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Abstract. Let D be a Cd q-convex intersection, d > 2, 0 6 q 6 n − 1, in a complex
manifold X of complex dimension n, n > 2, and let E be a holomorphic vector bundle of rank
N over X. In this paper, Ck-estimates, k = 2, 3, . . . ,∞, for solutions to the ∂-equation with
small loss of smoothness are obtained for E-valued (0, s)-forms on D when n− q 6 s 6 n.
In addition, we solve the ∂-equation with a support condition in Ck-spaces. More precisely,
we prove that for a ∂-closed form f in Ck0,q(X \D,E), 1 6 q 6 n− 2, n > 3, with compact

support and for ε with 0 < ε < 1 there exists a form u in Ck−ε
0,q−1(X \D,E) with compact

support such that ∂u = f in X \ D. Applications are given for a separation theorem of
Andreotti-Vesentini type in Ck-setting and for the solvability of the ∂-equation for currents.
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1. Background and the main results

The Ck-solvability of the ∂-equation is a central theme in the theory of several

complex variables, it was studied by Lieb and Range in [9] for strictly pseudoconvex

domains in C
n and by Michel in [10] for the piecewise smooth case. A few years

ago, Barkatou and Khidr in [3] proved that if f is a ∂-closed continuous (0, s)-form,

n − q 6 s 6 n, on a Cd, d > 2, q-convex intersection Ω in C
n, 0 6 q 6 n − 1, then

there exists a continuous (0, s − 1)-form u on Ω such that ∂u = f in Ω. Moreover,

if f is in Ck
0,s(Ω), k = 2, 3, . . . ,∞, and if 0 < ε < 1, then u is in Ck−ε

0,s−1(Ω) and for

each 0 < ε < 1 there is a constant Ck,ε > 0 such that ‖u‖k−ε,Ω 6 Ck,ε‖f‖k,Ω. The

q-concave case is also settled in [7].

The solvability of the ∂-problem with a support condition was initiated by An-

dreotti and Hill, see [1], [2], in terms of the Dolbeault ∂-cohomology groups. In [8],
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Laurent-Thiébaut and Leiterer proved that if E is a holomorphic vector bundle over

a complex manifold X of complex dimension n and Ω is an open set in X (not

necessarily relatively compact in X) with smooth and compact boundary such that

X is a q-convex extension of Ω, 1 6 q 6 n − 1, then, for every ∂-closed form f

in Ck
0,q(X \ Ω, E), k = 0, 1, . . . ,∞, with compact support, there exists a form u

in C
k+1/2
0,q−1 (X \ Ω, E) with compact support such that ∂u = f in X \ Ω.

If Ω is a relatively compact domain with Lipschitz boundary and satisfying a con-

vexity condition called log δ-pseudoconvex in an n-dimensional Kähler manifold X ,

Brinkschulte in [4] proved that for every ∂-closed form f in C∞
r,s(X,E), 0 6 r 6 n,

1 6 s 6 n − 1, with compact support in Ω there exists a form u in C∞
r,s−1(X,E)

supported in Ω such that ∂u = f in X . Moreover, she proved that the range of

the ∂-operator acting on the subspace of those forms in C∞
r,n−1(X,E) with compact

support in Ω is closed.

When Ω is a completely strictly q-convex domain, 0 6 q 6 n − 1, with smooth

boundary in a complex manifold X of complex dimension n, analogous results to

those of [4] have been obtained by Sambou in [13] for C-valued (r, s)-forms with

compact support in Ω, where 0 6 r 6 n and 1 6 s 6 q. In addition, for all s such

that 1 6 s 6 q + 1, the author proved that the range of the ∂-operator acting on

the subspace of C∞-(r, s − 1)-forms with compact support in Ω is closed. Further,

he proved that the ∂-equation is solvable on such domains for extensible currents of

bidegree (n, n − s) for all s such that n − q 6 s 6 n. Furthermore, he studied the

case for strictly q-concave domains in [14].

In [12], Ricard proved weaker Ck-estimates than those obtained by Barkatou and

Khidr in [3] but for general q-convex wedges. Morover, she solved the ∂-equation

for E-valued (0, s)-forms of class C∞ and with compact support in the complement

of q-convex wedge in a complex manifold. This result enabled her to generalize the

Andreotti Vesentini separation theorem for E-valued (0, s)-forms of class C∞ to the

complements of q-convex wedges in complex manifolds for some bidegree.

Let Ω be a bounded domain in a complex manifold X of complex dimension n,

n > 2, and let E be a holomorphic Hermitian vector bundle of rank N over X . We

fix the following notation. For all 1 6 s 6 n and l ∈ Z
+, we denote by Cl

0,s(Ω, E)

the Fréchet space of all E-valued (0, s)-forms with coefficients of class Cl on Ω with

the topology of uniform convergence of forms and all their derivatives on compact

subsets of Ω. Let K be a compact subset of Ω and D0,s
K (Ω, E) the closed subspace

of Cl
0,s(Ω, E) of forms with support in K endowed with the induced topology from

the topology on Cl
0,s(Ω, E). Let D0,s(Ω, E) be the linear subspace of Cl

0,s(Ω, E) of

all forms with compact support equipped with the strict inductive limit topology

defined by the Fréchet spaces D0,s
Ki

(Ω, E), where Ki are compact subsets of Ω such

that Ki ⊂ K◦
i+1 and

⋃
iKi = Ω. Then D0,s(Ω, E) =

⋃
i D

0,s
Ki

(Ω, E).
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Further, for all 1 6 s 6 n and l, β ∈ R
+, we denote by Cl

0,s(Ω, E) the Banach space

of all E-valued (0, s)-forms on Ω which have continuous derivatives up to [l] on Ω

satisfying Hölder condition of order l− [l]; the symbol [l] is the integral part of l. The

associated cohomologies groups are denoted by H l
0,s(Ω, E). The corresponding norm

is denoted by ‖·‖l,Ω. The subspace of all ∂-closed forms in Cl
r,s(Ω, E) is denoted by

Z l
0,s(Ω, E), and Eβ→l

0,s (Ω, E) is the subspace of those forms f in Z l
0,s(Ω, E) such that

f = ∂u for some u in Cβ
0,s−1(Ω, E).

Furthermore, by Dl
0,s(Ω, E) we denote the Fréchet space of forms in Cl

0,s(X,E)

with support in Ω and endowed with the Fréchet topology of Cl
0,s(Ω, E). We note

that if Ω is compact, then Dl
0,s(Ω, E) is a Banach space. Dl

0,s(Ω, X,E) denotes

the Banach space of all E-valued (0, s)-forms on X with support in Ω and their

restriction to Ω being in Cl
0,s(Ω, E). The dual space of Dl

0,s(Ω, E) is denoted by

D′l
n,n−s(Ω, E

∗), it is a subspace of all currents in D′
n,n−s(Ω, E

⋆) of order l on Ω. The

∂-operator is defined from D′l
n,n−s(Ω, E

⋆) into D′l
n,n−s+1(Ω, E

⋆) as the transpose of

the usual ∂ operator from Dl
0,s(Ω, E) into Dl

0,s+1(Ω, E). Finally, we recall the notion

of q-convexity.

Definition 1.1. A real-valued function ̺ of class C2 on a complex manifold X

of complex dimension n is said to be q-convex, 0 6 q 6 n− 1, if its Levi form L̺ has

at least q+1 positive eigenvalues at every point in X . A bounded domain Ω in X is

called strictly q-convex, 0 6 q 6 n− 1, if there exist an open neighborhood U of ∂Ω

and a C2 q-convex function ̺ : U → R such that Ω ∩ U = {ζ ∈ U : ̺(ζ) < 0}.

Definition 1.2. A bounded domain Ω in an n-dimensional complex manifold X ,

n > 2, is called a Cd, d > 2, q-convex intersection, 0 6 q 6 n − 1, if there exist

a bounded neighborhood U of Ω and a finite number of real-valued Cd functions

̺1(z), . . . , ̺b(z), 1 6 b 6 n− 1, defined on U such that Ω = {z ∈ U : ̺1(z) < 0, . . . ,

̺b(z) < 0} and the following conditions are fulfilled:

(1) For 1 6 i1 < i2 < . . . < il 6 b the 1-forms d̺i1 , . . . , d̺il are R-linearly indepen-

dent on the set
l⋂

j=1

{̺ij (z) 6 0}.

(2) For 1 6 i1 < i2 < . . . < il 6 b, for every z ∈
l⋂

j=1

{̺ij (z) 6 0}, if we set

I = (i1, . . . , il), there exists a linear subspace T
I
z of X of complex dimension at

least q + 1 such that for i ∈ I the Levi forms L̺i
restricted to T I

z are positive

definite.

Condition (2) was introduced first by Grauert in [5]. It implies that at every wedge

the Levi forms of the corresponding {̺i} have their positive eigenvalues along the

same directions.
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Definition 1.3. Let K be a closed subset of an n-dimensional complex mani-

fold X . We say that X is a q-convex extension of K, 1 6 q 6 n − 1, if there exist

two constants c and C such that −∞ < c < C 6 ∞ and a C2 q-convex function

̺ : U → (−∞, C] on an open neighborhood U of X \K such that K ∩ U = {̺ 6 c}

and the set {c 6 ̺ 6 t} is compact for all t < C.

Further, X is said to be a generalized q-convex extension of K if for every neigh-

borhood V of K there exists a closed subset K0 with C∞ boundary such that

K ⊂ K0 ⊂ V and X is a q-convex extension of K0.

We note that if the boundary of K is of class C∞, the fact that X is a q-convex

extension of K implies that X is a generalized q-convex extension of K.

The main results of this paper are formulated in the next two theorems. More

precisely, we first prove the following global Ck-existence theorem.

Theorem 1.4. Let D ⊂⊂ X be a Cd, d > 2, q-convex intersection in a complex

manifold X of complex dimension n, n > 2, and let E be a Hermitian holomorphic

vector bundle over X . Then for every ∂-closed form f in C0
0,s(D,E), n− q 6 s 6 n,

there exists a form g in C0
0,s−1(D,E) such that ∂g = f . Moreover, if f is in Ck

0,s(D,E),

k = 2, 3, . . . ,∞, and if 0 < ε < 1, then g is in Ck−ε
0,s−1(D,E) and there is a constant

Ck,ε > 0 (independent of f) such that

(1.1) ‖g‖Ck−ε
0,s−1

(D,E) 6 Ck,ε‖f‖Ck
0,s

(D,E).

In the case q = n − 1 (i.e. the strictly pseudoconvex case) and X = C
n, this

theorem was proved by Michel and Perotti in [11]. For the strictly q-convex case,

0 6 q 6 n − 1, with C∞ boundary, sharp Ck estimates were obtained by Lieb and

Range in [9]. We note further that Theorem 1.4 is still valid for the particular case

when X = C, E is the trivial line bundle with the flat metric and q = 0, since every

smooth domain in C is strictly pseudoconvex.

Furthermore, we prove the following Ck-regularity with a support condition for

the ∂-equation on the complement of a q-convex intersection in a complex manifold.

Theorem 1.5. Let D ⊂⊂ X be a Cd, d > 2, q-convex intersection in an n-

dimensional complex manifold X , n > 3, and let E be a holomorphic Hermitian

vector bundle over X . We assume moreover that X is a generalized q-convex exten-

sion of D. If f is a ∂-closed form in Ck
0,q(X \D,E), k = 2, 3, . . . ,∞, 1 6 q 6 n− 2,

with compact support and if 0 < ε < 1, then there exists a form u in Ck−ε
0,q−1(X\D,E)

with compact support such that ∂u = f in X \D.
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As an application of Theorem 1.5, we will prove a separation theorem of Andreotti-

Vesentini type in Ck-spaces and, moreover, solve the ∂-equation for currents, see

Theorems 4.1 and 4.2.

2. Proof of Theorem 1.4

The proof of Theorem 1.4 consists of three main steps. First, we prove the fol-

lowing local result. Let {Uj}j∈I be an open covering of X consisting of coordinate

neighborhoods Uj with holomorphic coordinates zj = (z1j , z
2
j , . . . , z

n
j ) over which E

is trivial. Cover ∂D by a finite number of open sets U1, U2, . . . , Um of the cover-

ing {Uj}j∈I such that Uj ∩ D is a local q-convex intersection; moreover, we may

assume that E is trivial over some coordinate neighborhoods Vj of each Uj ∩D. It

follows from Theorem 3.1 in [3] that there are local linear integral solution opera-

tors T s
j : C0

0,s(D ∩ Uj ) → C0
0,s−1(D ∩ Uj ), j = 1, . . . ,m, such that ∂T s

j f = f for all

∂-closed forms f in C0
0,s(D ∩ Uj ).

We now extend these operators to E-valued forms on D ∩ Uj . To this end, we

define the operators T s
N : f ∈ C0

0,s(D ∩ Uj, E) → T s
Nf ∈ C0

0,s−1(D ∩ Uj , E) by T s
Nf =

N∑
λ=1

T s
j f

λωλ, where n − q 6 s 6 n and fλ are the components of the restriction of

f to Uj ∩D with respect to a holomorphic orthonormal basis ω1, . . . , ωN on Ez for

every z ∈ Uj ∩D. We consequently get the following local theorem.

Theorem 2.1. Let D ⊂⊂ X be a Cd, d > 2 q-convex intersection in a complex

manifold X of complex dimension n, n > 2, and let E be a Hermitian holomorphic

vector bundle of rank N over X . Then for each ξ ∈ ∂D there exist a local q-convex

intersection Dξ in X and bounded linear operators T̃ s : C0
0,s(D

ξ, E) → C0
0,s−1(D

ξ, E)

such that ∂T̃ sf = f for every ∂-closed form f in C0
0,s(D

ξ, E) and all s such that

n− q 6 s 6 n. Further, if f is in Ck
0,s(D

ξ, E), k = 2, 3, . . . ,∞, and if 0 < ε < 1, then

T̃ sf is in Ck−ε
0,s−1(D

ξ, E) and there is a positive constant Ck,ε (independent of f) such

that

‖T̃ sf‖
Ck−ε
0,s−1

(Dξ,E)
6 Ck,ε‖f‖Ck

0,s(D
ξ,E)

.

As in [3], via a partition of unity, the following lemma follows immediately from

Theorem 2.1.

Lemma 2.2. Let X , D and E be as in Theorem 2.1. Then there exists another

slightly larger q-convex intersection D̃ ⊂⊂ X such that D ⊂⊂ D̃ and for every

∂-closed form f in C0
0,s(D,E), n − q 6 s 6 n, there exist two linear operators

H1 : f ∈ C0
0,s(D,E) → f̃ ∈ C0

0,s(D̃, E) and H2 : f ∈ C0
0,s(D,E) → u ∈ C0

0,s−1(D,E)

such that
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(i) ∂f̃ = 0 in D̃;

(ii) f̃ = f − ∂u in D;

(iii) if f is in Ck
0,s(D,E), k = 2, 3, . . . ,∞, 0 < ε < 1, then f̃ is in Ck−ε

0,s (D̃, E), u is in

Ck−ε
0,s−1(D,E) and for each 0 < ε < 1 there is a constant Ck,ε (independent of f)

such that
‖f̃‖

Ck−ε
0,s (D̃,E)

6 Ck,ε‖f‖Ck
0,s(D,E),

‖u‖Ck−ε
0,s−1

(D,E) 6 Ck,ε‖f‖Ck
0,s(D,E).

If f is C∞ in D, then f̃ is C∞ in D̃ and u is C∞ in D.

The following lemma is a natural extension of [9], Theorem 2, to E-valued forms.

Lemma 2.3. Let D ⊂⊂ X be a Cd, d > 2, strictly q-convex domain in a complex

manifold X of complex dimension n, n > 2, and let E be a Hermitian holomorphic

vector bundle over X . Then for every ∂-closed form f in C0
0,s(D,E), n− q 6 s 6 n,

there exists a form g in C0
0,s−1(D,E) such that ∂g = f . Moreover, if f is in Ck

0,s(D,E),

k = 2, 3, . . . ,∞, and if 0 < ε < 1, then g is in Ck−ε
0,s−1(D,E) and there is a constant

Ck,ε > 0 (independent of f) such that ‖g‖Ck−ε
0,s−1

(D,E) 6 Ck,ε‖f‖Ck
0,s(D,E).

E n d o f p r o o f of Theorem 1.4. Let D̃, f̃ and u be as in Lemma 2.2. By

Lemma 4.3 in [3], there exists a strictly q-convex domain D′ such that D ⊂⊂

D′ ⊂⊂ D̃. Let f be a ∂-closed form in Ck
0,s(D,E) and set f̂ = f̃ |D′ . By Lemma 2.3,

there exists a form v in Ck−ε
0,s−1(D,E) such that ∂v = f̂ inD. In view of Lemma 2.2 (ii),

we then have f = ∂(u + v) in D. The form g = u + v is the desired global solution

that satisfies the estimates (1.1). The proof is complete. �

3. Proof of Theorem 1.5

The proof involves several steps which are detailed below. First, a simple modifi-

cation of the proof of Lemma 3.2 in [8] yields the following local result.

Theorem 3.1. Let D ⊂⊂ X be a Cd, d > 2, q-convex intersection in an n-

dimensional complex manifold X , n > 3, with {̺i}
b
i=1 and let U be as in Defini-

tion 1.2, such that X is a generalized q-convex extension of D. Let ξ ∈ ∂D and let

V 0 be a neighborhood of ξ, then there exist a δ > 0 and a neighborhood Vδ of ξ

such that Vδ ⊂⊂ V 0. Further, if ̺̂i : U → R are Cd functions such that ‖̺i− ̺̂i‖ < δ

and ̺i 6 ̺̂i on U for all i = 1, . . . , b, then the domain D̂ that is defined by those

functions ̺̂i and satisfies condition (1) in Definition 1.2 is included in D and is

a Cd q-convex intersection. Set Ω̂ = X \ D̂. If f is a ∂-closed form in Ck
0,q(Ω̂, E),
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k = 2, 3, . . . ,∞, 1 6 q 6 n − 2 and 0 < ε < 1, with compact support, then there

exists a form g in Ck−ε
0,q−1(Ω̂ ∩ Vδ, E) with compact support such that ∂g = f in Ω̂∩Vδ.

Lemma 3.2. Let X , E, D and D̂ be given as in Theorem 3.1. Then, for all

k = 2, 3, . . . ,∞, 1 6 q 6 n− 2 and n > 3, we have

Ek−ε→k
0,q (X \ D̂, E) = Ek−ε→k

0,q (X \D,E) ∩ Zk
0,q(X \ D̂, E).

In addition, if f is in Zk
0,q(X \ D̂, E), 0 < ε < 1, so that there exists a form u1

in Ck−ε
0,q−1(X \ D,E) such that ∂u1 = f on X \ D, then there exists a form u2 in

Ck−ε
0,q−1(X \ D̂, E) such that ∂u1 = f on X \ D̂ and u1 = u2 on (X \D) \ Vδ.

P r o o f. The proof is just an adaptation of the proof of [12], Lemma 7.9. �

Using Lemmas 2.2 and 3.2 as in [6], we have the next lemma.

Lemma 3.3. Let D ⊂⊂ X be a Cd, d > 2, q-convex intersection in an n-

dimensional complex manifold X . Then there exists another slightly larger q-convex

intersection D̃ ⊂⊂ X such that D ⊂⊂ D̃. Further, for all k = 2, 3, . . . ,∞ and

1 6 q 6 n− 2, n > 3, the restriction homomorphisms of cohomology groups

Φk
q : H

k
0,q(X \D,E) → Hk

0,q(X \ D̃, E)

are injective. Furthermore, if f is in Zk
0,q(X \ D,E), 0 < ε < 1, such that there

exists a form f̃ in Ck−ε
0,q−1(X \ D̃, E) such that ∂f̃ = f on X \ D̃, then there exist

a neighborhood VD̃ of D̃ and a form u in Ck−ε
0,q−1(X \ D,E) such that ∂u = f on

X \D and u|X\V
D̃
= f̃ .

E n d o f p r o o f of Theorem 1.5. Let f be a form in Zk
0,q(X\D,E) with compact

support, 1 6 q 6 n− 2, and let D̃ be as in Lemma 3.3. Since X is a generalized q-

convex extension of D, there exists a strictly q-convex domain D′ such that D′ ⊂⊂ D̃

and X is a q-convex extension of D′. By Theorem 3.1 in [8], there exists a form g in

Dk−ε
0,q (X \D′, E) such that ∂g = f in X \D′. Choose a non-negative C∞ function ψ

such that ψ ≡ 1 on a neighborhood of X \ D̃ and ψ ≡ 0 on a neighborhood of D′.

Then the form f − ∂(ψg) is zero on X \ D̃, and hence can be trivially extended

to X \D which contains X \ D̃ and so it belongs to Zk
0,q(X \ D,E) with compact

support in D̃ \D, hence f − ∂(ψg) is ∂-exact on X \ D̃. According to Lemma 3.3,

there exists then a form v in Ck−ε
0,q−1(X \D,E) with compact support in X \D such

that ∂v = f −∂(ψg) on X \D. The form u = v+ψg is therefore in Dk−ε
0.q−1(X \D,E)

and solves the equation ∂u = f in X \D. This completes the proof. �
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4. Applications

Our first application is concerned with the Andreotti-Vesentini separation theorem

in the Ck-case.

Theorem 4.1. Let D ⊂⊂ X be a Cd, d > 2, q-convex intersection in an n-

dimensional complex manifold X , n > 3, with {̺i}
b
i=1 and U as in Definition 1.2

such that X is a generalized q-convex extension of D, and let E be a holomorphic

vector bundle over X . Assume, moreover, that X is (n− q)-convex. Then the space

Zk
0,q(X \ D,E) ∩ ∂Ck−ε

0,q−1(X \ D,E) is a closed subspace of Ck
0,q(X \ D,E) with

respect to the topology of uniform convergence of forms and all their derivatives on

compact subsets of X \D.

P r o o f. Let {fi}i∈N be a sequence of forms in Z
k
0,q(X \D,E)∩∂Ck−ε

0,q−1(X \D,E)

which converges uniformly to a form f in Ck
0,q(X \ D,E) on compact subsets of

X \D. Let D̃ be as in Lemma 3.3. Since X is a generalized q-convex extension of D,

there is a strictly q-convex domain D′ such that D ⊂⊂ D′ ⊂⊂ D̃. It follows from

Theorem 1.3 in [8] that there exists a form u in Ck−ε
0,q−1(X \D′, E) such that ∂u = f

in X \ D′. Let ψ be a C∞ function such that supp ψ ⊂⊂ X \ D′ and ψ ≡ 1 on

a neighborhood of X \ D̃. The form f −∂(ψu) is therefore in Zk
0,q(X \D,E) and has

compact support in D̃ \D and hence in U \D. Then, by Theorem 1.5, there exists

a form v in Ck−ε
0,q−1(U \ D,E) with compact support such that ∂v = f − ∂(ψu) in

U \D. Extending v by zero outside U \D to the whole X and setting λ = v+χu, we

then get λ ∈ Ck−ε
0,q−1(X \D,E) and ∂λ = f in X \D. This proves the theorem. �

The second application is the following theorem that concerns the solvability of

the ∂-equation for E∗-valued currents.

Theorem 4.2. Let D ⊂⊂ X be a Cd, d > 2, q-convex intersection in a complex

manifold X of complex dimension n, n > 3, and let E be a Hermitian holomorphic

vector bundle over X . Then for every ∂-closed current f in D′k
0,q(X \ D,E∗), k =

2, 3, . . . ,∞, 2 6 q 6 n−1 and 0 < ε < 1, there exists a current g in D′k−ε
0,q−1(X\D,E∗)

such that ∂g = f in X \D.

P r o o f. The proof follows by using Theorem 1.5 and arguing in a manner similar

to the proof of Theorem 6.2 in [4]. �
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