‖2C([η,τ ],L2) =

∥∥∥∥
∫ ·

η

(fn(s)− gn(s)) dZ(s)

∥∥∥∥
2

C([η,τ ],L2)

= sup
t∈[η,τ ]

E

∥∥∥∥
∫ t

η

(fn(s)− gn(s)) dZ(s)

∥∥∥∥
2

Rd

6 2

∫

[η,τ ]×Ω

‖fn(s, ω)− gn(s, ω)‖2RdµZ(ds, dω)

6 2

∫

[η,τ ]×Ω

HRd(F (s, ω, x1(s)), F (s, ω, x2(s)))µZ (ds, dω)

6 2

∫

[η,τ ]×Ω

K2(s, ω)‖x1(s)− x2(s)‖2L2µZ(ds, dω)

6 2‖x1 − x2‖2C([η,τ ],L2)

∫

[η,τ ]×Ω

K2(s, ω)µZ(ds, dω).
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In view of (3.6) we have

‖yn − y(2)n ‖2C([η,τ ],L2) < α‖x1 − x2‖2C([η,τ ],L2),

where α ∈ (0, 1). Since

‖y(1) − y(2)n ‖C([η,τ ],L2) 6 ‖y(1) − yn‖C([η,τ ],L2) + ‖yn − y(2)n ‖C([η,τ ],L2)

< ‖y(1) − yn‖C([η,τ ],L2) +
√
α ‖x1 − x2‖C([η,τ ],L2),

we have

distC([η,τ ],L2)(y
(1),Λη,τ,xη

(x2)) < ‖y(1) − yn‖C([η,τ ],L2) +
√
α ‖x1 − x2‖C([η,τ ],L2).

Passing to the limit as n → ∞ we can write

distC([η,τ ],L2)(y
(1),Λη,τ,xη

(x2)) 6
√
α ‖x1 − x2‖C([η,τ ],L2)

and consequently

sup
y(1)∈Λη,τ,xη (x1)

distC([η,τ ],L2)(y
(1),Λη,τ,xη

(x2)) 6
√
α ‖x1 − x2‖C([η,τ ],L2).

Proceeding similarly to the above we obtain

sup
y(2)∈Λη,τ,xη (x2)

distC([η,τ ],L2)(y
(2),Λη,τ,xη

(x1)) 6
√
α ‖x1 − x2‖C([η,τ ],L2).

Hence

HC([η,τ ],L2)(Λη,τ,xη
(x1),Λη,τ,xη

(x2)) 6
√
α ‖x1 − x2‖C([η,τ ],L2).

Applying the Covitz-Nadler fixed point theorem, see [11], we can infer that there

exists (not necessarily unique) xη,τ ∈ C([η, τ ], L2) such that xη,τ ∈ Λη,τ,xη
(xη,τ ).

This means

xη,τ (t) = xη +

∫ t

η

hη,τ (s) dZ(s) in L2 for t ∈ [η, τ ],

where hη,τ ∈ S2
P|[η,τ]×Ω

((F ◦xη,τ )|[η,τ ]×Ω, µZ). Now we define x
⋆ : I → L2 as a spline

of xt0,t1 , xt1,t2 , . . . , xtN−1,tN . Then x⋆ ∈ C(I, L2). Also it is easy to see that h :

I × Ω → R
d defined as

h(s, ω) = ht0,t1(s, ω)1[t0,t1]×Ω(s, ω)

+ ht1,t2(s, ω)1[t1,t2]×Ω(s, ω) + . . .+ htN−1,tN (s, ω)1[tN−1,tN ]×Ω(s, ω)

satisfies the condition h ∈ S2
P(F ◦ x⋆, µZ). Moreover

x⋆(t) = x0 +

∫ t

0

h(s) dZ(s) in L2 for t ∈ I,

which means (due to Remark 3.2) that x⋆ is a solution to MSDE (3.4). �
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Since the set SOL(x0, F, Z) is nonempty, it makes sense to ask about properties

of this set.

Theorem 3.8. Under assumptions of Theorem 3.7 the set SOL(x0, F, Z) is

a closed subset of C(I, L2).

P r o o f. Let {xn} ⊂ SOL(x0, F, Z) be such that

(3.7) ‖xn − x‖C(I,L2)
n→∞−→ 0,

where x ∈ C(I, L2).

Since xn(0) = x0 for every n ∈ N, due to (3.7) we get x(0) = x0 easily. In what

follows we shall show that for every s, t ∈ I, s < t, x(t)− x(s) ∈
∫ t

s
F (τ, x(τ)) dZ(τ)

holds. To this end let us notice that, due to Corollary 2.2 and (H3), for s < t we

have

H2
L2

(∫ t

s

F (τ, xn(τ)) dZ(τ),

∫ t

s

F (τ, x(τ)) dZ(τ)

)

6 2

∫

[s,t]×Ω

H2
Rd(F (τ, ω, xn(τ, ω)), F (τ, ω, x(τ, ω)))µZ (dτ, dω)

6 2

∫

[s,t]×Ω

K2(τ, ω)‖xn(τ)− x(τ)‖2L2µZ(dτ, dω)

6 2‖xn − x‖2C(I,L2)

∫

I×Ω

K2(τ, ω)µZ(dτ, dω).

Hence

(3.8) HL2

(∫ t

s

F (τ, xn(τ)) dZ(τ),

∫ t

s

F (τ, x(τ)) dZ(τ)

)
−→ 0 as n → ∞.

Now observe that for s < t and for every n ∈ N

distL2

(
x(t)− x(s),

∫ t

s

F (τ, x(τ)) dZ(τ)

)

6 ‖x(t)− xn(t)‖L2 + ‖xn(s)− x(s)‖L2

+HL2

(∫ t

s

F (τ, xn(τ)) dZ(τ),

∫ t

s

F (τ, x(τ)) dZ(τ)

)

6 2‖xn − x‖C(I,L2)

+HL2

(∫ t

s

F (τ, xn(τ)) dZ(τ),

∫ t

s

F (τ, x(τ)) dZ(τ)

)
.
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By (3.7) and (3.8) we obtain

distL2

(
x(t)− x(s),

∫ t

s

F (τ, x(τ)) dZ(τ)

)
= 0.

Since the integral
∫ t

s F (τ, x(τ)) dZ(τ) is a closed subset of L2, we get x(t) − x(s) ∈∫ t

s
F (τ, x(τ)) dZ(τ). Thus x ∈ SOL(x0, F, Z). �

Notice that for x ∈ SOL(x0, F, Z) we can write

‖x‖2C(I,L2) 6 2‖x0‖2L2 + 2 sup
t∈I

∥∥∥∥
∫ t

0

f(s) dZ(s)

∥∥∥∥
2

L2

where f ∈ S2
P(F ◦ x, µZ). This implies

‖x‖2C(I,L2) 6 2‖x0‖2L2 + 4

∫

I×Ω

|||F (s, ω, x(s))|||2
RdµZ(ds, dω).

Therefore under assumption (H2′) we have the following additional assertion on

boundedness of the set SOL(x0, F, Z).

Corollary 3.9. Assume that F : I ×Ω×L2 → K(Rd) satisfies (H1), (H2′), (H3).

Then SOL(x0, F, Z) is a nonempty, bounded and closed subset of C(I, L2).

All results of this paper have been established for MSDEs driven by a one-

dimensional semimartingale. It is worth mentioning that the presented investiga-

tions can be repeated for MSDEs driven by m-dimensional semimartingales Z =

(Z1, Z2, . . . , Zm)′, where Zk’s are one-dimensional continuous semimartingales such

that ‖Zk‖H2 < ∞, k = 1, 2, . . . ,m. To be more precise for Z, x0 ∈ L2
0 and

F̂ : I × Ω× L2 → [K(Rd)]×m we can consider MSDE

x(t) − x(s) ∈
∫ t

s

F̂ (τ, x(τ)) dZ(τ) for 0 6 s < t 6 T,

x(0) = x0,

which is understood as

x(t)− x(s) ∈
∫ t

s

F (1)(τ, x(τ)) dZ1(τ) +

∫ t

s

F (2)(τ, x(τ)) dZ2(τ)

+ . . .+

∫ t

s

F (m)(τ, x(τ)) dZm(τ) for 0 6 s < t 6 T,

x(0) = x0,

where F̂1 = (F (1), F (2), . . . , F (m)).
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Remark 3.10. Although the multivalued results involving the notion of multi-

valued stochastic integral and established in this paper are considered in the setting

of a finite interval I = [0, T ], the methods used in the proofs allow to obtain all

counterparts of the set-valued results also in the case of infinite interval I = [0,∞).

In this case we consider a continuous semimartingale Z with Z(0) = 0 and with

decomposition Z = A+M . Additionally the processes A and M should satisfy

‖|A|∞‖L2 < ∞, ‖[M ]1/2∞ ‖L2 < ∞.

Then the notion of a multivalued stochastic integral with respect to the continuous

H2-semimartingale presented in this paper is well-defined.
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