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DENSITY ESTIMATION VIA BEST L:-APPROXIMATION
ON CLASSES OF STEP FUNCTIONS

DIETMAR FERGER AND JOHN VENZ

We establish consistent estimators of jump positions and jump altitudes of a multi-level step
function that is the best L?-approximation of a probability density function f. If f itself is a
step-function the number of jumps may be unknown.

Keywords: argmin-theorem, density estimation, step functions, martingale inequalities,
multivariate cadlag stochastic processes

Classification: 62F10, 62G07, 60G44

1. INTRODUCTION

Let Xi,...,X,, beiid. random variables defined on a probability space (0,2, P) with
values in a compact interval [I, 7] and with bounded probability density function (pdf)
f :[l,7] — R and cumulative distribution function (cdf) F. Furthermore, let there
exist a unique step function with d + 1 levels and domain [l,7], that has minimal L2-
distance to the pdf f. We call this step function a best approzimation of the pdf f.
The goal is to estimate the positions and altitudes of the jump discontinuities of the
best approximating step function. As main result consistency of our estimators will be
established.

In the following, we define the problem more formally and thereby introduce necessary
notation. In general, a (d+1)-levels step function on the domain [I, r] with jump positions
t1,...,tq and levels ag, a1,...,aq can be written as

d
fra(x) = a0l () + Zail(ti,tprl](l')v zellr], to=1 togp1:=r,
i=1

t=(tr, .. tq) € Ag:={(t1,...,ta) € (I,") :t; < ... <tg},
a=(ag,...,aq) € Ryt :={(ag,...,aq) € R :a; #a; 11, i=0,...,d—1}.
We define )
Dit.a) = [ (f(@) = frala))? da &)
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and note that /D(t,a)) is the usual L2-distance between f and f; ,. Furthermore, let
there exist a unique minimizer (7, «) of D(t,a), i.e.

(r,a) = argmin{D(t,a) : t € Ay, a € Rgy1}- (2)

In other words, f; o is the unique best approximation of f w.r.t. the L?-distance. The
function fr, has jump positions 7 = (74, ..., 74) and levels & = (ao, . .., aq). The main
issue of the present paper is to construct consistent estimators (7,,, o) for (7, ). This
immediately leads to a density estimator f; ., of the step function f;,. We later
show that both f. .. and f;, are indeed density functions. In particular, f; o, is
a histogram, where the cells and the pertaining cell-heights both are random.

Suppose the pdf f a priori is known to be a step function with d jumps. Then the
best L2-approximation f; o of f coincides with f and consequently our estimate f, 4, of
fr,a is an estimate of f. In fact, it is a tailor-made solution for such types of underlying
densities f. Moreover, even if the pdf f is not a step function, the function f, .,
estimates its best approximation, which in turn gives the low, middle and high density
regions. This classification can be used as an initial step in the usual kernel density
estimation, which makes the statistician to adapt the bandwidth in the corresponding
regions.

As explained above, our method will be particularly useful if the unknown pdf f itself
is a step function. It is to be noted that the usual kernel density estimator is continuous
and therefore performs poorly in that situation. Of course, it may happen that we do
not know the number d of steps. Then we are able to present an estimator for d.

In the next section 2 we derive appropriate estimators (7, ) of (7, ). Weak and
strong consistency of these estimators for (7, «) is the main result in section 3. Our proofs
rely on an argmin-Theorem for multivariate cadlag processes recently published in [6].
Moreover, we prove and apply a generalization of an inequality for sub-martingales in
continuous time which originally can be traced back to Birnbaum and Marshall [2]. Here,
martingale properties of the empirical process and probability bounds for its oscillation
modulus are of great importance.

Section 4 focuses on the case that f is a step-function with unknown number d of
jumps. We introduce an estimator for d and prove strong consistency. In section 5 we
report on a simulation study.

2. ESTIMATION OF JUMP POSITIONS AND JUMP ALTITUDES OF THE BEST
APPROXIMATING STEP FUNCTION

In this section, we derive estimators for the values of (7,«) given by under the
assumption that [I,r] is known. The next proposition is our starting point.

Proposition 2.1. The solution (7,a) € Ag X Rg41 of the minimization is

T=(m,...,74) = argmax M(t1,...,tq) (3)
(t1,...,ta)EAG

with

d 2
M(ty, ... tq) = Z{F(ti;f—i(ti)}7
i=0 i+l i
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and

F(ri1) — F(r:
a=(ag,...,aq) with ajzw, j=0,1,...,d, (4)
Tj+1 — Tj

where 79 :=1, 7441 :=7.

Proof. We rewrite

t1+1 )
/ —a;)°dz
¢

i

||
.
a M&
=)

(/tl+1 ) dz — 20, {F (tit1) = F(t:)} + ai®(tiv1 — ti)>

=

d
:/ f2 QT—QZGZ{F z+1 (ti)}—kZa?(tiH—ti).
=0

l

Consequently, for fixed t € Ay, we have

dD .
J
By equatlng (t a) to zero for every j =0,1,...,d, one obtains
F(tjy1) — F(t;
ajzaj(t)zw, j=0,1,...,d. (5)
b1 =t
Since the Hessian is positive definite it follows that (ag(t),...,aq(t)) minimizes D(t,-)

for every fixed t € Ay. Thus from Proposition 1.35 in [12],

7 = argmin D(¢,agp(t),...,aq(t)),
teEAg

and « is given by through inserting 7 into . From 7 we have

r d Y — ()12
D(t,ao(t)7 o ,ad(t)) _ /l f2(.1‘) do — Z {F(terl) F<tz)} ) (6)
=0

tiv1 —t;

Because fl f?(x) da is constant w.r.t. t and the square root function is strictly monotone
increasing, the mlmmlzatlon of D(t,ag(t),...,aq(t)) takes place at 7 given by (). O

As a consequence of Proposition we can easily verify that the step function f;,
is indeed a density function:

d d
" " F(71j41 (1)
/l fﬂa(u)du:/l Zajl(Tj’Tj+1 Z#(Tj_i_liTj):l' (7)
3=0

§=0 Ti+1 =75
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Let
1 n
Fo(z) := - ; 1{xi<z}» ZTER,

be the empirical df pertaining to Xi,...,X,. By replacing the true cdf F' in with
F,,, we obtain the empirical analogue M,, of M:

d
My (t, ... tq) == Z{Fn(tii) __?(ti)}Q. @)
i=0 i+1 i

Moreover, we restrict the domain Ay of maximization to certain subsets
Ap g C Agsuch that A, 4 7 Ay as n — oo. (9)
Thus every supremizer (as defined in [6]) of M,,

Tn = (Tins---sTdn) € argsup  My(t1,...,tq), (10)
(tlv-“vtd)eAn,d

is a reasonable estimator for 7.
Additionally, a consistent estimator for the vector « is needed. We propose the
following one that is induced by ({).
Fo(tjs1,n) = Fu(Tin)

an = (Qon, .- an) Wwith aj, = , j=0,1,...,d, (11)
Tj+1,n — Tjn

where 19, = [, Tgy1,n = r. We remark that the step function f; ,, is a density
function because the calculations in remain valid if 7 and « are replaced with their
respective estimators 7, and a,.

Observe that M, and M can be considered as random elements in the multivariate
Skorokhod space D(A,) as defined in [6]. This can be seen directly from the definition
upon noticing that every cdf and every empirical df is right-continuous with left-hand
limits (rcll), and continuous transformations of rcll functions are again rell.

3. WEAK AND STRONG CONSISTENCY

There are two basic assumptions. Firstly, it is required that

7 = argmax M (t)
teAy

is not only unique (as a consequence of ), but actually is well-separated in the sense
that
sup M(t) < M(T),
te0Ag
where 0Ay denotes the boundary of Ay. Secondly, we need that f is bounded away
from zero and infinity, that is

p:= inf f(z)>0 and |[|f]:= sup |f(z)| < oo. (12)

ze(l,r] z€[rl]
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(If further information on 7 is available one can drop this assumption as we will see later
on.) The following theorem is the main result in this chapter. Here, we deal with two
types of subsets A, 4, namely for every positive 3 let

Apg={tel,n tig—t;i>nPvi<i<d-—1} (13)
or alternatively,
Apg:={tel,r? ti—t; >nPV0<i<d} (14)

Recall that by definition

Tn = (TLny .-+, Tdn) € argsupM,(t),
tEAL 4

Theorem 3.1. Assume that 7 is the well-separated maximizing point of M and that f
is bounded away from zero and infinity.

If A, 4 is of type , then

TniT, n — 00, Vo< B<1. (15)

If Ay g4 is of type (14), then

Tn — T a.8. N — 00, YO<p <. (16)

The proof of Theorem [3.1] includes several steps that will be taken subsequently. The
main idea of the proof is to make use of an argmax-Theorem recently published in [6]
Theorem 3.3]. In short, this theorem guarantees that if

sSup |Mn(t) - M(t)| — 0, n— oo, (17)

tEAL a4

in probability or almost surely then every supremizer 7, € A, 4 of the process M,
converges to the true vector 7 in probability or almost surely, respectively. Therefore,
the remainder of this section deals with checking the condition . As a start, the
following lemma gives an upper bound for | M, (t) — M(t)].

Lemma 3.2. There exists a constant v > 0 such that for all t € Ay

d
_ /2 lovn (tig1) — o (ti)]

where
an(s) == Vn(Fu(s) — F(s)), s € [I,7],

denotes the empirical process.
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Proof. Because of the norm equivalence in R9*! there exists a v > 0 such that
[|[z||2 < v -||x||; for all z € RIFL,
Now for ¢t € Ay, let = (xg,....,xq4) and y = (Yo, - . .,ya) be defined by

T = Fnltiva) - F"(ti), 0<i<d,

Vi — 1

and
n ::M7 0<i<d.
Then
| Ma(t) =M (#) | = | llzlla =yl | < llo=yll2 <7 llz —ylh
and
o=yl = 37 Plteen) = Pltin) = (Fult) = Pt)]
resulting in the right-hand side of . |

In what follows, we consider the sum on the right-hand side of a little more in
detail. To begin with, we confine ourselves to considerations for ¢ € A, 4 defined in
(13). Now the following upper estimates hold for the ith summands of the sum on the
right-hand side of , where for convenience we put

8, =m0,

Recall that tg = [, tg41 = r. Further notice that F,,(l) = F'(1) = 0and F,,(r) = F(r) = 1.
u

lan (t) —an (to)] _ lan(t)| Jan ()]

Pim0s O = U < e -
e 0<i<d: lamliz—anltll gy lon@—an(u)]
Vi I<u<v<r Vo=u
v—u>0,
i — o lonCar)—on(ta)l _ Jan(td)l lon ()]
o i=d: N —mfliggrm.

Thus by Lemma we obtain for A, 4 of type (13):

1
= sup |M,(t)—M@)| <A,+(d—1)-B,+C,, (19)
Y teAn.a
where
A, i=n"? sup Ln(u)l, (20)
l<u<r Vu — 1
B, :=n /2 oy ‘O‘n(v) - an(“”7 21
I<u<v<r VU —Uu ( )
v—u>dy,
C,:=n""? sup jn ()] (22)

I<u<rV7T — u
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Similarly, if A, 4 is of type (14) then
1
= sup |Mu(t)— M@#)| < (d+1)- By. (23)

Consequently, by and , it suffices to prove that each of the terms A,,, B,, C,
converges to zero in probability or a.s., respectively, in order to show condition .

For this, we need the following lemma, which generalizes the Birnbaum-Marshall
inequality, see [13, p.873, Inequality 4]. The proof of the lemma is based on the Chow
Inequality [7, Theorem 6.6.1].

Lemma 3.3. Let (S(u),§(u)), v € [a,b), 0 < a < b < oo, be a submartingale
with trajectories that are right-continuous with existing left-handed limits (rcll). Let
S(u)t := max{S(u),0} and H(u) := E(S(u)t) < oo, u € [a,b). Furthermore, let
w : [a,b) — (0,00) be rcll and monotone decreasing. Then for all A > 0

a<u<b u,/"b

b
P ( sup w(u)S(u) > )\) <At (/ H(u)(—w)(du) + lim w(u)H(u)) .

Proof. We define
Iy, ={ug:=a+(b—a)k27™: 0 <k <2™ —1}.
Note that ug = a, vy \, a, and usm_1 /" b as m — oo. Moreover, put
Sk = S(ug), Tk =F(uk), 1<k<2™ -1
For every function f : [a,b) — R rcll, we have that

sup f(u) = sup sup f(u).
u€la,b) m>1u€l,

Conclude that

p(\) =P (aililibw(“)s(“) > )\> =P gl {féli w(u)S(u) > A}

(24)

m— 00 1<k<2m

= lim P( max  w(uy)Sk > )\>.
By the Chow Inequality, we obtain

lim P< max  w(ug)Sg > )\>

m— o0 1<k<2m—1

S)\_ln}EHOO > (wluk) — wluper) E(ST) + w(ugm—1)E(Sgn ). (25)
1<k<2m—2
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Note that H(ux) = E(S}). Define v(u) :== —w(u), u € [a,b). Then

Y (wlur) = wlugir)) H(ug)

1<k<2m_2

= > (wluj1) —w(yy)) H(u;q) (26)
2<j<2m—1

= Z (v(uy) = v(uj—1)) H(uj-1) = (v(u1) — v(uo)) H (uo).

Since u; \, a as m — oo, and ug = a, it follows that
(v(u1) — v(ug))H(ug) — 0, m — oo. (27)
On combining 7 , , and , we arrive at
p) <A m Y (—w)(uy) — (—w)(ujo1)) H(uj_1) + lim w(u)H(u)

m— oo u,/'b
1<5<2m—1 7

The first summand in brackets is in fact the integral f: H(u)(—w)(du). O

By the quantile transformation we can w.l.o.g. assume that
Xi = F_l(Ui)7 i > 17

where F~! denotes the quantile function of F and U;,% > 1, are i.i.d. random variables
uniformly distributed on (0,1). Let

Gn(x) = n_l Z 1{Ui§r}u T e (07 1)7
i=1

be the uniform empirical distribution function. Then the following simple relation
F,(x) =G,(F(z)), z€R, (28)

will be very useful in our proofs below. Similarly, we will benefit a lot from the inequal-
ities

pv—u) < F(v) = Fu) <[|f[|(v-u) Vi<u<v<r, (29)
which follow from .

Lemma 3.4. Assume that holds, that is f is bounded away from zero and infinity.
Then:

(2) C, =n"2 sup lan()| P, 0, n — oo.
l<u<r ¥
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Proof. According to itisu—1>||f|"Y(Fu)—FQ0) = ||fI["*F(u) Ywue(lr),
whence in combination with

o R - F@) e |Ga(F(w) - F(w) o G~
An B l<uI<)r \/m = Hf| l<uI<)r F(u) = Hf||0<ur<)1 \/a

(30)
Now
|G (u) — ul
sup ————=—— < max{an,, b}, 31
sup I < {a, ) (3
where
|G (u) — ul |G (u) — ul
ap:= sup ——————, b,:= sup ———,
O<u<Uin, VU Uin<u<i VU
with Ui, = minj<;<, U; the first order statistic in the sample Uj,...,U,. From

G (u) =0 for all u < Uy, infer that

0<a, <VUpy, —0 as, (32)

where the convergence follows from the First Borel-Cantelli Lemma observing that
P(|Ur.n| > €) = (1 — €)™ for all e € (0,1] and n € N.
As to the second supremum b,, observe that for every ¢ > 0 and ¢ > 0:

P(by > €) < 7 + Cn, (33)
where
1 1
Tn = P (bn >€, Upp > > y Cui=P (Ulzn < > .
ne ne
Now

|G (u) — u)|
n< P sup > € 34
K (1/(nc)§u<l Vu (39

and further

|Gn(u) —u)|
P sup ———=——— >¢€
(1/(nc)<u<1 \/E

P( sup Gn(u)—u|.1—u>€>
1/(

_ 2 — )2
P sup (|Gn(u) u> : 1-w >é .
1/(ne)<u<1 1-u u

2
Setting Sy, (u) := (m) and w(u) := % gives

IN

1—u

Yo < P < sup  Sp(vw)w(u) > e2> .
1/(

nc)<u<l
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Gp(u)—u
1—u

It is well-known, confer Koul [I0, section 2.4.3], that V,,(u) := , uwe0,1),is a
martingale with rcll trajectories, hence S, (u) = V,,(u)? is a non-negative submartingale
with rell trajectories. Let Hy,(u) := E(S,(u)t) = E(S,(u)) and note that u — w(u) is
rcll and monotone decreasing. Then Lemma yields

o[ B .
Tn <€ </1/(nc) H,(u)(—w)(du) + 711/1111 w(u)Hn(u)> . (36)

Since EG,,(u) = v and Var(Gp(u)) = n~tu(l — u) it follows that H, (u) = E(S,(u)) =

U
%ﬁ, whence w(u)Hp(u) =n~'(1 — u) and thus

lim w(u)Hy,(u) = 0. (37)

Integration by parts yields

1

[ ot @)
1(ne) J1

/ H, () (—w) (dus) = Hp (u)(~(u))
1 /(nc)

/(ne)

Obviously,

=n"(1-1/(nc)) <n~h
1/(ne)

Furthermore, since H, (u) = n~1(1 —u)~2, we have that

Hy(u)(—w(w))

- / (—w(u))H,(du) =n"* / u”tdu = n~"log(ne). (39)
1/(nc) 1/(nc)

Finally, looking back over (36 and (37) - (39), we can conclude that
1 1
Yo < €72 < log(ne) + > — 0, n—oo, Ve>0. (40)
n n

In view of (,, recall that nU;.,, converges in distribution to the Exponential with param-
eter 1. Thus

1
lim ¢, = lim P(nUy., < E) =1-ec¢Y¢ Ve>o0. (41)

Since , and hold for all ¢ > 0 taking the limit ¢ — oo yields that

Consequently, by and we obtain that

Gn(u) —
sup [Gn(w) = ul 20, n— oo, (42)

O<u<l1 \/ﬂ
which finally by yields part (1) of the lemma.
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Similarly as in the derivation of we obtain that

G (1) — (1 —u) — (1 —
o < VT g St = VI s (=0t s

Since (U;: 1 <i<mn) £ (1-U;:1<i<n)it follows that

(Gn(l—uk):1§k§q)é(1—Gn(uk—):1§k§q) VOi<u <---<us<1l VgelN
(44)
If up = up,m == k27™,1 < k < 2™, then for every z € R

L R

> )

= PGB N > z)
=$@mp<1ggi§mw >x) by (@)
G(u—) —
T )
whence
qup [Gn=w) — (A=)l g [Cnlu) )l [Gnw) — )

0<u<l Vu 0<u<l Vu 0<u<l Vu ’

where the last equality holds because G,, is rcll and so is the ratio as well. Thus
and immediately yield the second part (2) of the lemma. a

Lemma 3.5. Assume that is f is bounded away from zero and infinity. If §,, = n=2°
with 0 < 8 < 1, then:

B, =n-V/? syp () an(wl

I<u<v<r VU —U

v—u>dn,

— 0 a.s. asn — oo.

Proof. Let &, be the uniform empirical process, i.e.,

Gnt) == VA(Ga(t) 1), L €[0,1].
It follows from the inequalities that

B, =n~/2 sup |an (v) — an(u)] < VIIf]] n-1/2 sup |0t (v) — G (u)]

b)
I<u<v<r VU —U 0<u<v<l VU —Uu

v—u>dy, v—u>dn

(45)

where

On 1= pon = pn~20.
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Observe that

|an(v) — an(u)]

sup ——————— < sup sup
O<u<v<l v—u 0<s<1§, <u<l—s NG
v—u>0,

Now let &y, := [n”], s €(0,1), u € (6,,1— s).

Case A: s = j/k, for some j =0,1,...,k, — 1. Then

| (s + 1) — @n(s)] | (G + ) — @ (£

0

< max sup

Vu T 0<j<k, Su<u<i— i Vu

Case B: s ¢ (kj—n, j,j"l) for some j =0,1,...,k, — 1. Then

| (s + u) — an(s)]

I Y N
_an(kn—i—u) an(kn)—l—an(kn o

] _ )
an(k*"‘“)_an(k*) +

Therefore,

|54n(/gi + u) - @n(ki)l

2
< max sup n o + —wy,
0Sj<kn 5 cu<1—L Vu Von

where

wn(a) = ‘ §UF< |G (u) — @ (v)], a€(0,00),

) — an(s) + an(s+u) — o?n(i +u

an (s +u) — o’zn(ki +u

209

denotes the oscillation modulus of &,,. For verifying inequality , note that |s— ki| <

ﬁ and \ﬁ—&—u—(s—i—uﬂ < k%
Taking Case A and Case B together, we arrive with and at

Bn < V|Ifll(en + dn),

where
@ + ) — ()
Cpni=n max su
! 0<j<kn g <u<11)—ki Vu 7
1 2 1
dp :=n"2——w,(—)

(48)
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First, we prove ¢, — 0 a.s. as n — oo. For this, let € > 0. Now

P(c, > €) Z Din (49)
0<]<k
with
(- 4 u) — an (L
Pjn =P n"r  sup 1%z, )~ an(z,) >el. (50)
Sn <u<l—L Vi

Next we use the differential property of the uniform empirical process:
{Gn(y+u) —an(y):0<u<1—y} £ {@u(u):0<u<1-y}e D011y

for every fixed y € [0,1]. This is a simple consequence of the stationarity of the in-
crements of @, (confer, e.g., Dudley [4], Lemma 1.14(b)) and of Theorem 12.5 (iii) in
Billingsley [1. Infer from that

-1 | (u)|
pin=P|n 2 sup —_
! 5n<u<1fé \/ﬁ
<P sup [an(w)] >e/n|+P| sup [an(w)] > evn
So<u<ijz VU 1/2<u<t VU
=:1,(€) + sn(€) (51)

oy (u))| | (u)]
ro(e) < P sup >1/2ey/n | + P sup > 1/2ev/n
" <5n§u§1/2 Vu Sa<u<ijz VU

=7 () + 1, (€), (52)

we can apply Corollary 1 in Shorack and Wellner [I3], p. 446 (with b := § := 1/2 there).
It says when 0 < a < 1/4, and A > 0 one has the inequality

at(u
P s Bt ) < Blog(1/(20)) exp{—5722) (53)

where vy~ =1 for all A\ > 0 and v > 3/4y/na/\, if X > 3/2y/na. Put X :=1/2¢\/n and
a:=06, =pn < 1/4 for some ng € N. Then by we have that

7 (€) < 6log(1/(20)n??) exp{—1/32¢>n} ¥V n > ny. (54)

As to 1 (e) observe that A > 3/2y/na iff n=? < 1/(3,/p)e. Consequently, there exists
some integer nq = nj(€) such that

r(€) < 6log(1/(2p)n*?) exp{—3/64,/pen' P} V¥V n >n,. (55)
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Combining and results in

r(€) < 6log(1/(2p)n?) (exp{—1/326°n} + exp{—3/64\/ﬁen1_ﬁ}) Yn >mne, (56)

with ng 1= ng Vn1 € N. Since sup; o<1 % < ﬂsupogugl |cv, (u)] Massart’s [11]
inequality yields that
sn(€) < 2exp{—ne?} Vn>1. (57)

From and it follows that
Pey, > €) < kp(rn(e) + sn(e) < nﬂ(Tn(e) + sn(€)),

whence (b6)) and guarantee that

ZP(cn>6)<oo Ve >0

n>1
form which in turn we can conclude with the First Borel-Cantelli Lemma that
cn — 0 as. asn — oo. (58)

We now prove that d,, — 0 a.s. as n — oco. For every € > 0 we obtain:
P(d, >2) =P (wn(k,;l) > ex/ngn) = P (wn(a) > \Wa), (59)

where a := k! € (0,1/2] for all n larger than some nz € N and X := e\/nd,k, > 0.
Therefore we can apply the inequality of Mason, Shorack and Wellner [13] p. 545] (with
§ :=1/2 there). Tt gives

P (wn(a) > M\a) <160 a™ ' exp{—1/32 A* (A\/v/na)} (60)
with function 1(u) := 3 [(1 4 u)log(1 + u) — u] ,u > 0. Inserting a and A in yields

P (wn(a) > )\\/&) < 160 ky, exp{—1/32 e®ndpkn (e kn\/6,)}. (61)
By Proposition 1 on p.441 in [13] ¢ is strictly positive and decreasing on (0, 00). Since

kn/ 6, < /P the factor 9 (ekn\/5n> is greater or equal to 1(ey/p) > 0. Moreover,

kn, > (1/2)nP for all n larger some ny € N and so né,k, > (1/2)pn'~". Consequently,
we can infer from and that the following inequality holds:

P (d, > 2¢) < 160n” exp{—L n'""} Vn>ns

with positive and finite constant L = —g; pp(e,/p) and natural number ns = max{ns, n4}.
Thus, with the First Borel-Cantelli Lemma we arrive at

d, — 0 as. asn— oo, (62)

which in conclusion with and gives the desired result. g
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Now we are able to prove Theorem [3.1]

Proof. [Theorem We make use of Theorem 3.3 and Remark 3.1 in [6]. In the
sequel, the validity of the assumptions there are verified. Firstly, A, q T Aq for A, 4 of
type and . Thus in particular in both cases

lim inf An,d = Ad.

n—oo

Secondly, as a result of and Lemmas 3.4 and 3.5 , we see that

sup |M,(t) — M(t)] L0, n—oo, if Ap.q is of type (13),

tEAG
and by and Lemma 3.5

sup |[M,(t) — M(t)] = 0 as. asn — oo, if A, 4 is of type (14).
tEAd,n

Thirdly, for every n € N the estimator 7,, is a supremizing point of the restriction
of M, on A, 4, and 7 is the well-separated maximizer of M on Ay. Herewith, all
requirements of Theorem 3.3 in [0] are fulfilled, which yields the weak and strong
consistency of 7,. a

Assume the statistician has knowledge about the minimal distance between the jump-
positions in the sense that

min{r;41 — 7 :0<i <d} >m, (63)
where m > 0 is known. Then 7 lies in the region
A=t =(tr,...,tq) € (I,r)% : tiys —t; > m},
whence a reasonable estimator is now given by

Tn = (Tins -+ Tdn) € argsupM, (t).
teA

In this case we need no boundedness condition on f. Moreover, the mathematical
treatment is very easy.

Theorem 3.6. If 7 is the well-separated maximizing point of M, then

T, — T a.s. as n — oo.

Proof. It follows from Lemma [3.2] that

sup M (1) ~ M ()] < 7\/%2@ +1)sup B ) — Pl
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where the right-hand side converges to zero (for every df F') with probability one by
the Glivenko-Cantelli Theorem. Thus, an application of Theorem 3.3 in [6] finishes the
proof. O

Recall the definition of «, in . Its natural counterpart is given by

Fn o n) Fn A'n .
G = (Ggn, .. Ggn) With 6, = (TJ;L ) - (7jm) j=0,1,...,d, (64)
j+1in = Tin

where Ty, =1, Tqg41,n =17

Corollary 3.7. Assume that 7 is the well-separated maximizing point of M and that
f is bounded away from zero and infinity.
If A, 4 is of type , then

(T, Qtn) A (r,a) n— oo, Vo< @<l (65)
If Ay g4 is of type (14), then
(T, ) — (T,0) as. n— oo, Vo< p<l. (66)

Proof. b,
For the proof of it suffices by of Theorem to show that «,, — «a. Since

|Fn(Tjn) — F()] < [Fa(Tjn) — F(mj0)| + [F(7j0) — F(75)]
< Sup |[Fn(s) = F ()| + [F(7jn) — F(75)]

P
— 0, n — o0,

one can deduce from the Glivenk-Cantelli Theorem and of Theorem that
Fo(Tjn) Lt F(rj), n — oo, j = 0,1,...,d + 1, upon noticing that F' is continuous.
Therefore, by the continuity theorem for convergence in probability

P Frj) = F(ry)

Qjn —" n—o0, j=0,1,...,d,
Tj+1 = Tj

From Proposition we know that a; = W, 7=0,1,...,d. To sum up it
J J

follows that (7, cv,) Eit (1,a), n — oo as desired. The proof for follows in the same

line. ]

Similarly, for A with known m given in we obtain analogously as above that the
following corollary is true.

Corollary 3.8. If 7 is the well-separated maximizing point of M, then

(Tny G) — (1,0) as. n— oo. (67)
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Remark 3.9. Kanazawa [§] uses the Hellinger-distance in place of the Ly-distance, i.e.,

he considers
= [ WF@ = ffraw)?as

d

(1,a) = argmin{f?(t,a) : t€ Ay, a € Ry, Z a;(tiy1 —t;) =1}
i=0

and

The corresponding minimization problem can be solved by the method of Lagrange
multipliers and gives

F=(1,...,74) = argmax M(ty,..., 1),
(t1,...,ta)EAG

where

. d 1+1 x)dz)?
Wt ta) = |3 VS (65)

=0 Z+1 o t

Comparing M with our M in (3)) we see that f is simply replaced by v/f. Now, Kanazawa
[8] makes a further transformation based on

tit1 tit1 F(tit1)
/t - VI@)de= / (@) F(de) = / (F(F~Y(u) "2 du
and similarly
F(tiy1)
tig1 —t; = / (F(F~Y(u))"* du.

F(ts)
Therefore, ~
M(ty,... tg)* = C(F(t1),..., F(tq))
with pz+1 -1 -1/2 4
o (f(F™(w)) u
(Preeba) = Z T ) T du
Let

m=(m,...,mq) == argmax C(p1,...,pd)
0<p1<...<pa<1
Since F is continuous and strictly increasing the map (t1,...,tq) — (F(t1),...,F(tq))
is a bijection, whence
T =F(7), 1<j<d,

or equivalently
Fi=F"Yr;) 1<j<d. (69)

Kanazawa [§] motivates an empirical analogue C,, of C' which is based on the spacings
of the observations X;. This leads to the estimator

Pn=P1ns---,Pan) = argmax  Cyp(pi,...,pd)-
O0<p1<...<pa<1
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He proves that

Dn LN T, I — 00. (70)
In view of a reasonable estimator 7, = (71, ..., 74n) for 7 is given by
Tjn = F (i), 155 <d

For the proof of the consistency he requires (amongst others) that F~1 is twice
continuously differentiable with first derivative such that 0 < m < (F~1)’ < M for all
u € [0, 1] with constants m and M, confer A.1-A.4 in [§]. In this case F,; ! converges to
F~1! uniformly on (0,1) with probability one. Consequently, one obtains from (70 that

. P .
Tn — T, N — OO.

Note that it is cannot be taken for granted that 7 = 7. In fact, this is not true in general.
To see this consider d = 1 and the density

flx):=(5—-2?)/12, ze€[-1,2].

Here, 71 = 1.25, whereas 71 = 1.34087. (The pertaining levels are oy = 0.380208, ; =
0.192708 and & = 0.3751114, &y = 0.177895, respectively.)

On the other hand, if f = f; , is a d-step function, then (7, @) = (7, &), because then
0=D(r,a) < D(t,a) V (t,a) € Ag X Rgs1

and
0=D(r,a) < D(t,a) VY (t,a) € Agx Ry

upon noticing that the Lo-distance between two step-functions is zero if and only if both
coincide and the same holds for the Hellinger-distance.

However, we would like to point out that the case f = f. , is excluded by Kanazawa’s
differentiability assumption on F~!.

If f is continuous there is no correct number of steps as Kanazawa [9] points out.
As a consequence to obtain a consistent estimator d should depend on the sample size
n. Kanazawa [9] suggests a sample-based d = d,, and shows that d,, ~ \(f)n'/? in
probability and gives an explicit formula for the functional A(f).

Remark 3.10. Recall that our estimators are specifically designed for densities f = fr o
that are d-step functions with known number d of jumps. Our approach is global in the
sense that we do not estimate f locally at each point x € [I,r] as it is done in kernel-
density estimation. In particular, no smoothing parameter is involved in contrast to the
problem of bandwidth-selection for kernel-density estimators. On the other hand, here
d may be unknown, confer, e.g., Chu and Cheng [3]. We treat this case for our global
approach in the next section.
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4. ESTIMATION OF THE NUMBER OF STEPS

Throughout this section f is a step-function with unknown number d of steps. We wish
to estimate the true value dp of d under the additional information that dy < d, where
the upper bound d is known. Notice that our involved functions depend on d, that is

D=DD M =MD =70 =@ )N, = My(bd),Tn = T»,(Ld)7an = a%d). Define

d, := argmax M® (r(D),
1<d<d

Theorem 4.1. Assume for every d € {1,...,d} that 7(® is the well-separated maxi-
mizing point of M (9 and that a(® > 0 (componentwise) as well as A, 4 is of type 1'
Then

P(d,, = dy for eventually all n € N) = 1. (71)

Proof. Define Q,(d) := MY (#\?) and Q(d) := M@ (@), 1 < d < d. Observe for
each such d we have that:

Qn(d) = Q(d)| < sup [MD(t) = MO (1)| + |MD(7() — M D (D).
[ASTANS

By and Lemma 3.5

sup [MD () — MD ()] -0 as. as n — co.
tGAdm,

An application of Theorem yields that Tr(Ld) — 7@ a5, whence by continuity of M (%)
we see that @, (d) — Q(d) a.s. Since there are only finitely many d it follows that

sup |Qn(d) —Q(d)] — 0 as. (72)
1<d<d
Let || - || denote the Ly-Norm. Notice that f = fT(d0)7a(d0)7 since dg is the true number

of steps. By definition of D= DWW it is

=0, d=do

DWW (7@ o) = | fr0) a0) — fra aw|? { >0, d + do, (73)

where the second relation holds, because the Lo-distance between two step-functions is
zero if and only if both coincide as already stated above. On the other hand, it follows
from @ with ¢ := 7(4) that

DI, @) — || 2 = M ()2

and thus guarantees that

— AL d=do
Q(d){<||f|, 4+ do. (74)
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So, dy is the unique maximizing point of () and in combination with Corollary 2.3
of Ferger [5] ensures that d,, — dy a.s. In fact, we arrive at the desired result , for
d,, and dp are natural numbers. O

The following result yields a consistent estimate for the positions of the jumps and
the pertaining levels if the number of jumps is unknown, but with known upper bound.

Corollary 4.2. Under the assumptions of Theorem [£.1] it follows that

(7'7(1‘2"),&5{2")) — (7o) qldo)) g,

Proof. Since
{(7{80) a{do)y — (7(do) "(d0)) 'y — 50} N {d,, = dy for eventually all n € N}
C {(7ld) qldn)y 5 (£(do) qld0)) 5 o0}

the assertion follows immediately from Theorem [3.1] and Theorem O

5. SIMULATION

In this section, we present results of a small simulation study for the estimator 7, that is
based on an explicit "true’ pdf with two jump points (d = 2). Here we confine ourselves
to a simple and specific case. Considerations for a broad simulation study are given at
the end of this section. The underlying true pdf f of a virtual set of datapoints shall be

0.6 02025
fley=4q2 0.25 <z <0.5 (75)
0.7 05 <z <1,

In the notation of this article, that is (71, 72) = (0.25,0.5) and («p, a1, a2) = (0.5,2,0.75).
The simulation procedure is as follows. For given sample sizes, we draw samples of ran-
dom numbers that are distributed according to the above pdf. Specifically, we draw
10000 replications for each sample size. Then for each sample, by assuming d = 2 is
known, an estimate (71, T2 ) is calculated by maximizing the function M,, from on
a triangular grid A that is defined as follows:

A= {(t1,ts) € B*: 0 <t; <ty < 1}, where E := {0.01,0.02,0.03,...,0.99}.

The grid is chosen to achieve computational tractability but also ensures that A is a
true subset of A, 5 of type even for n = 50, since for (¢1,t2) € A holds tiv1 —t; >
0.1 > 507298 4§ =0,1,2. The use of a grid instead of a continuous domain induces
some error which is a limitation of this simulation study. Nevertheless, aggregated
results over 10000 replications will give a reasonable impression of the order of empirical
performance measures for the estimator (74 ,,72,,). All simulations and calculations
were done in Matlab R2014a [Ref: MATLAB and Statistics Toolbox Release 2014a, The
MathWorks, Inc., Natick, Massachusetts, United States.].
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Ti,n T2.n

n Mean Bias MSE Mean Bias MSE
50 | 0.3290 0.0790  0.0223 | 0.4476 -0.0524 0.0172
100 | 0.2813 0.0313  0.0048 | 0.4732 -0.0268 0.0050
150 | 0.2644 0.0144 0.0015 | 0.4850 -0.0150 0.0021
200 | 0.2581 0.0081  0.0006 | 0.4818 -0.0182 0.0010
300 | 0.2538 0.0038  0.0002 | 0.4949 -0.0051 0.0003
500 | 0.2518 0.0018 <0.0001 | 0.4978 -0.0022 0.0001

Tab. 1. Simulation results for estimates (71,n,72,n) of
(11, 72) = (0.25,0.5) from pdf (75); 10000 replications in each
simulation; n denotes sample size; MSE = mean squared error.

The results of the simulations are presented in Table We calculated the empiri-
cal mean, bias, and empirical mean squared error (MSE) of (71, 72,,) over all 10000
replications for each given sample size. For sample sizes of 150 and above, the MSE is
of order 10~2 or below for both T1,n and T2 ,,. However, for sample sizes 50 or 100, we
observe quite notable bias. For all sample sizes, the bias is positive for the smaller 7 ,,
and negative for the greater 7 ,,.

A specific example estimate f., o, of f along with a normal kernel density estimate
can be found in Figure [l| (The normal kernel bandwidth is the bandwidth that is the-
oretically optimal for estimating normal densities. Other choices of bandwidth couldn’t
improve the fit significantly.)

Probability Density

0.5

original pdf
— — — best L2—approximation estimate
— - — - normal kernel density estimate

0.4 0.5

0.6 0.7 0.8 0.9 1

Fig. 1. example density estimates of pdf , sample size n=200.
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A full comprehensive simulation study including comparisons with histogram estima-
tors is beyond the scope of this article. The performance of the estimators will likely
depend on the true vs. assumed number of jump points, the distance between jump
points and the jump heights. All these influences need to be considered at the same
time in a thoroughly conducted simulation study that may be included in future work.

(Received April 1, 2016)
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