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Abstract. We consider a Strang-type splitting method for an abstract semilinear evolution
equation

∂tu = Au+ F (u).

Roughly speaking, the splitting method is a time-discretization approximation based on
the decomposition of the operators A and F. Particularly, the Strang method is a popular
splitting method and is known to be convergent at a second order rate for some particular
ODEs and PDEs. Moreover, such estimates usually address the case of splitting the operator
into two parts. In this paper, we consider the splitting method which is split into three
parts and prove that our proposed method is convergent at a second order rate.
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1. Introduction

Let X be a Hilbert space equipped with a scalar product (·, ·)X and a norm ‖·‖X ,

let A be an m-dissipative linear operator in X with dense domain D(A) ⊂ X.

As is well-known, the operator A generates a contraction semigroup ΦA(t) = etA if

and only if A is m-dissipative with dense domain. We consider the Cauchy problem

for semilinear evolution equation

(1.1)

{
∂tu = Au+ F (u), t ∈ [0, T ],

u(0) = u0,
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where F : D(A) → D(A) is a nonlinear operator. Typical examples of (1.1) are

complex Ginzburg-Landau equations in Ω ⊂ R
d

∂tu = (i + γ)∆u+ αu|u|2,(1.2)

∂tu = (i + γ)∆u+ αu|u|2 + βu|u|4,(1.3)

where γ > 0 and α and β are complex constants.

The main purpose of this paper is to study the so-called splitting method, which

is a semi-discrete approximation of (1.1) with respect to time variable t. The idea

behind the splitting method is as follows. We denote the (nonlinear) solution operator

(1.1) by S(t). That is, the solution of (1.1) is given as u(t) = S(t)u0; see (1.7) below.

Then, we consider the time-discrete approximation to (1.1) at t = n∆t as

un = Ψ(∆t)nu0,

where ∆t > 0 denotes a time increment and n a positive integer. Typical choices of

Ψ are, for example,

Ψ(t) = ΦA(t)ΦF (t) (or Ψ(t) = ΦF (t)ΦA(t)),(1.4)

Ψ(t) = ΦA(t/2)ΦF (t)ΦA(t/2),(1.5)

where ΦF (t) denotes the solution operator of ∂tw = F (w). Particularly, (1.4) and

(1.5) are called the Lie and Strang methods, respectively. For some ordinary differ-

ential equations (ODEs) and partial differential equations (PDEs), it is well known

that Lie-type splitting methods are first order convergent numerically or rigorously.

On the other hand, Strang-type splitting methods are second order convergent. That

is, if the time increment ∆t is sufficiently small, then we have

(1.6) ‖S(n∆t)u0 −Ψ(∆t)nu0‖ 6 C∆t2.

Splitting methods are useful when S(t)u0 is difficult to compute, while ΦA(t)u0

and ΦF (t)u0 are easy to compute. In addition, if (1.1) has conservation properties,

then splitting methods basically preserve its discrete version.

Analysis of splitting methods for ODEs has been presented in many studies. For

example, see Hairer et al. [5]. Some results on error analysis are also presented for

PDEs. For example, results of error analysis for nonlinear Schrödinger equations can

be found in, e.g., Besse et al. [1] and Lubich [7].

However, to our best knowledge, little is known for the abstract Cauchy prob-

lem of the form (1.1). Decombes and Thalhammer [4] and Jahnke and Lubich [6]
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presented an error analysis for the case in which F is a linear operator. For nonlin-

ear abstract Cauchy problems, Borgna et al. [2] demonstrated that various splitting

methods involving the Strang method have first order accuracy. However, they did

not demonstrate that the Strang-type splitting method is a second order scheme. It

should be kept in mind that (1.6) is established for the Strang method applied to

particular PDEs; see Besse et al. [1] and Lubich [7]. Therefore, it is worth studying

the Strang method for the abstract Cauchy problem of the form (1.1) and deriving

the second order error estimate.

On the other hand, the majority of previous studies have considered schemes that

are split into two parts; ∂tv = Av and ∂tw = F (w). As a matter of fact, if such

two-parts splitting is applied to (1.2), then the explicit solution formula for the

ordinary differential equation ∂tw = αw|w|2 is available. However, if the two-parts

splitting is applied to (1.3), then we have to solve the ordinary differential equation

∂tw = αw|w|2 + βw|w|4 by a numerical method, since the exact solution is not

available in this case. Therefore, some researchers have proposed schemes that are

split into more than two parts. However, the convergence properties of such schemes

are not guaranteed in the case of PDEs.

In this paper, we propose a Strang-type splitting method for (1.1) that is split

into three parts. Moreover, we show that it is actually convergent at a second order

rate.

Let us formulate our problem. For given nonlinear operators F1, F2 : D(A) →

D(A), we set

F (v) = F1(v) + F2(v), v ∈ D(A).

For u0 ∈ D(A), we consider the Cauchy problem (1.1) and the corresponding integral

equation

(1.7) u(t) = ΦA(t)u0 +

∫ t

0

ΦA(t− s)F (u(s)) ds, t ∈ [0, T ].

For i = 1, 2, we assume that Fi : D(A) → D(A) satisfies the following conditions.

(F0) Fi(0) = 0.

(F1) ‖F ′
i (v)w‖D(A) 6 L(‖v‖D(A))‖w‖D(A) for v, w ∈ D(A).

(F2) Fi(v) ∈ D(A2) and ‖Fi(v)‖D(A2) 6 L2(‖v‖D(A))‖v‖D(A2) for v ∈ D(A2).

(F3) ‖Fi(v)− Fi(w)‖D(A2) 6 L3(max{‖v‖D(A2), ‖w‖D(A2)})‖v −w‖D(A2) for v, w ∈

D(A2).

(F4) ‖F ′
i (v)w‖X 6 L4(‖v‖D(A))‖w‖X for v, w ∈ D(A).

(F5) ‖F ′′
i (v)(w,w)‖X 6 L5(‖v‖D(A))‖w‖X‖w‖D(A) for v, w ∈ D(A).

Herein, F ′
i and F ′′

i denote the first and second Fréchet derivatives, L,L2, . . . , L5 :

[0,∞) → [0,∞) are nondecreasing functions.
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We note that it follows from (F1) and (F0) that

(F6) ‖Fi(v)−Fi(w)‖D(A) 6 L(max{‖v‖D(A), ‖w‖D(A)})‖v−w‖D(A) for v, w ∈ D(A);

(F7) ‖Fi(v)‖D(A) 6 L(‖v‖D(A))‖v‖D(A) for v ∈ D(A).

Moreover, it follows from (F4) that

(F8) ‖Fi(v)− Fi(w)‖X 6 L4(max{‖v‖D(A), ‖w‖D(A)})‖v − w‖X for v, w ∈ D(A).

For simplicity, we write F ′′(v)(w,w) = F ′′(v)w2 for v, w ∈ D(A). Before stating

the schemes and main results, we recall a general result for (1.7).

Proposition 1.1. Assume (F0)–(F1). Then, for any u0 ∈ D(A), there exist

Tmax(u0) ∈ (0,∞] and a unique solution

u ∈ C([0, Tmax(u0)), D(A)) ∩C1([0, Tmax(u0)), X)

of (1.7) such that either (i) or (ii) holds, where

(i) Tmax(u0) = ∞, (ii) Tmax(u0) < ∞ and lim
t↑Tmax(u0)

‖u(t)‖D(A) = ∞.

Moreover, if u0 ∈ D(A2), then

u ∈ C([0, Tmax(u0)), D(A2)) ∩ C1([0, Tmax(u0)), D(A)).

For the proof of Proposition 1.1, see e.g., Section 4.3 of [3].

In order to state our scheme, we consider an auxiliary Cauchy problem

(1.8)

{
∂twi = Fi(wi), t ∈ [0, T ],

wi(0) = wi,0,
i = 1, 2,

and the corresponding integral equation

(1.9) wi(t) = wi,0 +

∫ t

0

Fi(wi(s)) ds, t ∈ [0, T ], i = 1, 2.

We denote the solution of (1.9) by wi(t) = ΦFi
(t)wi,0.

Then, our scheme to find Ψ(t)u0 ≈ S(t)u0 reads

(1.10) Ψ(t)u0 = ΦA(t/2)ΦF1
(t/2)ΦF2

(t)ΦF1
(t/2)ΦA(t/2)u0.

We are now in a position to state the main results.

Theorem 1.2. Assume (F0)–(F5). Let u0 ∈ D(A2), T ∈ (0, Tmax(u0)), and set

m0 = 8 max
t∈[0,T ]

‖S(t)u0‖D(A).
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Then there exists a positive constant h0 which depends only on T, m0, and ‖u0‖D(A2)

such that

‖Ψ(h)nu0‖D(A) 6 m0, ‖Ψ(h)nu0‖D(A2) 6 eγ1nh‖u0‖D(A2),(1.11)

‖S(nh)u0 −Ψ(h)nu0‖D(A) 6 κ1h‖u0‖D(A2),(1.12)

‖S(nh)u0 −Ψ(h)nu0‖X 6 κ2h
2‖u0‖D(A2)(1.13)

for all h ∈ (0, h0] and n ∈ N satisfying nh 6 T, where γ1 is a positive constant

depending only onm0, and κ1, κ2 are positive constants depending only on T andm0.

The rest of this paper is organized as follows. In Section 2, we collect some lemmas

that are needed to prove Theorem 1.2. In Section 3, we give local estimates for the

error between S(h)u0 and Ψ(h)u0 in D(A). In Section 4, we give local estimates for

the error between S(h)u0 and Ψ(h)u0 in X . In Section 5, we complete the proof of

Theorem 1.2. Finally, in Section 6, we present a numerical experiment that illustrate

the convergence rate of the scheme numerically.

2. Preliminaries

2.1. Estimates on the contraction semigroup ΦA(t).

Lemma 2.1. Let k = 0, 1. Then,

‖ΦA(t)v0 − ΦA(s)v0‖D(Ak) 6 (t− s)‖v0‖D(Ak+1)

for v0 ∈ D(Ak+1) and 0 6 s 6 t.

P r o o f. Set v(t) = ΦA(t)v0. Then we have

ΦA(t)v0 − ΦA(s)v0 = v(t)− v(s) =

∫ t

s

v′(τ) dτ =

∫ t

s

Av(τ) dτ.

Since

‖Av(τ)‖D(Ak) = ‖ΦA(τ)Av0‖D(Ak) 6 ‖Av0‖D(Ak)

for τ > 0, we have

‖ΦA(t)v0 − ΦA(s)v0‖D(Ak) 6

∫ t

s

‖Av(τ)‖D(Ak) dτ

6 (t− s)‖Av0‖D(Ak) 6 (t− s)‖v0‖D(Ak+1).

This completes the proof. �
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Lemma 2.2. Let w ∈ C1([0, T ], D(A)) ∩ C([0, T ], D(A2)). Then we have

(2.1)

∥∥∥∥
∫ t

0

[ΦA(t− s)w(s) − ΦA(t/2)w(s)] ds

∥∥∥∥
X

6 t3(‖w‖C1([0,T ],D(A)) + ‖w‖C([0,T ],D(A2))) for t ∈ [0, T ].

P r o o f. For 0 6 s 6 t 6 T, by Taylor’s formula, we obtain

ΦA(t− s)w(s) − ΦA(t/2)w(s) = (t/2− s)ΦA(t/2)Aw(s)

+ (t/2− s)2
∫ 1

0

(1− θ)ΦA(θ(t − s) + (1 − θ)t/2)A2w(s) dθ.

Let v(s) = ΦA(t/2)Aw(s). Then we have

‖v′(s)‖X 6 ‖Aw′(s)‖X 6 ‖w′(s)‖D(A),
∫ t

0

(t/2− s)v(s) ds =

∫ t/2

0

(t/2− s)[v(s)− v(t− s)] ds.

Moreover, for 0 6 s 6 t/2, since

‖v(s)− v(t− s)‖X =

∥∥∥∥
∫ 1

0

d

dθ
v(θs+ (1− θ)(t− s)) dθ

∥∥∥∥
X

6 (t− 2s)

∫ 1

0

‖v′(θs+ (1− θ)(t− s))‖X dθ

6 2(t/2− s)‖v′‖C([0,T ],X),

we get

(2.2)

∥∥∥∥
∫ t

0

(t/2− s)ΦA(t/2)Aw(s) ds

∥∥∥∥
X

=

∥∥∥∥
∫ t/2

0

(t/2− s)[v(s)− v(t− s)] ds

∥∥∥∥
X

6 2

∫ t/2

0

(t/2− s)2 ds‖v′‖C([0,T ],X) 6 t3‖w‖C1([0,T ],D(A)).

Furthermore, since

∥∥∥∥
∫ 1

0

(1− θ)ΦA(θ(t− s) + (1− θ)t/2)A2w(s) dθ

∥∥∥∥
X

6

∫ 1

0

(1− θ)‖A2w(s)‖X dθ 6 ‖w‖C([0,T ],D(A2)),
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we have

(2.3)

∥∥∥∥
∫ t

0

(t/2− s)2
∫ 1

0

(1− θ)ΦA(θ(t − s) + (1 − θ)t/2)A2w(s) dθ ds

∥∥∥∥
X

6 ‖w‖C([0,T ],D(A2))

∫ t

0

(t/2− s)2 ds 6 t3‖w‖C([0,T ],D(A2)).

Thus, by (2.2) and (2.3), we obtain (2.1). �

2.2. Estimates on the nonlinear flows ΦFi
.

Lemma 2.3. Assume (F0)–(F1). For anyM > 0, there exists a positive constant

τ(M) such that if ‖v0‖D(A) = M, then

‖ΦFi
(t)v0‖D(A) 6 2M, ‖S(t)v0‖D(A) 6 2M for t ∈ [0, τ(M)], i = 1, 2.

Moreover, if v1, v2 ∈ D(A) satisfy max{‖v1‖D(A), ‖v2‖D(A)} 6 M, then

‖ΦFi
(t)v1 − ΦFi

(t)v2‖D(A) 6 eL(2M)t‖v1 − v2‖D(A), i = 1, 2,

‖S(t)v1 − S(t)v2‖D(A) 6 e2L(2M)t‖v1 − v2‖D(A)

for t ∈ [0, τ(M)].

P r o o f. See Proposition 4.3.3 of [3]. �

R em a r k 2.4. We can assume that τ : (0,∞) → (0,∞) is a nonincreasing func-

tion.

Lemma 2.5. Assume (F0)–(F3). Let v0 ∈ D(A2) and set M = ‖v0‖D(A). Then

(2.4) ‖ΦFi
(t)v0‖D(A2) 6 eL2(2M)t‖v0‖D(A2) for t ∈ [0, τ(M)], i = 1, 2,

where τ(M) is defined above in Lemma 2.3. Moreover, we have

(2.5) ‖Ψ(t)v0‖D(A2) 6 e2L2(8M)t‖v0‖D(A2) for t ∈ [0, τ(4M)].

P r o o f. First, we note that it follows from (F0)–(F3) that (1.7) is locally well-

posed in D(A2). For i = 1, 2 we set vi(t) = ΦFi
(t)v0.

By (1.9) and (F2), we have

‖vi(t)‖D(A2) 6 ‖v0‖D(A2) +

∫ t

0

‖Fi(vi(τ))‖D(A2) dτ

6 ‖v0‖D(A2) +

∫ t

0

L2(‖vi(τ)‖D(A))‖vi(τ)‖D(A2) dτ, i = 1, 2.

411



It follows from Lemma 2.3 that

‖vi(t)‖D(A2) 6 ‖v0‖D(A2) + L2(2M)

∫ t

0

‖vi(τ)‖D(A2) dτ, i = 1, 2,

for t ∈ [0, τ(M)]. Thus, Gronwall’s lemma implies (2.4) for t ∈ [0, τ(M)].

Next, since ‖ΦF1
(t/2)ΦA(t/2)v0‖D(A) 6 2M for t ∈ [0, τ(M)] and

(2.6) ‖ΦF2
(t)ΦF1

(t/2)ΦA(t/2)v0‖D(A) 6 4M for t ∈ [0, τ(2M)],

it follows from (2.4) that

‖Ψ(t)v0‖D(A2) 6 ‖ΦF1(t/2)ΦF2
(t)ΦF1

(t/2)ΦA(t/2)v0‖D(A2)

6 eL2(8M)t/2‖ΦF2
(t)ΦF1(t/2)ΦA(t/2)v0‖D(A2)

for t ∈ [0, τ(4M)]. Similarly, we have

‖ΦF2
(t)ΦF1

(t/2)ΦA(t/2)v0‖D(A2) 6 eL2(4M)t+L2(2M)t/2‖v0‖D(A2)

for t ∈ [0, τ(2M)]. Therefore, we obtain

‖Ψ(t)v0‖D(A2) 6 eL2(8M)t/2+L2(4M)t+L2(2M)t/2‖v0‖D(A2) 6 e2L2(8M)t‖v0‖D(A2)

for t ∈ [0, τ(4M)]. This completes the proof. �

2.3. Lipschitz property of S(t).

Lemma 2.6. Assume (F0)–(F4). Let u0 ∈ D(A), T ∈ (0, Tmax(u0)) and set

m1 = 2 max
t∈[0,T ]

‖S(t)u0‖D(A), δ0 = min
{m1

2
, m1e

−2L(2m1)T
}
.

If ‖v0 − S(t0)u0‖D(A) 6 δ0, then

(2.7) ‖S(t)v0‖D(A) 6 2m1 for t ∈ [0, T − t0].

Moreover, if ‖v1 − S(t0)u0‖D(A) 6 δ0 and ‖v2 − S(t0)u0‖D(A) 6 δ0, then

(2.8)
‖S(t)v1 − S(t)v2‖D(A) 6 e2L(2m1)t‖v1 − v2‖D(A)

‖S(t)v1 − S(t)v2‖X 6 e2L4(2m1)t‖v1 − v2‖X
for t ∈ [0, T − t0].
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P r o o f. First, we show (2.7). Since

‖v0‖D(A) 6 ‖v0 − S(t0)u0‖D(A) + ‖S(t0)u0‖D(A) 6 δ0 +
m1

2
6 m1,

it follows from Lemma 2.3 that ‖S(t)v0‖D(A) 6 2m1 for t ∈ [0, τ(m1)]. Here, we

define

T̃ = sup{τ ∈ (0, Tmax(v0)) ; ‖S(t)v0‖D(A) 6 2m1 for t ∈ [0, τ ]}

and suppose T̃ < T − t0. Then we have

S(t)v0 = ΦA(t)v0 +

∫ t

0

ΦA(t− τ)F (S(τ)v0) dτ for t ∈ [0, T̃ ].

Since 0 6 τ 6 T̃ and τ + t0 6 T for τ ∈ [0, T̃ ], we have

‖S(τ)v0‖D(A) 6 2m1, ‖S(τ)(S(t0)u0)‖D(A) = ‖S(τ + t0)u0‖D(A) 6 m1.

Thus, by (F6), we have

‖S(t)v0 − S(t)(S(t0)u0)‖D(A)

6 ‖v0 − S(t0)u0‖D(A) +

∫ t

0

‖F (S(τ)v0)− F (S(τ)S(t0)u0)‖D(A) dτ

6 δ0 + 2L(2m1)

∫ t

0

‖S(τ)v0 − S(τ)S(t0)u0‖D(A) dτ

for t ∈ [0, T̃ ]. By Gronwall’s lemma, we have

‖S(t)v0 − S(t)S(t0)u0‖D(A) 6 δ0e
2L(2m1)t 6 δ0e

2L(2m1)T 6 m1

and

‖S(t)v0‖D(A) 6 ‖S(t)v0 − S(t)S(t0)u0‖D(A) + ‖S(t)S(t0)u0‖D(A)

6 m1 +
1

2
m1 < 2m1 for t ∈ [0, T̃ ].

This contradicts the definition of T̃ . Thus, we conclude T − t0 6 T̃ , which im-

plies (2.7).

Next, we show (2.8). By (2.7), we have

(2.9) ‖S(t)v1‖D(A) 6 2m1, ‖S(t)v2‖D(A) 6 2m1 for t ∈ [0, T − t0].
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Thus, by (F6), we have

‖S(t)v1 − S(t)v2‖D(A)

6 ‖v1 − v2‖D(A) +

∫ t

0

‖F (S(τ)v1)− F (S(τ)v2)‖D(A) dτ

6 ‖v1 − v2‖D(A) + 2L(2m1)

∫ t

0

‖S(τ)v1 − S(τ)v2‖D(A) dτ

for t ∈ [0, T − t0]. By Gronwall’s lemma, we have

‖S(t)v1 − S(t)v2‖D(A) 6 e2L(2m1)t‖v1 − v2‖D(A) for t ∈ [0, T − t0].

Moreover, by (2.9) and (F8), we have

‖S(t)v1 − S(t)v2‖X

6 ‖v1 − v2‖X +

∫ t

0

‖F (S(τ)v1)− F (S(τ)v2)‖X dτ

6 ‖v1 − v2‖X + 2L4(2m1)

∫ t

0

‖S(τ)v1 − S(τ)v2‖X dτ for t ∈ [0, T − t0].

Hence, we obtain

‖S(t)v1 − S(t)v2‖X 6 e2L4(2m1)t‖v1 − v2‖X for t ∈ [0, T − t0].

This completes the proof. �

3. Local error estimates in D(A)

In this section, we estimate local errors in D(A) between the solution u(t) of (1.7)

and Ψ(t)u0 which is defined by (1.10).

Proposition 3.1. Assume (F0)–(F3). Let u0 ∈ D(A2) and set M = ‖u0‖D(A).

Then there exists a positive constant K1(M) depending only on M such that

‖S(t)u0 −Ψ(t)u0‖D(A) 6 K1(M)‖u0‖D(A2)t
2 for t ∈ [0, τ(4M)].

414



In what follows, we put

(3.1) u(t) = S(t)u0, v(t) = Ψ(t)u0.

We define w1(s, t), w2(s, t) and w3(s, t) by

w1(s, t) = ΦF1
(s/2)ΦA(t/2)u0, w2(s, t) = ΦF2

(s)ΦF1
(t/2)ΦA(t/2)u0,

w3(s, t) = ΦF1
(s/2)ΦF2

(t)ΦF1
(t/2)ΦA(t/2)u0.

Then we have

(3.2) w1(s, t) = ΦA(t/2)u0 +
1

2

∫ s

0

F1(w1(τ, t)) dτ,

w2(s, t) = w1(t, t) +

∫ s

0

F2(w2(τ, t)) dτ,

w3(s, t) = w2(t, t) +
1

2

∫ s

0

F1(w3(τ, t)) ds.

Therefore, v(t) can be written as

v(t) = ΦA(t/2)ΦF1
(t/2)ΦF2

(t)ΦF1
(t/2)ΦA(t/2)u0

= ΦA(t/2)w3(t, t) = ΦA(t)u0 +G1(t) +G2(t) +G3(t),

where

G1(t) =
1

2

∫ t

0

ΦA(t/2)F1(w1(s, t)) ds, G2(t) =

∫ t

0

ΦA(t/2)F2(w2(s, t)) ds,

G3(t) =
1

2

∫ t

0

ΦA(t/2)F1(w3(s, t)) ds.

By using the expression (1.7), we have

(3.3) u(t)− v(t) =

∫ t

0

ΦA(t− s)[F (u(s)) − F (v(s))] ds+R(t),

where

R(t) =

∫ t

0

ΦA(t− s)F (v(s)) ds− [G1(t) +G2(t) +G3(t)].

We divide R(t) as R(t) = R1(t) +R2(t), where

R1(t) =

∫ t

0

ΦA(t− s)F1(v(s)) ds− (G1(t) +G3(t)),

R2(t) =

∫ t

0

ΦA(t− s)F2(v(s)) ds−G2(t).
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Moreover, we split R1(t) and R2(t) as R1(t) = R1a(t)+R1b(t) and R2(t) = R2a(t)+

R2b(t), respectively. Here,

R1a(t) =

∫ t

0

ΦA(t− s)
[
F1(v(s)) −

1

2
F1(w1(s, t))−

1

2
F1(w3(s, t))

]
ds,(3.4)

R1b(t) =
1

2

∫ t

0

(ΦA(t− s)− ΦA(t/2))[F1(w1(s, t)) + F1(w3(s, t))] ds,(3.5)

R2a(t) =

∫ t

0

ΦA(t− s)[F2(v(s)) − F2(w2(s, t))] ds,(3.6)

R2b(t) =

∫ t

0

(ΦA(t− s)− ΦA(t/2))F2(w2(s, t)) ds.(3.7)

First, we prove the following lemma.

Lemma 3.2. Assume (F0)–(F3). Let u0 ∈ D(A2) and set M = ‖u0‖D(A). Then

there exists a positive constant C12 depending only on M such that

(3.8) ‖R2(t)‖D(A) 6 C12‖u0‖D(A2)t
2 for t ∈ [0, τ(4M)].

P r o o f. First, we show that there exists a positive constant C12a depending

only on M such that

(3.9) ‖R2a(t)‖D(A) 6 C12a‖u0‖D(A2)t
2 for t ∈ [0, τ(4M)].

By Lemma 2.3, we have

(3.10) ‖w2(s, t)‖D(A) 6 4M, ‖v(s)‖D(A) 6 8M for s, t ∈ [0, τ(4M)].

Thus, by (F6), we have

(3.11) ‖R2a(t)‖D(A) 6 L(8M)

∫ t

0

‖v(s)− w2(s, t)‖D(A) ds for t ∈ [0, τ(4M)].

Since

v(s) = ΦA(s/2)ΦF1
(s/2)w2(s, s)

= ΦA(s/2)

{
w2(s, s) +

∫ s/2

0

F1(ΦF1
(τ)w2(s, s)) dτ

}
,

we have

‖v(s)− w2(s, s)‖D(A) 6 ‖ΦA(s/2)w2(s, s)− w2(s, s)‖D(A)

+

∫ s/2

0

‖F1(ΦF1
(τ)w2(s, s))‖D(A) dτ.

416



By Lemmas 2.1 and 2.5, we have

(3.12) ‖ΦA(s/2)w2(s, s)− w2(s, s)‖D(A) 6
s

2
‖w2(s, s)‖D(A2)

6
s

2
eL2(4M)s+L2(2M)s/2‖u0‖D(A2) 6

s

2
e2L2(4M)τ(2M)‖u0‖D(A2)

for s ∈ [0, τ(2M)]. Moreover, by (F7) and Lemma 2.3, we have

‖F1(ΦF1
(τ)w2(s, s))‖D(A) 6 L(‖ΦF1

(τ)w2(s, s)‖D(A))‖ΦF1
(τ)w2(s, s)‖D(A)

6 8L(8M)M 6 8L(8M)‖u0‖D(A2)

for τ, s ∈ [0, τ(4M)]. Thus, we have

‖v(s)− w2(s, s)‖D(A) 6
s

2
(e2L2(4M)τ(2M) + 8L(8M))‖u0‖D(A2) for s ∈ [0, τ(4M)],

which implies (3.9).

Next, we show that there exists a positive constant C12b depending only on M

such that

(3.13) ‖R2b(t)‖D(A) 6 C12b‖u0‖D(A2)t
2 for t ∈ [0, τ(2M)].

By (F2) and Lemmas 2.1 and 2.5, we have

‖R2b(t)‖D(A) 6

∫ t

0

∣∣∣ t
2
− s

∣∣∣‖F2(w2(s, t))‖D(A2) ds

6

∫ t

0

∣∣∣ t
2
− s

∣∣∣L2(4M)eL2(4M)s+L2(2M)t/2‖u0‖D(A2) ds

6

∫ t

0

∣∣∣ t
2
− s

∣∣∣ dsL2(4M)e2L2(4M)τ(2M)‖u0‖D(A2) for t ∈ [0, τ(2M)],

which implies (3.13).

Finally, (3.8) follows from (3.9) and (3.13). �

Lemma 3.3. Assume (F0)–(F3). Let u0 ∈ D(A2) and set M = ‖u0‖D(A). Then

there exists a positive constant C11 depending only on M such that

(3.14) ‖R1(t)‖D(A) 6 C11‖u0‖D(A2)t
2 for t ∈ [0, τ(4M)].
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Lemma 3.3 can be proved in the same way as Lemma 3.2, so we omit the details.

By Lemmas 3.2 and 3.3, we obtain the following lemma.

Lemma 3.4. Assume (F0)–(F3). Let u0 ∈ D(A2) and set M = ‖u0‖D(A). Then

there exists a positive constant C1 depending only on M such that

(3.15) ‖R(t)‖D(A) 6 C1‖u0‖D(A2)t
2 for t ∈ [0, τ(4M)].

Now, we give the proof of Proposition 3.1.

P r o o f of Proposition 3.1. It follows from (3.3), (F6), and Lemma 3.4 that

‖u(t)− v(t)‖D(A) 6

∫ t

0

‖F (u(s))− F (v(s))‖D(A) ds+ ‖R(t)‖D(A)

6

∫ t

0

2L(max{‖u(s)‖D(A), ‖v(s)‖D(A)})‖u(s)− v(s)‖D(A) ds

+ C1‖u0‖D(A2)t
2 for t ∈ [0, τ(4M)].

Moreover, by Lemma 2.3 we have ‖u(s)‖D(A) 6 2M and ‖v(s)‖D(A) 6 8M for

s ∈ [0, τ(4M)]. Thus, we have

‖u(t)− v(t)‖D(A) 6 2L(8M)

∫ t

0

‖u(s)− v(s)‖D(A) ds+ C1‖u0‖D(A2)t
2

for t ∈ [0, τ(4M)]. By Gronwall’s lemma, we obtain

‖u(t)− v(t)‖D(A) 6 e2L(8M)tC1‖u0‖D(A2)t
2 6 e2L(8M)τ(4M)C1‖u0‖D(A2)t

2

for t ∈ [0, τ(4M)]. This completes the proof. �

4. Local error estimates in X

In this section, we prove the following local error estimates in X.

Proposition 4.1. Assume (F0)–(F5). Let u0 ∈ D(A2) and set M = ‖u0‖D(A).

Then there exists a positive constant K2(M) depending only on M such that

‖S(t)u0 − Ψ(t)u0‖X 6 K2(M)‖u0‖D(A2)t
3 for t ∈ [0, τ(4M)].
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This proposition is a readily obtainable consequence of

‖R1a(t)‖X 6 C21a‖u0‖D(A2)t
3,(4.1)

‖R1b(t)‖X 6 C21b‖u0‖D(A2)t
3,(4.2)

‖R2a(t)‖X 6 C22a‖u0‖D(A2)t
3,(4.3)

‖R2b(t)‖X 6 C22b‖u0‖D(A2)t
3,(4.4)

for t ∈ [0, τ(4M)]. Here C21a, C21b, C22a, C22b are positive constants depending only

on M and R1a(t), R1b(t), R2a(t), R2b(t) are defined by (3.4)–(3.7).

The proofs of these estimates are given below.

4.1. Proofs of (4.4) and (4.2). We only consider the case (4.4). It follows from

Lemmas 2.3, and 2.5 that

(4.5) ‖w2(s, t)‖D(A) 6 4M, ‖w2(s, t)‖D(A2) 6 e2L2(4M)τ(2M)‖u0‖D(A2)

for s, t ∈ [0, τ(2M)]. Moreover, by Lemma 2.2 we have

∥∥∥∥
∫ t

0

[ΦA(t− s)− ΦA(t/2)]F2(w2(s, t)) ds

∥∥∥∥
X

6 t3(‖F2(w2)‖C1([0,τ(2M)],D(A)) + ‖F2(w2)‖C([0,τ(2M)],D(A2))) for t ∈ [0, τ(2M)].

It follows from (F7) and (4.5) that

(4.6) ‖F2(w2(s, t))‖D(A) 6 L(‖w2(s, t)‖D(A))‖w2(s, t)‖D(A)

6 4L(4M)M 6 4L(4M)‖u0‖D(A2)

for s, t ∈ [0, τ(2M)]. Moreover, by (F2) and (4.5),

‖F2(w2(s, t))‖D(A2) 6 L2(‖w2(s, t)‖D(A))‖w2(s, t)‖D(A2)

6 L2(4M)e2L2(4M)τ(2M)‖u0‖D(A2) for s, t ∈ [0, τ(2M)].

Thus, there exists a positive constant Cw2
depending only on M such that

‖F2(w2)‖C([0,τ(2M)],D(A2)) 6 Cw2
‖u0‖D(A2).

Next, since ∂s(F2(w2(s, t))) = F ′
2(w2(s, t))∂s(w2(s, t)) = F ′

2(w2(s, t))F2(w2(s, t)), it

follows from (F1), (4.5), and (4.6) that

‖∂s(F2(w2(s, t)))‖D(A) 6 L(‖w2(s, t)‖D(A))‖F2(w2(s, t))‖D(A)

6 4L(4M)2M 6 4L(4M)2‖u0‖D(A2) for s, t ∈ [0, τ(2M)].

419



Thus, there exists a positive constant C′
w2
depending only on M such that

‖F2(w2)‖C1([0,τ(2M)],D(A)) 6 C′
w2

‖u0‖D(A2).

This completes the proof of (4.4).

4.2. Proof of (4.3). In order to prove (4.3), we divide R2a(t) into several parts.

By Taylor’s formula, we can express R2a(t) as

R2a(t) =

6∑

j=0

Qj(t),

where

Qj(t) =





∫ t

0

ΦA(t− s)F ′
2(u0)[ΦA(s)u0 − ΦA(t/2)u0] ds, j = 0,

(−1)j+1

∫ t

0

ΦA(t− s)Jj(s, t) ds, j = 1, 2,

∫ t

0

ΦA(t− s)F ′
2(u0)Jj(s, t) ds, j = 3, 4, 5, 6.

Here

J1(s, t) =

∫ 1

0

(1 − θ)F ′′
2 (θΨ(s)u0 + (1 − θ)u0)[Ψ(s)u0 − u0]

2 dθ,

J2(s, t) =

∫ 1

0

(1 − θ)F ′′
2 (θw2(s, t) + (1− θ)u0)[w2(s, t)− u0]

2 dθ,

J3(s, t) =

∫ s

0

ΦA(s/2)F2(w2(τ, s)) dτ −

∫ s

0

F2(w2(τ, t)) dτ,

J4(s, t) =
1

2

∫ s

0

ΦA(s/2)F1(w3(τ, s)) dτ −
1

2

∫ s

0

ΦA(s/2)F1(w1(τ, s)) dτ,

J5(s, t) =

∫ s

0

ΦA(s/2)F1(w1(τ, s)) dτ −

∫ s

0

F1(w1(τ, t)) dτ,

J6(s, t) =

∫ s

0

F1(w1(τ, t)) dτ −
1

2

∫ t

0

F1(w1(τ, t)) dτ.

Estimation for Q0(t).

In the same way as in the proof of (4.4), we can show

‖Q0(t)‖X 6 (L(M) + L4(M))‖u0‖D(A2)t
3 for t > 0.

Estimations for Q1(t) and Q2(t).

We only consider the case of Q1(t). We notice the following holds by Lemma 2.3:

(4.7) ‖w1(s, t)‖D(A) 6 2M, ‖w3(s, t)‖D(A) 6 8M for s, t ∈ [0, τ(4M)].
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Since ‖Ψ(s)u0‖D(A) 6 8M for s ∈ [0, τ(4M)], it follows from (F5) that

(4.8) ‖Q1(t)‖X 6

∫ t

0

‖J1(s)‖X ds

6

∫ t

0

∫ 1

0

‖F ′′
2 (θΨ(s)u0 + (1− θ)u0)[Ψ(s)u0 − u0]

2‖X dθ ds

6

∫ t

0

L5(8M) · ‖Ψ(s)u0 − u0‖X · ‖Ψ(s)u0 − u0‖D(A) ds

for t ∈ [0, τ(4M)]. Moreover, by (3.3) and Lemma 2.1, we have

‖Ψ(s)u0 − u0‖D(A) 6 ‖ΦA(s)u0 − u0‖D(A)

+ ‖G1(s)‖D(A) + ‖G2(s)‖D(A) + ‖G3(s)‖D(A)

6 s‖u0‖D(A2) + ‖G1(s)‖D(A) + ‖G2(s)‖D(A) + ‖G3(s)‖D(A).

for s > 0. By (F7) and (4.7),

(4.9) ‖G1(s)‖D(A) 6

∫ s

0

‖F1(w1(τ, s))‖D(A) dτ

6 2L(2M)Ms 6 2L(2M)‖u0‖D(A2)s

for s ∈ [0, τ(M)]. Similarly, for s ∈ [0, τ(4M)], we have

‖G2(s)‖D(A) 6 4L(4M)‖u0‖D(A2)s, ‖G3(s)‖D(A) 6 8L(8M)‖u0‖D(A2)s.

Thus, there exists a positive constant C′
J1
depending only on M such that

‖Ψ(s)u0 − u0‖D(A) 6 C′
J1
‖u0‖D(A2)s for s ∈ [0, τ(4M)].

Similarly, there exists a positive constant C′′
J1
depending only on M such that

‖Ψ(s)u0 − u0‖X 6 C′′
J1
s for s ∈ [0, τ(4M)].

Therefore, we have

(4.10) ‖Q1(t)‖X 6 L5(8M)

∫ t

0

C′
J1
C′′

J1
‖u0‖D(A2)s

2 ds

6 L5(8M)C′
J1
C′′

J1
‖u0‖D(A2)t

3 for t ∈ [0, τ(4M)].

Similarly, we can prove that there exists a positive constant CQ2
depending only on

M such that

(4.11) ‖Q2(t)‖X 6 CQ2
‖u0‖D(A2)t

3 for t ∈ [0, τ(4M)].
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Estimations for Q3(t), Q4(t), and Q5(t).

We only consider the case Q3(t). By (F4), we have

‖Q3(t)‖X 6

∫ t

0

L4(‖u0‖D(A))‖J3(s, t)‖X ds.

We see that

J3(s, t) =

∫ s

0

[
ΦA(s/2)F2(w2(τ, s)) − F2(w2(τ, s))

]
dτ

+

∫ s

0

[
F2(w2(τ, s)) − F2(w2(τ, t))

]
dτ.

Moreover, by Lemma 2.1 and (4.6), we have

∥∥∥∥
∫ s

0

[ΦA(s/2)F2(w2(τ, s)) − F2(w2(τ, s))] dτ

∥∥∥∥
X

6

∫ s

0

s

2
‖F2(w2(τ, s))‖D(A) dτ

6 2L(4M)Ms2 6 2L(4M)‖u0‖D(A2)s
2 for s ∈ [0, τ(2M)].

Furthermore, by (F8) and (4.5), we have

∥∥∥∥
∫ s

0

[F2(w2(τ, s))− F2(w2(τ, t))] dτ

∥∥∥∥
X

6

∫ s

0

L4(4M)‖w2(τ, s)− w2(τ, t)‖X dτ

6

∫ s

0

L4(4M)‖w2(τ, s)− w2(τ, t)‖D(A) dτ for s, t ∈ [0, τ(2M)].

By (3.2), we see that

w2(τ, s)− w2(τ, t) = ΦA(s/2)u0 − ΦA(t/2)u0 +
1

2

∫ s

0

F1(w1(τ, s)) dτ

+

∫ τ

0

F2(w2(τ̃ , s)) dτ̃ −
1

2

∫ t

0

F1(w1(τ, t)) dτ −

∫ τ

0

F2(w2(τ̃ , t)) dτ̃ .

By Lemma 2.1,

‖ΦA(s/2)u0 − ΦA(t/2)u0‖D(A) 6
1

2
|s− t|‖u0‖D(A2).

By (F7), (4.5) and (4.7),

‖Fj(wj(τ, s))‖D(A) 6 4L(4M)M 6 4L(4M)‖u0‖D(A2), j = 1, 2,

for τ, s ∈ [0, τ(2M)]. Thus, there exists a positive constant CJ3
depending only onM

such that

‖J3(s, t)‖D(A) 6 CJ3
‖u0‖D(A2)(s

2 + st) for s, t ∈ [0, τ(2M)].
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Therefore, we have

‖Q3(t)‖X 6

∫ t

0

L4(M)CJ3
‖u0‖D(A2)(s

2 + ts) ds

6 L4(M)CJ3
‖u0‖D(A2)t

3 for t ∈ [0, τ(2M)].

Similarly, we can prove that there exist positive constants CQ4
and CQ5

such that

‖Q4(t)‖X 6 CQ4
‖u0‖D(A2)t

3, ‖Q5(t)‖X 6 CQ5
‖u0‖D(A2)t

3 for t ∈ [0, τ(4M)].

Estimation for Q6(t).

We split J6(s, t) into

J6(s, t) = J61(s, t) + J62(t),

where

J61(s, t) =

∫ s

t/2

F1(w1(τ, t)) dτ, J62(t) =

∫ t/2

0

F1(w1(τ, t)) dτ −
1

2

∫ t

0

F1(w1(τ, t)) dτ.

First, we estimate
∫ t

0 ΦA(t− s)F ′
2(u0)J61(s, t) ds. By Taylor’s formula, we obtain

J61(s, t) = (s− t/2)F1(w1(t/2, t)) + (s− t/2)2J61b(s, t),

where

J61b(s, t) =
1

2

∫ 1

0

(1− θ)F ′
1

(
w1(θs+ (1− θ)t/2, t)

)
· F1

(
w1((θs + (1− θ)t/2), t)

)
dθ.

In the same way as in the estimate of Q0(t), we can show

∥∥∥∥
∫ t

0

ΦA(t− s)F ′
2(u0)(s− t/2)F1(w1(t/2)) ds

∥∥∥∥
X

6 L(2M)2‖u0‖D(A2)t
3

for t ∈ [0, τ(M)]. By (F1), (F7), and (4.7), we have

‖J61b(s, t)‖X 6 ‖J61b(s, t)‖D(A) 6 L(2M)2M 6 L(2M)2‖u0‖D(A2)

for s, t ∈ [0, τ(M)]. Thus, by (F4), we obtain

(4.12)

∥∥∥∥
∫ t

0

(s− t/2)2ΦA(t− s)F ′
2(u0)J61b(s, t) ds

∥∥∥∥
X

6

∫ t

0

(s− t/2)2L4(M)‖J61b(s, t)‖X ds

6 L(2M)2L4(M)‖u0‖D(A2)t
3 for t ∈ [0, τ(M)].
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Therefore, there exists a positive constant C61 depending only on M such that

(4.13)

∥∥∥∥
∫ t

0

ΦA(t− s)F ′
2(u0)J61(s, t) ds

∥∥∥∥
X

6 C61‖u0‖D(A2)t
3 for t ∈ [0, τ(M)].

Next, we estimate
∫ t

0 ΦA(t− s)F ′
2(u0)J62(s, t) ds. We rewrite J62(t) as

J62(t) =

∫ t/2

0

F1(w1(τ, t)) dτ −

∫ t/2

0

F1(w1(2τ, t)) dτ.

Hence, by (F6) and (4.7), we have

‖J62(t)‖D(A) 6

∫ t/2

0

‖F1(w1(τ, t))− F1(w1(2τ, t))‖D(A) dτ

6

∫ t/2

0

L(2M)‖w1(τ, t)− w1(2τ, t)‖D(A) dτ

=

∫ t/2

0

L(2M)‖ΦF1
(τ/2)ΦA(t/2)u0 − ΦF1

(τ)ΦA(t/2)u0‖D(A) dτ

6

∫ t/2

0

L(2M)

∫ τ

τ/2

2L(2M)M dτ̃ dτ 6 L(2M)2t2M

6 L(2M)2‖u0‖D(A2)t
2

for t ∈ [0, τ(M)]. Thus, it follows from (F1) that

(4.14)

∥∥∥∥
∫ t

0

ΦA(t− s)F ′
2(u0)J62(t) ds

∥∥∥∥
X

6

∥∥∥∥
∫ t

0

ΦA(t− s)F ′
2(u0)J62(t) ds

∥∥∥∥
D(A)

6

∫ t

0

L(M)‖J62(t)‖D(A) ds 6 L(2M)3‖u0‖D(A2)t
3 for t ∈ [0, τ(M)].

Summing up these estimates, we obtain that there exists a positive constant CQ6

depending only on M such that

(4.15) ‖Q6(t)‖X 6 CQ6
‖u0‖D(A2)t

3 for t ∈ [0, τ(M)].

4.3. Proof of (4.1). To derive an estimation for R1a(t), we divide R1a(t) into

R1a(t) = R11a(t) +R12a(t),

where

R11a(t) =

∫ t

0

ΦA(t− s){F1(Ψ(s)u0)− F1(w2(s, t))} ds,

R12a(t) =
1

2

∫ t

0

ΦA(t− s)[2F1(w2(s, t))− {F1(w3(s, t)) + F1(w1(s, t))}] ds.
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Then, in exactly the same way as in the proof of (4.3), we can prove that there exists

a positive constant C211a depending only on M such that

‖R11a(t)‖X 6 C211a‖u0‖D(A2)t
3 for t ∈ [0, τ(4M)].

We proceed to show that there exists a positive constant C212a depending only on

M such that

(4.16) ‖R12a(t)‖X 6 C212a‖u0‖D(A2)t
3 for t ∈ [0, τ(M)].

To do this, we divide R12a(t) into several parts. By Taylor’s formula, we have

R12a(t) =
1

2

∫ t

0

ΦA(t− s)[2F1(w2(s, t))− F1(w3(s, t))− F1(w1(s, t))] ds

=
1

2

∫ t

0

ΦA(t− s)[Q∗(s, t) + 2J∗
2 (s, t)− J∗

3 (s, t)− J∗
1 (s, t)] ds,

where

Q∗(s, t) = F ′
1(u0)[2w2(s, t)− w3(s, t)− w1(s, t)],

J∗
j (s, t) =

∫ 1

0

(1 − θ)F ′′
1 (θwj(s, t) + (1 − θ)u0)[wj(s, t)− u0]

2 dθ, j = 1, 2, 3.

In exactly the same way as in the estimates of Q1(t) and Q2(t), we can prove that

there exists a positive constant CJ∗

j
(j = 1, 2, 3) depending only on M such that

∥∥∥∥
∫ t

0

ΦA(t− s)J∗
j (s) ds

∥∥∥∥
X

6 CJ∗

j
‖u0‖D(A2)t

3 for t ∈ [0, τ(4M)], j = 1, 2, 3.

Hence, it remains to derive the following estimate. There exists a positive con-

stant CQ∗ depending only on M such that

(4.17)

∥∥∥∥
∫ t

0

ΦA(t− s)Q∗(s) ds

∥∥∥∥
X

6 CQ∗‖u0‖D(A2)t
3 for t ∈ [0, τ(4M)].

We rewrite
∫ t

0
ΦA(t− s)Q∗(s) ds as

∫ t

0

ΦA(t− s)Q∗(s) ds =

3∑

j=1

Wj(t) ds,
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where

Wj(t) =

∫ t

0

ΦA(t− s)F ′
1(u0)W̃j(t) ds,

W̃j(t) = (−1)j [2Ij(s, t)− Ij(t, t)] (j = 1, 2), W̃3(t) = [I1(s, t)− I3(s, t)].

Here,

I2(s, t) =

∫ s

0

F2(w2(τ, t)) dτ, Ij(s, t) =

∫ s/2

0

F1(wj(2τ, t)) dτ, j = 1, 3.

First, in the same way as in the proof of (4.15), we can prove that there exist

positive constants CW1
, CW2

depending only on M such that

(4.18) ‖Wj(t)‖X 6 CWj
‖u0‖D(A2)t

3 for t ∈ [0, τ(2M)], j = 1, 2.

In the following, we show that there exists a positive constant CW3
depending only

on M such that

(4.19) ‖W3(t)‖X 6 CW3
‖u0‖D(A2)t

3 for t ∈ [0, τ(4M)].

By (F4),

‖W3(t)‖X =

∥∥∥∥
∫ t

0

ΦA(t− s)F ′
1(u0)[I1(s, t)− I3(s, t)] ds

∥∥∥∥
X

6

∫ t

0

L4(M)‖I1(s, t)− I3(s, t)‖X .

By (4.7), we have

(4.20) ‖wj(s, t)‖D(A) 6 8M for s, t ∈ [0, τ(4M)], j = 1, 3.

In view of (4.20) and (F6), we obtain

‖I1(s, t)− I3(s, t)‖X 6 ‖I1(s, t)− I3(s, t)‖D(A)

=

∥∥∥∥
1

2

∫ s

0

(F1(w1(τ, t)) − F1(w3(τ, t))) dτ

∥∥∥∥
D(A)

6

∫ s

0

1

2
L(8M)‖w1(τ, t)− w3(τ, t)‖D(A) dτ for s, t ∈ [0, τ(4M)].
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By (3.2),

‖w1(τ, t)− w3(τ, t)‖D(A)

=

∥∥∥∥w1(τ, t)− w1(t, t)−

∫ t

0

F2(w2(τ̃ , t)) dτ̃ −
1

2

∫ τ

0

F1(w3(τ̃ , t)) dτ̃

∥∥∥∥
D(A)

.

In the same way as in the estimates of J62(t), we have

‖w1(τ, t)− w1(t, t)‖D(A) 6 L(M)M |t− τ | for τ, t ∈ [0, τ(M)].

By (F7), (4.5), and (4.20), we have

‖F2(w2(τ̃ , t))‖D(A) 6 4L(4M)M, ‖F1(w3(τ̃ , t))‖D(A) 6 8L(8M)M

for τ̃ , t ∈ [0, τ(4M)].

Thus, there exists a positive constant CI13 depending only on M such that

‖I1(s, t)− I3(s, t)‖X 6 CI13M(s+ t)s 6 CI13‖u0‖D(A2)(s+ t)s

for s, t ∈ [0, τ(4M)]. Therefore, we obtain (4.19).

Summing up these estimates, we get (4.16) and, therefore, (4.1).

By (4.1)–(4.4), we obtain the following lemma.

Lemma 4.2. Assume (F0)–(F5). Let u0 ∈ D(A2) and set M = ‖u0‖D(A). Then

there exists a positive constant C2 depending only on M such that

(4.21) ‖R(t)‖D(A) 6 C2‖u0‖D(A2)t
3 for t ∈ [0, τ(4M)].

Now, we can proceed with the proof of Proposition 4.1 in the same way as in the

proof of Proposition 3.1 by using Lemma 4.2.

427



5. Proof of Theorem 1.2

This section is devoted to the proof of the main result, Theorem 1.2. We set

(5.1) γ1 = 2L2(8m0), κ1 = e{2L(2m0)+γ1}TK1(m0)T, κ3 = κ1‖u0‖D(A2),

κ2 = e{2L4(2m0)+γ1}TK2(m0)T.

We assume that h0 > 0 satisfies

(5.2) h0 6 τ(4m0), e2L(2m0)h0κ3h0 6 δ0, κ3h0 6
7m0

8
,

where m0 = 8 max
t∈[0,T ]

‖S(t)u0‖D(A) and δ0 was defined in Lemma 2.6. We note that

κ3h 6 e2L(2m0)hκ3h 6 δ0 for h ∈ (0, h0].

In what follows, we assume h ∈ (0, h0]. By induction, we will show

‖Ψ(h)ju0‖D(A2) 6 eγ1jh‖u0‖D(A2),(5.3)

‖Ψ(h)ju0‖D(A) 6 m0,(5.4)

‖S(jh)u0 −Ψ(h)ju0‖D(A) 6 κ3h,(5.5)

‖S(jh)u0 −Ψ(h)ju0‖X 6 κ2‖u0‖D(A2)h
2(5.6)

for j ∈ N ∪ {0} satisfying jh 6 T.

In the case j = 0, it is clear that (5.3)–(5.6) hold. We assume nh 6 T and

(5.3)–(5.6) hold for j = 0, 1, . . . , n− 1.

First, it follows from Lemma 2.5 and (5.3) that

‖Ψ(h)nu0‖D(A2) = ‖Ψ(h)Ψ(h)n−1u0‖D(A2) 6 e2L2(8m0)h‖Ψ(h)n−1u0‖D(A2)

6 eγ1heγ1(n−1)h‖u0‖D(A2) = eγ1nh‖u0‖D(A2).

By the triangle inequality, we obtain

‖S(nh)u0 −Ψ(h)nu0‖D(A) 6

n−1∑

j=0

‖S((n− j − 1)h)S(h)Ψ(h)ju0

− S((n− j − 1)h)Ψ(h)Ψ(h)ju0‖D(A).

Moreover,

‖Ψ(h)ju0 − S(jh)u0‖D(A) 6 κ3h 6 δ0

for j = 0, 1, . . . , n− 2. Thus, it follows from Lemma 2.6 that

‖S(h)Ψ(h)ju0 − S((j + 1)h)u0‖D(A) = ‖S(h)Ψ(h)ju0 − S(h)S(jh)u0‖D(A)

6 e2L(2m0)h‖Ψ(h)ju0 − S(jh)u0‖D(A) 6 e2L(2m0)hκ3h 6 δ0
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for j = 0, 1, . . . , n− 2. Moreover,

‖Ψ(h)Ψ(h)ju0−S((j+1)h)u0‖D(A) = ‖Ψ(h)j+1u0−S((j+1)h)u0‖D(A) 6 κ3h 6 δ0

for j = 0, 1, . . . , n− 2. Hence, it follows from Lemma 2.6 that

‖S((n− j − 1)h)S(h)Ψ(h)ju0 − S((n− j − 1)h)Ψ(h)Ψ(h)ju0‖D(A)

6 e2L(2m0)(n−j−1)h‖S(h)Ψ(h)ju0 −Ψ(h)Ψ(h)ju0‖D(A)

6 e2L(2m0)T ‖S(h)Ψ(h)ju0 −Ψ(h)Ψ(h)ju0‖D(A).

Hence, we have

‖S(nh)u0 −Ψ(h)nu0‖D(A) 6 e2L(2m0)T
n−1∑

j=0

‖S(h)Ψ(h)ju0 −Ψ(h)Ψ(h)ju0‖D(A).

Moreover, it follows from (5.4) that ‖Ψ(h)ju0‖D(A) 6 m0 for j = 0, 1, . . . , n− 1. By

Proposition 3.1 we obtain

‖S(h)Ψ(h)ju0 −Ψ(h)Ψ(h)ju0‖D(A) 6 K1(m0)‖Ψ(h)ju0‖D(A2)h
2

6 K1(m0)e
γ1T ‖u0‖D(A2)h

2

for j = 0, 1, . . . , n− 1. Therefore, we have

‖S(nh)u0 −Ψ(h)nu0‖D(A) 6 e2L(2m0)T
n−1∑

j=0

K1(m0)e
γ1T ‖u0‖D(A2)h

2

6 e{2L(2m0)+γ1}TK1(m0)‖u0‖D(A2)nh
2 6 κ3h.

Finally, it follows from (5.2) that

‖Ψ(h)nu0‖D(A) 6 ‖Ψ(h)nu0 − S(nh)u0‖D(A) + ‖S(nh)u0‖D(A) 6 κ3h+m0/8 6 m0.

We can also prove (5.6) in the same way as in the proof of (5.5).

Therefore, we showed (5.4) holds for j = n. This completes the proof. �
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6. Numerical examples

In this section, we present numerical examples. Let I = (0, 1). We consider

(6.1)





∂tu = i∂2
xu− i|u|2u− 2|u|4u, t ∈ [0, T ], x ∈ I,

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

u(0, x) = u0(x), x ∈ I.

By letting

A = i∂2
x, X = L2(I), D(A) = H2(I) ∩H1

0 (I),

D(A2) = {v ∈ H4(I) ; v = ∂2
xv = 0 on ∂I}, F (v) = −i|v|2v − 2|v|4v,

the equation (6.1) fits into the framework of Proposition 1.1. Hence, we can directly

apply Theorem 1.2 to (6.1) if u0 ∈ D(A2). It is difficult to obtain the exact solution

of (6.1). Therefore, instead of (1.13), we numerically investigate the quantity

eY = sup
06tn6T

‖Ψ(h)nu0 −Ψ(h/2)2nu0‖Y ,

where Y = L∞(I), L2(I) or H1(I). In Figures 1 and 3, we present (log h, logeL∞),

(log h, log eL2) and (log h, log eH1). Figure 1 shows that the second-order convergence

occurs with the initial value u0(x) = sin(πx) which is a D(A2) function. On the other

hand, Figure 3 shows that the first-order convergence occurs with the initial value

U0(x) = |x− 1
2 |

3 sin(πx) for x ∈ I which is a D(A) function but not a D(A2) function.

Hence, we see that (1.12) and (1.13) are optimal numerically. Moreover, (1.1) has

the following dissipative property

(6.2)
d

dt

(∫

I

|u|2 dx

)1/2
6 0.

In Figures 2 and 4, we demonstrate that the scheme (1.10) preserves the prop-

erty (6.2).

A c k n ow l e d gm e n t. The authors thank the reviewers for their valuable com-

ments.
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Figure 1. Convergence rate of the scheme
(1.10) for (6.1), u0(x) = sin(πx).
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Figure 2. The dissipation property of the
scheme (1.10) for (6.1), u0(x) =
sin(πx).
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Figure 3. Convergence rate of the scheme
(1.10) for (6.1) with the initial
value U0(x).
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Figure 4. The dissipation property of the
scheme (1.10) for (6.1) with the
initial value U0(x).
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