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Applications of limited information

strategies in Menger’s game

Steven Clontz

Abstract. As shown by Telgársky and Scheepers, winning strategies in the Menger
game characterize σ-compactness amongst metrizable spaces. This is improved
by showing that winning Markov strategies in the Menger game characterize
σ-compactness amongst regular spaces, and that winning strategies may be im-
proved to winning Markov strategies in second-countable spaces. An investi-

gation of 2-Markov strategies introduces a new topological property between
σ-compact and Menger spaces.

Keywords: Menger property; Menger game; σ-compact spaces; limited informa-
tion strategies

Classification: 03E35, 54D20, 54D45, 91A44

1. The Menger property and game

Definition 1.1. A space X is Menger if for every sequence 〈U0,U1, . . .〉 of open
covers of X there exists a sequence 〈F0,F1, . . .〉 such that Fn ⊆ Un, |Fn| < ω,
and

⋃

n<ω Fn is a cover of X .

Note that many authors refer to this property as Sfin(O,O) [6], where O is
the collection of open covers of X , and Sfin(A, B) denotes the selection property
such that for each sequence in Aω, there are finite subsets of each entry for which
the union of these subsets belongs in B.

Proposition 1.2. X is σ-compact ⇒ X is Menger ⇒ X is Lindelöf.

None of these implications may be reversed; the irrationals are a simple example
of a Lindelöf space which is not Menger, and we’ll see several examples of Menger
spaces which are not σ-compact.

It will be convenient to consider subsets of X rather than subsets of the open
covers.
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Definition 1.3. For each cover U of X , S ⊆ X is U-finite if there exists a finite
subcollection of U which covers S.

Of course, a compact space is U-finite for all open covers U .

Proposition 1.4. A space X is Menger if and only if for every sequence 〈U0,U1, . . .〉
of open covers of X there exists a sequence 〈F0, F1, . . .〉 such that Fn ⊆ X , Fn is

Un-finite, and X =
⋃

n<ω Fn.

This is the characterization we will use in this paper. A game version of the
Menger property is also often considered.

Game 1.5. Let Men (X) denote the Menger game with players C , F . In round
n, C chooses an open cover Un, followed by F choosing a Un-finite subset Fn

of X .

F wins the game if X =
⋃

n<ω Fn, and C wins otherwise.

As with the Menger property, authors usually characterize this game using
finite subsets Fn of Un instead (and often refer to it as the selection game
Gfin(O,O)). This is obviously equivalent in the case of perfect information,
and is also equivalent in the case of limited information, provided F knows Un

during round n. However, we make this change as we will investigate 0-Markov
strategies which consider no moves of the opponent, and instead rely only on the
current round number.

This game may be used to characterize the Menger property.

Definition 1.6. If A has a winning strategy for a game G (which defeats every
possible counterattack by her opponent), then we write A ↑ G.

Theorem 1.7 (Hurewicz [2]). A space X is Menger if and only if C 6↑ Men (X).

2. Limited information strategies

Definition 2.1. A k-tactical strategy for a game G with moveset M is a function
σ : M≤k → M ; intuitively, it is a strategy which only considers the previous k

or less moves of the opponent t ∈ M≤k, and yields the appropriate move σ(t) for
the player using it. If a winning k-tactical strategy exists for P in the game G,
then we write P ↑

k-tact
G.

Definition 2.2. A k-Markov strategy for a game G with moveset M is a function
σ : M≤k × ω → M ; intuitively, it is a strategy which only considers the previous
k or less moves of the opponent t ∈ M≤k and the round number n < ω, and
yields the appropriate move σ(t, n) for the player using it. If a winning k-Markov
strategy exists for P in the game G, then we write P ↑

k-mark
G.
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We will call k-tactical strategies “k-tactics” and k-Markov strategies “k-marks”.
If the k is omitted then it is assumed that k = 1. In addition, note that some
authors refer to tactics as stationary strategies.

Tactics will be of interest in a game discussed later; proving the following is an
easy exercise.

Proposition 2.3. X is compact if and only if F ↑
tact

Men (X) if and only if

F ↑
k+1-tact

Men (X) for some k < ω.

Essentially, because C may repeat the same finite sequence of open covers, F

needs to be seeded with knowledge of the round number to prevent being trapped
in a loop.

If F ’s memory of C ’s past moves is bounded, then there is no need to consider
more than the two most recent moves. The intuitive reason is that C could simply
play the same cover repeatedly until F ’s memory is exhausted, in which case F

would only ever see the change from one cover to another.

Theorem 2.4. For each k < ω, F ↑
(k+2)-mark

Men (X) if and only if F ↑
2-mark

Men (X).

Proof: Let σ be a winning (k + 2)-mark. We define the 2-mark τ as follows:

τ(〈U〉, 0) =
⋃

m<k+2

σ(〈U , . . . ,U
︸ ︷︷ ︸

m+1

〉, m),

τ(〈U ,V〉, n + 1) =
⋃

m<k+2

σ(〈U , . . . ,U
︸ ︷︷ ︸

k+1−m

,V , . . . ,V
︸ ︷︷ ︸

m+1

〉, (n + 1)(k + 2) + m).

Let 〈U0,U1, . . .〉 be an attack by C against τ . Then consider the attack

〈U0, . . . ,U0
︸ ︷︷ ︸

k+2

,U1, . . . ,U1
︸ ︷︷ ︸

k+2

, . . .〉

by C against σ. Since σ is a winning (k + 2)-mark,

X =
⋃

m<k+2

σ(〈U0, . . . ,U0
︸ ︷︷ ︸

m+1

〉, m)

∪
⋃

n<ω

⋃

m<k+2

σ(〈Un, . . . ,Un
︸ ︷︷ ︸

k+1−m

,Un+1, . . . ,Un+1
︸ ︷︷ ︸

m+1

〉, (n + 1)(k + 2) + m)

= τ(〈U0〉, 0) ∪
⋃

n<ω

τ(〈Un,Un+1〉, n + 1).
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Thus τ is a winning 2-mark. Of course, it is trivial to define a winning (k+2)-mark
from a 2-mark by simply ignoring the extra k moves. �

It is worth noting that the above proof holds for any selection game of the form
Gfin(A, B).

One might wonder if a 2-mark may always be improved to a 1-mark as well;
this is not the case.

Definition 2.5. For any cardinal κ, let L(κ) = κ ∪ {∞} denote the one-point

Lindelöfication of discrete κ, where points in κ are isolated, and the neighborhoods
of ∞ are the co-countable sets containing it.

One may prove directly that F 6↑
mark

Men (L(ω1)) without much effort; how-

ever, we postpone stating this until we have shown that being Markov Menger is
equivalent to being σ-compact in regular spaces. Likewise, we postpone proving
F ↑

2-mark
Men (L(ω1)) in order to consider an equivalent set-theoretic game.

Essentially, the greatest advantage of a strategy which has knowledge of two or
more previous moves of the opponent, versus only knowledge of the most recent
move, is the ability to react to changes from one round to the next. It is this
ability to react that often allows a player to wield a winning 2-Markov strategy
when a winning 1-Markov strategy does not exist.

3. Scheepers’ countable-finite games

We now turn to a related game whose k-tactics were studied by Marion Scheep-
ers in [4].

Game 3.1. Let Sch∪,( (κ) denote Scheepers’ strict countable-finite union game

with two players C , F . In round 0, C chooses C0 ∈ [κ]≤ω, followed by F choosing
F0 ∈ [κ]<ω. In round n + 1, C chooses Cn+1 ∈ [κ]≤ω such that Cn+1 ) Cn,
followed by F choosing Fn+1 ∈ [κ]<ω.

F wins the game if
⋃

n<ω Fn ⊇
⋃

n<ω Cn; otherwise, C wins.

In Men (L(κ)), C essentially chooses a countable set not included in her neigh-
borhood of ∞, followed by F choosing a finite subset of this complement to cover
during each round. Thus, F need only be concerned with the intersection of the
countable sets chosen by C in Men (L(κ)), rather than the union as in Sch∪,( (κ).

Another difference between these games: Scheepers required that C always
choose strictly growing countable sets. If the goal is to study tactics, then C

cannot be allowed to trap F in a loop by repeating the same moves. But by eli-
minating this requirement, the study can then turn to Markov strategies, bringing
the game further in line with the Menger game played upon L(κ).
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We introduce a few games to make the relationship between Scheepers’
Sch∪,( (κ) and Men (L(κ)) more precise.

Game 3.2. Let Sch∪,⊆ (κ) denote the Scheepers’ countable-finite union game

which proceeds analogously to Sch∪,( (κ), except that C ’s restriction in round
n + 1 is reduced to Cn+1 ⊇ Cn.

Game 3.3. Let Sch1,⊆ (κ) denote the Scheepers’ countable-finite initial game

which proceeds analogously to Sch∪,⊆ (κ), except that F wins whenever
⋃

n<ω Fn ⊇ C0.

Game 3.4. Let Sch∩ (κ) denote the Scheepers’ countable-finite intersection game

which proceeds analogously to Sch1,⊆ (κ), except that C may choose any Cn ∈
[κ]≤ω each round, and F wins whenever

⋃

n<ω Fn ⊇
⋂

n<ω Cn.

Figure 1. Diagram of Scheepers/Menger game implications

Theorem 3.5. For any cardinal κ ≥ ω and integer k < ω, Figure 1 holds.

Proof: We show F ↑
(k+1)-mark

Men (L(κ)) ⇒ F ↑
(k+1)-mark

Sch∩ (κ). Let σ be a

winning (k + 1)-mark for F in Men (L(κ)). Let U(C) (resp. U(s)) convert each
countable subset C of κ (resp. finite sequence s of such subsets) into the open
cover [C]1∪{L(κ)\C} (resp. finite sequence of such open covers). Then τ defined
by

τ(s⌢〈C〉, n) = C ∩ σ(U(s⌢〈C〉), n)

where |s| ≤ k is a winning (k + 1)-mark for F in Sch∩ (κ).

We show F ↑
(k+1)-mark

Sch∩ (κ) ⇒ F ↑
(k+1)-mark

Men (L(κ)). Let σ be a

winning (k + 1)-mark for F in Sch∩ (κ). Let C(U) (resp. C(s)) convert each
open cover U of L(κ) (resp. finite sequence s of such covers) into a countable set
C which is the complement of some neighborhood of ∞ in U (resp. finite sequence
of such countable sets). Then τ defined by

τ(s⌢〈U〉, n) = (L(κ) \ C(U)) ∪ σ(C(s⌢〈U〉), n)
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where |s| ≤ k is a winning (k + 1)-mark for F in Men (L(κ)).

We show F ↑
(k+1)-mark

Sch∩ (κ) ⇒ F ↑
(k+1)-mark

Sch1,⊆ (κ). Let σ be a winning

(k + 1)-mark for F in Sch∩ (κ). Then σ is also a winning (k + 1)-mark for F in
Sch1,⊆ (κ).

We show F ↑
(k+1)-mark

Sch1,⊆ (κ) ⇒ F ↑
(k+1)-mark

Sch∪,⊆ (κ). Let σ be a

winning (k + 1)-mark for F in Sch1,⊆ (κ). For each finite sequence s, let t � s

mean t is a final subsequence of s. Then τ defined by

τ(s⌢〈C〉, n) =
⋃

t�s,m≤n

σ(t⌢〈C〉, m)

where |s| ≤ k is a winning (k + 1)-mark for F in Sch∪,⊆ (κ), considering that σ

ensures that Cn is covered when attacked by 〈Cn, Cn+1, . . .〉 for all n < ω.

We show F ↑
(k+1)-mark

Sch∪,⊆ (κ) ⇒ F ↑
(k+1)-mark

Sch1,⊆ (κ). Let σ be a

winning (k + 1)-mark for F in Sch∪,⊆ (κ). σ is also a winning (k + 1)-mark for
F in Sch1,⊆ (κ).

We show F ↑
(k+1)-tact

Sch∪,( (κ) ⇒ F ↑
(k+1)-mark

Sch∪,⊆ (κ). Let σ be a

winning (k + 1)-tactic for F in Sch∪,( (κ). For each countable subset C of κ, let
C + n be the union of C with the n least ordinals in κ \ C. Then for every valid
attack 〈C0, C1, C2, . . .〉 by C in Sch∪,⊆ (κ), it follows that 〈C0, C1 +1, C2 +2, . . .〉
is a valid attack by C in Sch∪,( (κ) as Cn+1 ⊇ Cn ensures that Cn+1 + (n + 1)
includes all the n added elements in Cn +n in addition to at least one more. Thus
τ defined by

τ(〈Cn, . . . , Cn+i〉, n + i) = σ(〈Cn + n, . . . , Cn+i + (n + i)〉)

where i ≤ k is a winning (k + 1)-mark for F in Sch∪,⊆ (κ), considering that σ

ensures that
⋃

n<ω(Cn + n) ⊇
⋃

n<ω Cn is covered when attacked by 〈C0, C1 +
1, C2 + 2, . . .〉.

We show F ↑
(k+1)-mark

Sch∪,⊆ (κ) ⇒ F ↑
(k+1)-mark

Sch∪,( (κ). Let σ be a

winning (k +1)-mark for F in Sch∪,⊆ (κ). Then σ is also a winning (k +1)-mark
for F in Sch∪,( (κ). �

While we have not shown a direct implication between the Menger game and
Scheepers’ original countable-finite game, Scheepers introduced the statement
A(κ) relating to the almost-compatibility of injective functions from countable
subsets of κ into ω which may be applied to both.

Definition 3.6. For two functions f, g we say f is almost compatible with g

(f‖∗g) if |{x ∈ dom(f) ∩ dom(g) : f(x) 6= g(x)}| < ω.
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Definition 3.7. A(κ) states that there exist injective functions fA : A → ω for
each A ∈ [κ]≤ω such that fA‖

∗
fB for all A, B ∈ [κ]ω .

Scheepers went on to show that A(κ) implies F ↑
2-tact

Sch∪,( (κ). This proof,

along with the following facts, gives us inspiration for finding a winning 2-Markov
strategy in the Menger game played on L(κ).

Theorem 3.8. A(ω1) and ¬A(c+) are theorems of ZFC. A(c) is a theorem of

ZFC + CH and is consistent with ZFC + ¬CH .

Proof: The construction of an Aronzajn tree in [3, Theorem 5.9] produced a
witness for A(ω1); this of course implies A(c) under CH . ¬A(c+) is shown by
a cardinality argument in [4]. The consistency result under ZFC + ¬CH is a
lemma for the main theorem in [4]. �

Figure 2. Diagram of Scheepers/Menger game implications
with A(κ)

Theorem 3.9. A(κ) implies the game-theoretic results in Figure 2.

Proof: Since A(κ) ⇒ F ↑
2-tact

Sch∪,( (κ) was a main result of [4], we need only

show that A(κ) ⇒ F ↑
2-mark

Sch∩ (κ). Let fA for A ∈ [κ]≤ω witness A(κ). We

define the 2-mark σ as follows:

σ(〈C〉, 0) = {α ∈ C : fC(α) ≤ 0}

σ(〈C, D〉, n + 1) = {α ∈ C ∩ D : fD(α) ≤ n + 1 or fC(α) 6= fD(α)}.

For any attack 〈C0, C1, . . .〉 by C and α ∈
⋂

n<ω Cn, either fCn
(α) is constant for

all n, or fCn
(α) 6= fCn+1

(α) for some n; either way, α is covered. �

Corollary 3.10. F ↑
2-mark

Men (L(ω1)).
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Figure 3. Diagram of covering properties related to the Menger game

4. Menger game derived covering properties

Limited information strategies for the Menger game naturally define the spec-
trum of covering properties shown in Figure 3. However, we do not know if the
middle two properties are actually distinct.

Question 4.1. Does there exist a space X such that F ↑ Men (X) but F 6↑
2-mark

Men (X)?

We are also interested in non-game-theoretic characterizations of these covering
properties. It has been known for some time that metrizable strategic Menger
spaces are exactly the metrizable σ-compact spaces, shown first by Telgársky in
[8] and later directly by Scheepers in [5]. It is Scheepers’ technique which gives
inspiration to the following.

In the interest of generality, we will first characterize the Markov Menger spaces
without any separation axioms.

Definition 4.2. A subset Y of X is relatively compact to X , or Y is compact in X ,
if for every open cover of X , there exists a finite subcollection which covers Y .

Definition 4.3. A subset Y of X is precompact in X if clX(Y ) is compact.

Some authors use the term relative compactness to denote precompactness,
which causes no confusion in the context of regular spaces.

Proposition 4.4. For regular spaces, Y is relatively compact to X if and only if

Y is precompact in X .

Proof: Shown by Arhangel’skii in [1]; a proof is provided for the convenience of
the reader.

Let U = {Uy : y ∈ clX(Y )} where each Uy is an open set in X containing
y; apply regularity to get y ∈ Vy ⊆ clX(Vy) ⊆ Uy with Vy open in X . Then
{X\clX(Y )}∪{Vy : y ∈ clX(Y )} is an open cover of X , so use relative compactness
to choose a finite subset F of clX(Y ) such that {Vy : y ∈ F} is a finite cover of Y .
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Then since
⋃
{clX(Vy) : y ∈ F} is a closed set in X containing Y , it contains

clX(Y ), and thus {Uy : y ∈ F} is a finite subcollection of U covering clX(Y ).

For the reverse direction, simply take a finite subcover of clX(Y ) to obtain
a finite subcover of Y . �

Lemma 4.5. Let σ be a Markov strategy for F in Men (X), and let O collect

all open covers of X . Then the set

Rn =
⋂

U∈O

σ(U , n)

is relatively compact to X . If σ is a winning Markov startegy, then
⋃

n<ω Rn = X .

Proof: First, for every open cover U ∈ O, Rn ⊆ σ(U , n) is covered by a finite
subcollection of U .

Suppose that x 6∈ Rn for any n < ω. Then for each n, pick Un ∈ O such that
x 6∈ σ(Un, n). Then C may counter σ with the attack 〈U0,U1, . . .〉. �

Definition 4.6. A σ-relatively-compact space is the countable union of relatively
compact subsets.

Corollary 4.7. The following are equivalent:

• X is σ-relatively-compact,

• F ↑
0-mark

Men (X),

• F ↑
mark

Men (X).

Proof: If X =
⋃

n<ω Rn for Rn relatively compact, then σ(n) = Rn defines a
winning 0-mark σ, which of course gives a winning 1-mark. The previous lemma
finishes the proof. �

Corollary 4.8. Let X be a regular space. The following are equivalent:

• X is σ-compact,

• X is σ-relatively-compact,

• F ↑
0-mark

Men (X),

• F ↑
mark

Men (X).

Corollary 4.9. F 6↑
mark

Men (L(ω1)).

Note that for Lindelöf spaces, metrizability is characterized by regularity and
second-countability.

Lemma 4.10. Let X be a second-countable space. Then F ↑ Men (X) if and

only if F ↑
mark

Men (X).
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Proof: Let σ be a strategy for F , and note that it is sufficient to consider
playthroughs with only basic open covers.

We proceed by constructing basic open covers indexed by ω<ω. This will turn
out to emulate the behavior of C well enough that F will be able to define a
Markov strategy from a perfect information strategy by substituting these covers
in the place of perfect information. So if Ut is a basic open cover for t < s ∈ ω<ω,
and V is any basic open cover, we may choose a finite subcollection F(s,V) of V
such that

σ(〈Us↾1, . . . ,Us,V〉) ⊆
⋃

F(s,V).

Note that there are only countably-many finite collections of basic open sets.
Thus we may choose basic open covers Us⌢〈n〉 for n < ω such that for any basic
open cover V , there exists n < ω where F(s,V) = F(s,Us⌢〈n〉).

Let t : ω → ω<ω be a bijection. We define the Markov strategy τ as follows:

τ(〈V〉, n) =
⋃

F(t(n),V).

Suppose there exists a counter-attack 〈V0,V1, . . .〉 of basic open covers which
defeats τ . Then there exists f : ω → ω such that, letting t(mn) = f ↾ n:

x 6∈ τ(〈Vmn
〉, mn)

=
⋃
F(f ↾ n,Vmn

)
=

⋃
F(f ↾ n,Uf↾(n+1))

⊇ σ(〈Uf↾1, . . . ,Uf↾(n+1)〉).

Thus 〈Uf↾1,Uf↾2, . . .〉 is a successful counter-attack by C against the perfect
information strategy σ. �

Corollary 4.11. Let X be a second-countable space. The following are equiva-

lent:

• X is σ-relatively-compact,

• F ↑
0-mark

Men (X),

• F ↑
mark

Men (X),

• F ↑ Men (X).

Corollary 4.12. Let X be a metrizable space. The following are equivalent:

• X is σ-compact,

• X is σ-relatively-compact,

• F ↑
0-mark

Men (X),

• F ↑
mark

Men (X),

• F ↑ Men (X).
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Proof: Each bullet implies X is Lindelöf, so X may be assumed to be regular
and second-countable. �

5. Robustly Menger

To help instigate the topological property F ↑
2-mark

Men (X), we introduce a

slight variant of the Menger game and a related covering property.

Game 5.1. Let Men (X, Y ) denote the Menger subspace game which proceeds
analogously to the Menger game, except that F wins whenever Y ⊆

⋃

n<ω Fn.

Note of course that Men (X, X) = Men (X).

Definition 5.2. A subset Y of X is relatively robustly Menger if there exist
functions rV : Y → ω for each open cover V of X such that for all open covers
U ,V and numbers n < ω, the following sets are V-finite:

c(V , n) = {x ∈ Y : rV(x) ≤ n},

p(U ,V , n + 1) = {x ∈ Y : n < rU (x) < rV (x)}.

Definition 5.3. A space X is robustly Menger if it is relatively robustly Menger
to itself.

Proposition 5.4. All σ-relatively-compact spaces are robustly Menger.

Proof: If X =
⋃

n<ω Rn for Rn relatively compact to X , then for all U , let rU (x)
be the least n such that x ∈ Rn. Then c(V , n) =

⋃

m≤n Rm and p(U ,V , n + 1) =

∅. �

Theorem 5.5. If Y ⊆ X is relatively robustly Menger, then F ↑
2-mark

Men (X, Y ).

Proof: We define the Markov strategy σ as follows. Let σ(〈U〉, 0) = c(U , 0), and
let σ(〈U ,V〉, n + 1) = c(V , n + 1) ∪ p(U ,V , n + 1).

For any attack 〈U0,U1, . . .〉 by C and x ∈ Y , one of the following must occur:

• rU0
(x) = 0 and thus x ∈ c(U0, 0) ⊆ σ(〈U0〉, 0);

• rU0
(x) = N + 1 for some N ≥ 0 and

(i) for all n ≤ N ,

rUn+1
(x) ≤ N + 1

and thus x ∈ c(UN+1, N + 1) ⊆ σ(〈UN , UN+1〉, N + 1);
(ii) for some n ≤ N ,

rUn
(x) ≤ n

and thus x ∈ c(Un+1, n + 1) ⊆ σ(〈Un, Un+1〉, n + 1);
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(iii) for some n ≤ N ,

n < rUn
(x) ≤ N + 1 < rUn+1

(x)

and thus x ∈ p(Un,Un+1, n + 1) ⊆ σ(〈Un, Un+1〉, n + 1). �

Theorem 5.6. A(κ) implies L(κ) is robustly Menger.

Proof: Let fA for A ∈ [κ]≤ω witness A(κ) and fix A(U) ∈ [κ]≤ω for each open
cover U such that L(κ) \ A(U) is contained in some element of U . Then let
rU (x) = 0 for x ∈ L(κ) \ A(U), and rU (α) = fA(U)(α) for α ∈ A(U).

It follows that

c(U , n) = (L(κ) \ A(U)) ∪ {α ∈ A(U) : fA(U)(α) ≤ n}

is U-finite,
⋃

n<ω c(U , n) = X , and

p(U ,V , n + 1) = {α ∈ A(U) ∩ A(V) : n < fA(U)(α) < fA(V)(α)}

is finite. �

We may also consider common counterexamples (specifically, Examples 67 and
63 of [7]) which are finer than the usual Euclidean line.

Definition 5.7. Let RQ be the real line with the topology generated by open
intervals with or without the rationals removed.

Example 5.8. RQ is non-regular and non-σ-compact, but is second-countable
and σ-relatively-compact.

Proof: Note that π is a point that cannot be separated from the closed set Q by
open sets, demonstrating non-regularity. Compact sets in RQ cannot contain open
intervals, and thus are nowhere dense in nonmeager R, so RQ is not σ-compact.
The usual base of intervals with rational endpoints (with or without rationals
removed) witnesses second-countability.

We now will show that [−n, n]\Q is relatively compact. Let U be a cover of RQ

by open intervals with the rationals removed, and let V be the corresponding cover
of open intervals. There exists a finite subcollection of V which covers [−n, n],
so there exists a corresponding subcollection of U which covers [−n, n] \Q. Thus
RQ = Q∪

⋃

n<ω([−n, n]\Q) is a countable union of relatively compact subsets. �

Definition 5.9. Let Rω be the real line with the topology generated by open
intervals with countably many points removed.



Applications of limited information strategies in Menger’s game 237

Lemma 5.10. For each compact subset K of R and open cover U of Rω, there

exists a countable set C such that K \ C is U-finite.

Proof: Let V be the corresponding open cover of R where U may be obtained
by removing countable sets from members of V . Choose a finite subcollection G
of V which covers K, and then note that the corresponding finite subcollection F
of U covers K \C where C is the finite union of the countable sets removed from
sets in G to obtain the sets in F . �

Example 5.11. Rω is non-regular, non-second-countable, and non-σ-relatively-
compact, but F ↑ Men (Rω).

Proof: If S ⊇ {sn : n < ω} for distinct sn, then Um = Rω \ {sn : m < n < ω}
yields an infinite cover {Um : m < ω} with no finite subcollection covering S,
showing that all relatively compact sets are finite, and Rω is not σ-relatively-
compact. The set Rω \Q is open, but the closure of any open subset must contain
a rational, so this space is not regular. Finally, the space is not second-countable,
since for any countable collection of nonempty open sets {Un : n < ω}, we may
choose pn ∈ Un and note Rω \ {pn : n < ω} is an open set not containing any Un.

Define the winning strategy σ for F in Men (Rω) as follows: let
σ(〈U0, . . . ,U2n〉) = [−n, n] \ Cn where Cn = {ci,n : i < ω} witnesses Lemma 5.10
for [−n, n] and U2n, and let σ(〈U0, . . . ,U2n+1〉) = {ci,j : i, j < n}. �

We will soon see that, assuming A(c), F has a winning 2-Markov strategy for
Men (Rω) as well.

Proposition 5.12. If X =
⋃

i<ω Xi and F ↑
2-mark

Men (X, Xi) for i < ω, then

F ↑
2-mark

Men (X).

Proof: Let σi be a 2-Markov strategy for F in Men (X, Xi).

We define the 2-Markov strategy σ for Men (X) as follows:

σ(〈U〉, 0) = σ0(〈U〉, 0),

σ(〈U ,V〉, n + 1) =
⋃

i,j≤n

σi(〈V〉, 0) ∪ σi(〈U ,V〉, j + 1).

Let 〈U0,U1, . . .〉 be a successful counter-attack by C against σ. Then there
exists x ∈ Xi for some i < ω such that x is not contained in

σ(〈U0〉, 0) ∪
⋃

n<ω

σ(〈Un,Un+1〉, n + 1).
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It then follows that x is not contained in

σi(〈Ui〉, 0) ∪
⋃

n<ω

σi(〈Ui+n,Ui+n+1〉, n + 1)

and 〈Ui,Ui+1, . . .〉 is a successful counter-attack by C against σi. �

Theorem 5.13. Assuming CH or just A(c), F ↑
2-mark

Men (Rω).

Proof: It is sufficient to show that [0, 1] ⊆ Rω is relatively robustly Menger.
Let fA witness A(c) for A ∈ [[0, 1]]≤ω. For each open cover U , let AU witness
Lemma 5.10 for [0, 1] and U . Let rU (x) = 0 if x ∈ [0, 1] \AU and rU (x) = fAU

(x)
otherwise.

It follows then that

c(U , n) = [0, 1] \ {x ∈ AU : fAU
(x) > n}

is U-finite and

p(U ,V , n + 1) = {x ∈ AU ∩ AV : n < fAU
(x) < fAV

(x)}

is finite. �

The following is left open:

Question 5.14. Are all 2-Markov Menger spaces robustly Menger?
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