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The graphs of join-semilattices and the

shape of congruence lattices of particle lattices

Pavel Růžička

Abstract. We attach to each 〈0,∨〉-semilattice S a graph GS whose vertices
are join-irreducible elements of S and whose edges correspond to the reflexive
dependency relation. We study properties of the graph GS both when S is
a join-semilattice and when it is a lattice. We call a 〈0,∨〉-semilattice S particle

provided that the set of its join-irreducible elements satisfies DCC and join-
generates S. We prove that the congruence lattice of a particle lattice is anti-
isomorphic to the lattice of all hereditary subsets of the corresponding graph
that are closed in a certain zero-dimensional topology. Thus we extend the
result known for principally chain finite lattices.

Keywords: join-semilattice; lattice; join-irreducible; dependency; chain condi-
tion; particle; atomistic; congruence

Classification: 06A12, 06A15, 06B10, 06F30

1. Introduction

The structure of congruences of a finite lattice can be understood via the
study of covers of their join-irreducible elements. The main tool to do so is the
dependency relation on the set of join-irreducible elements of the lattice (cf. [3,
p. 39] or [7, p. 113]). The idea of the use of the dependency relation goes back
to [8], its original definition is due to A. Day [1]. The dependency relation found
a wide range of applications. Aside of studying congruences of finite [3], resp.
principally chain finite [7], lattices, let us mention characterization of finite lower
bounded lattices. In particular, a finite lattice is lower bounded if and only if it
contains no D-cycle [3, Corollary 2.39].

A full description of a congruence lattice of a lattice via the dependency rela-
tion is established for finite lattice in [3] and generalized to principally chain finite
lattices in [7]. In this paper we extend these results to a wider class of particle

lattices, i.e., the lattices whose join-irreducible elements satisfy DCC (the de-
scending chain condition) and join-generate the lattice. We also study properties
of the dependency relation for 〈0,∨〉-semilattices. In the 〈0,∨〉-semilattice case
one cannot expect such a nice connection with the structure of the congruence
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lattice of a 〈0,∨〉-semilattice as in the case of lattices. Indeed, even when a 〈0,∨〉-
semilattice is a small finite lattice, the lattice of its 〈0,∨〉-semilattice congruences
may be much richer than the lattice of its lattice congruences (cf. Example 6.1).

Let us sum up the content of the paper. Firstly we study consequences of
DCC in posets. In particular we show that for posets satisfying DCC, saturated
families of finite subsets of the posets satisfy certain minimality properties. This
result is based on the fact that if a poset satisfies DCC, the set of its anti-chains
quasi-ordered by the join-refining relation ≪ (see [3, p. 30]) satisfies DCC as well
(cf. [7, Exercise 10.4]). In connection with these finiteness properties we study
join-covers in join-semilattices and lattices.

We define a graph of a 〈0,∨〉-semilattice. The set of vertices of the graph
is the set of all join-irreducible elements of the 〈0,∨〉-semilattice and the edges
correspond to the reflexive dependency relation D defined in [7, p. 113]. We prove
that the graph has no edges other than loops for distributive semilattices and
that it is symmetric for modular or relatively complement semilattices. This
is a mild generalization of the corresponding results known for lattices (cf. [7,
Theorem 10.9]).

We study how the congruence lattices of 〈0,∨〉-semilattices, resp. lattices are
related to the lattices of hereditary subsets of the corresponding graphs. We show
that there is a Galois connection between the congruence lattice of a 〈0,∨〉-se-
milattice and the lattice of hereditary subsets of its graph. This connection is
proved to be particularly nice for particle lattices. We define a zero-dimensional
topology on the set of join-irreducible elements of a lattice, and we show that the
Galois connection induces an anti-isomorphism between the congruence lattice of
a particle lattice and the lattice of closed hereditary subsets of its graph. We
apply this result to characterize congruence lattices of atomistic lattices.

2. Basic concepts

Given a set X , we denote by [X ]<ω the set of all finite subsets of X . We denote
by 1X the identity map on the set X .

2.1 Posets. By a poset we mean a partially ordered set. Given posets P and P ′,
a map f : P → P ′ is said to be monotone, resp. antitone, provided that p ≤ q
implies f(p) ≤ f(q), resp. p ≤ q implies f(q) ≤ f(p), for all p, q ∈ P . An antitone
bijection will be called an anti-isomorphism.

We say that a poset P satisfies DCC (the descending chain condition) provided
that there is no infinite decreasing sequence in P , equivalently, provided that each
non-empty subset of P has a minimal element. Dually, we say that P satisfies
ACC (the ascending chain condition), if it does not contain an infinite increasing
sequence. A subset A ⊆ P is called an anti-chain provided that the elements of
A are pairwise incomparable.

A subset O of a poset P is said to be an order ideal provided that x ≤ y ∈ O
implies that x ∈ O, for all x, y ∈ P . All order ideals of a poset form a sublattice
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of the lattice of all subsets of the poset. We denote the lattice of all order ideals
of the poset P by O(P ) (cf. Subsection 2.3).

Given X ⊆ P , we set

↑(X) := {p ∈ P | x ≤ p for some x ∈ X} , and dually

↓(X) := {p ∈ P | p ≤ x for some x ∈ X} .

For a singleton set X = {x}, we abbreviate the notation writing ↓(x) and ↑(x).
A tree is a poset T such that ↑(x) is well-ordered for each x ∈ T . The order

type o(x) of an element x ∈ T is the order type of ↑(x). For an ordinal α, the αth-

level of T is the set T α = {x ∈ T | o(x) = α}. A branch of a tree is its maximal
well-ordered subset.

A quasi-order on a set Q is a binary relation, say ≪, on the set Q such that
≪ is reflexive and transitive. Given p, q ∈ Q, we define p ≡ q if both p ≪ q and
q ≪ p. It is straightforward to verify that ≡ is an equivalence relation on the
set Q; we will call the relation ≡ the equivalence induced by the quasi-order ≪.
For each q ∈ Q, we denote by q the block of the equivalence ≡ containing q and
we set Q = {q | q ∈ Q}. It is easy to see that the binary relation ≤ defined by
p ≤ q if and only if p ≪ q is well defined (i.e., it does not depend on the choice
of the representatives of the blocks) partial order on the set Q. The poset Q will
be called the maximal antisymmetric quotient of Q.

Let P , Q be posets. By a Galois connection (between the posets P and Q) we
mean a pair of antitone maps, F : P → Q and G : Q → P , such that

(2.1) p ≤ G(q) if and only if q ≤ F (p), for all p ∈ P , q ∈ Q.

Property (2.1) is easily seen to be equivalent to

(2.2) p ≤ GF (p) for all p ∈ P and q ≤ FG(q) for all q ∈ Q.

2.2 Join-semilattices and lattices. Let S be a join-semilattice. The least ele-
ment of S, if it exists, will be denoted by 0 and called zero of the join-semilattice S.
We will refer to join-semilattices with zero as 〈0,∨〉-semilattice.

Let S be a join-semilattice (resp. a lattice). We say that X ⊆ S join-generates

S provided that each element of S is the join of a finite subset of X .
Let S be a 〈0,∨〉-semilattice. We say that u ∈ S is join-irreducible provided

that u =
∨

F implies that u ∈ F , for all finite subsets F of S. Observe that since
0 =

∨

∅, a join-irreducible element is necessarily non-zero. We denote by JS the
set of all join-irreducible elements of the 〈0,∨〉-semilattice S.

Let S be a 〈0,∨〉-semilattice, let a, b ∈ S. We say that b covers a, and we write
a ≺ b, if a < b and a ≤ x ≤ b implies x ∈ {a, b} for all x ∈ S. An element u of
a 〈0,∨〉-semilattice S is an atom provided that 0 ≺ u. A 〈0,∨〉-semilattice S is
called atomistic provided that each element of S is the join of a set of atoms (cf.
[4, p. 234]).

An element a of a complete lattice L is compact provided that for all X ⊆ L,
the inequality a ≤

∨

X implies that a ≤
∨

F for some finite F ⊆ X . An algebraic
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lattice is a complete lattice whose each element is a (possibly infinite) join of
compact elements.

An ideal of a join-semilattice S is its subset, say I, such that x ∨ y ∈ I if and
only if both x, y ∈ I, i.e., an ideal of the semilattice S is its order ideal closed
under finite joins. We denote by Id(S) the lattice (necessarily algebraic) of all
ideals of S.

Given a join-semilattice S, we denote by con∨(S) the lattice of all congruences
of S, i.e., equivalence relations Θ on S such that for all a, b, c ∈ S, a ≡Θ b implies
that a ∨ c ≡Θ b ∨ c. Given a lattice L, we denote by con(L) the lattice of all
congruence of L, i.e., equivalence relations on L respecting both the join and the
meet.

A non-zero element u of 〈0,∨〉-semilattice S is join-prime (resp. completely

join-prime) provided that u ≤
∨

X implies u ≤ x for some x ∈ X , for all finite
subsets X of S (resp. all, not necessarily finite, subsets X of S).

2.3 Strongly distributive lattices. We say that a lattice L is strongly dis-

tributive provided that it is isomorphic to the lattice O(P ) for some poset P .
A strongly distributive lattice is necessarily algebraic and distributive, however
not every algebraic distributive lattice is strongly distributive. Combining [7,
Lemma 10.6] and [7, Exercise 10.7] we get that

Lemma 2.1. The following are equivalent for a distributive algebraic lattice L.

(1) L is isomorphic to the lattice of order ideals of a poset.

(2) Every element of L is a join of completely join-prime elements.

(3) Every compact element of L is a join of (finitely many) join irreducible

compact elements.

(4) The lattice L is dually algebraic.

2.4 Graphs. A graph is a pair G = (J, E) where J is a set (of vertices) and
E ⊆ J × J (is a set of edges). Given u, v ∈ J, we will write u → v to denote
that (u, v) ∈ E. We say that H ⊆ J is hereditary provided that if u ∈ H and
u → v, then v ∈ H , i.e., a hereditary subset H contains with each vertex u ∈ H
all vertices reachable by an oriented path starting at u. A subset Y ⊆ J will be
called co-hereditary provided that its complement J \ Y is hereditary.

3. Posets satisfying DCC and minimal covers

Let P be a poset, let X , Y be subsets of P . We say that X join-refines Y , which
we denote by X ≪ Y , provided that X ⊆ ↓(Y ) [3, p. 15]. By [3, Lemma 1.15],

the relation ≪ forms a quasi-order on [P ]
<ω

and for each X ∈ [P ]
<ω

, there is

a unique anti-chain A ∈ [P ]<ω such that A ≡ X (where ≡ is the equivalence
induced by the quasi-order ≪). Furthermore, if A is an anti-chain with A ≡ X ,
then A ⊆ X .

Let C be a set of finite subsets of P . We call the set C saturated provided that
for each non-empty X ∈ C there exists an anti-chain A ∈ C such that A ⊆ X . We
say that X ∈ C is C-minimal provided that Y ≪ X implies X ⊆ Y , for all Y ∈ C.
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Lemma 3.1. A poset P = (P,≤) satisfies DCC if and only if each non-empty

saturated C ⊆ [P ]
<ω

contains a C-minimal element.

Proof: (⇐) Suppose that the poset P does not satisfy DCC. Then there is an
infinite strictly decreasing sequence b0 > b1 > · · · in P . Set B = {b0, b1, . . . } and

C = [B]
<ω

. One easily checks that C is saturated without a C-minimal element.
(⇒) Suppose that P satisfies DCC and there is a non-empty saturated C ⊆

[P ]
<ω

with no C-minimal element.

Claim 1. There is an infinite sequence of pairwise distinct anti-chains A0, A1,
A2, . . . in C such that

(3.1) A0 ≫ A1 ≫ A2 ≫ · · · .

Proof of Claim: We construct the sequence inductively. Since C is nonempty
and saturated, there is a nonempty anti-chain A0 ∈ C. Let n be a positive integer
and suppose that we have already constructed a sequence A0, A1, . . . , An−1 of
pairwise distinct anti-chains satisfying (3.1). By the assumption, there is no C-
minimal element. Therefore there is Xn with Xn ≪ An−1 and An−1 * Xn.
Since An−1 is an anti-chain, we have that An−1 6≪ Xn, hence Ai 6≪ Xn, whence
Ai * Xn for all i = 0, . . . , n − 1. The set C is saturated, therefore Xn contains
a nonempty anti-chain An ∈ C. From An ⊆ Xn ≪ An−1, we get that An ≪ An−1.
Since An ⊆ Xn, we have that An 6= Ai for all i = 0, . . . , n − 1. �

Put Q =
⋃

∞

n=0 An and observe that the set Q is infinite. Indeed, it has infinitely
many pairwise distinct subsets An. Let ≺Q be the covering relation corresponding
to the restriction of the order ≤ to Q, i.e., x ≺Q z for x, z ∈ Q if x < z and x < y <
z for no y ∈ Q. Let T be a set of all finite subsets {x0, x1, . . . , xk} of Q such that
xk ≺Q · · · ≺Q x1 ≺Q x0 and x0 ∈ A0, ordered by inclusion. Clearly T = (T,⊆) is
an infinite tree and o({x0, x1, . . . , xk}) = k for all {x0, x1, . . . , xk} ∈ T . Since the
sets An are anti-chains, x ≺Q y implies that there is a (necessarily unique) positive
integer n with y ∈ An−1 \An and x ∈ An. It follows that {x ∈ Q | x ≺Q y} ⊆ An,
in particular, the set is finite. Observing that T 0 = A0, it follows by induction
that each level of the tree T is finite. By König’s lemma [6], the tree T contains an
infinite branch. This branch corresponds to an infinite strictly decreasing chain
in P , which contradicts the assumption that P satisfies DCC. �

Let S be a 〈0,∨〉-semilattice, I ⊆ S, and a ∈ S. An I-cover of a is a finite
F ⊆ I such that a ≤

∨

F . Let Ca denote the set of all I-covers of a. By
a minimal I-cover of a we mean a Ca-minimal element. A minimal join-cover of

a is a minimal S-cover of a.
Observe that given a poset P and C ⊆ [P ]

<ω
saturated, each C-minimal ele-

ment is an anti-chain. This is true because a C-minimal element cannot contain
a proper subset in C, therefore it is an anti-chain due to C being saturated. In
particular, if I is a subset of a 〈0,∨〉-semilattice S and a ∈ S, each I-minimal
cover of a is an anti-chain.
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Lemma 3.2. Let S be a 〈0,∨〉-semilattice and let I be a join-generating subset

of S. Then all minimal I-covers are minimal covers.

Proof: Let a ∈ S and let F be a minimal I-cover of a. Let G be a finite subset
of S such that a ≤

∨

G and G ≪ F . Since I is join-generating, G refines to an
I-cover of a, say H . Since F is I-minimal, it follows that F ⊆ H , and so F ≪ H .
By the transitivity of ≪ we get that F ≪ G, and since F is an anti-chain, we
conclude that F ⊆ G. Thus F is a minimal join-cover of a. �

We say that a 〈0,∨〉-semilattice S has the weak minimal join-cover refinement

property provided that each join-cover of an element a ∈ S refines to a minimal
join-cover of a. This is the minimal join-cover refinement property [3, p. 30]
weakened by removing the assumption that each element of S has only finitely
many minimal join-covers.

Lemma 3.3. Let S be a 〈0,∨〉-semilattice, let I be a join-generating subset of S.

Assume that I, viewed as a poset with the ordering inherited from S, satisfies

DCC. Then S satisfies the weak minimal join-cover refinement property.

Proof: Let a ∈ S and let F be a join cover of a. Let Ca be the set of all I-
covers of a refining F . Since I join-generates S, the set Ca is nonempty. Applying
Lemma 3.1 and the assumption that I satisfies DCC, we infer that there is a
Ca-minimal element. It is clearly an I-minimal cover of a. By Lemma 3.2 all
minimal I-covers of a are minimal join-covers of a, and so we found a minimal
join-cover of a refining F . �

Let us call a 〈0,∨〉-semilattice S particle provided that JS is a join-generating
subset of S satisfying DCC. A lattice is particle if its join-semilattice reduct is
a particle 〈0,∨〉-semilattice. We get readily from Lemma 3.3 that

Corollary 3.4. A particle 〈0,∨〉-semilattice satisfies the weak minimal join-cover

refinement property.

Lemma 3.5. A 〈0,∨〉-semilattice satisfying DCC is particle.

Proof: It suffices to prove that if S is a 〈0,∨〉-semilattice with DCC then JS

join-generates S. It is an easy exercise (see [7, Lemma 2.8]). �

Note that the converse does not hold in general, indeed, any atomistic 〈0,∨〉-
semilattice is particle but not all atomistic 〈0,∨〉-semilattice satisfy DCC. Let us
finish this section with a partial converse of Lemma 3.3, particularly implying that
if JS join-generates the 〈0,∨〉-semilattice S, the minimal join-covers and minimal
JS-covers coincide.

Lemma 3.6. In a 〈0,∨〉-semilattice S each minimal cover is a minimal JS-cover.

Proof: To prove that each minimal cover is a minimal JS-cover, it suffices
to show that elements of minimal covers are join-irreducible. So let F be a mi-
nimal join-cover of a ∈ S and let u ∈ F . Suppose that u is not join-irreducible.
Then there exist x, y ∈ S both strictly smaller than u with u = x ∨ y. Then
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G = (F \ {u}) ∪ {x, y} is a join-cover of a such that G ≪ F and F 6⊆ G. This
contradicts the minimality of F . �

Corollary 3.7. If a 〈0,∨〉-semilattice S has the weak minimal join-cover refine-

ment property, then JS join-generates S.

4. The graph of a join-semilattice

We define a graph of the 〈0,∨〉-semilattice S to be the graph GS = (JS , ES),
where the set ES of its edges is defined as follows: given u, v ∈ JS , then u → v
if there is x ∈ S such that u ≤ x ∨ v but u � x ∨ y for all y < v. Note
that for principally join-finite lattices the relation ES corresponds to the reflexive
dependency relation denoted in [7, p. 113] as D. The next lemma is the semilattice
version of [3, Lemma 2.3].

Lemma 4.1. Let S be 〈0,∨〉-semilattice satisfying the weak minimal join-cover

refinement property, let u, v ∈ JS. Then u → v if and only if v belongs to a

minimal join-cover of u.

Proof: (⇐) Let F be a minimal join-cover of u containing v. Put x =
∨

(F \{v}).
Then u ≤

∨

F = x∨ v. The minimality of F implies that u � x∨ y for all y < v.
(⇒) Suppose that u → v with u ≤ x∨v and u � x∨y for all y < v. Then {x, v}

is a join-cover of u and since S satisfies the weak minimal join cover refinement
property, {x, v} refines to a minimal join cover F of u. Put y =

∨

{z ∈ F | z ≤ v}
(note that this set is non-empty since u � x). From u ≤ x∨ y, we get that y = v.
Since v is join-irreducible, we conclude that v ∈ F . �

Recall that a non-zero element u of 〈0,∨〉-semilattice S is join-prime provided

that u ≤
∨

F implies u ≤ x for some x ∈ F , for all F ∈ [S]
<ω

. We denote by PS

the set of all join-prime elements of S. Proving the next lemma is straightforward,
and so we leave the proof to the reader.

Lemma 4.2. Let S be a 〈0,∨〉-semilattice, let p ∈ PS and v ∈ JS. Then p → v
implies that p = v.

A join-semilattice is distributive provided that a ≤ b∨ c implies that a = y ∨ z
for some y, z ∈ S with y ≤ b and z ≤ c (see e.g. [4, p. 131]). The terminology
comes from the fact that a join-semilattice is distributive if and only if its ideals
form a distributive lattice [4, Lemma II.5.1].

In a 〈0,∨〉-semilattice every join-prime element is join-irreducible, while join-
irreducible elements may not be join-prime in general. However, if the 〈0,∨〉-se-
milattice is distributive, join-irreducible elements are join-prime. In fact, if the
set of join-irreducible elements of a 〈0,∨〉-semilattice is join-generating, then join-
prime and join-irreducible elements coincide if and only if the join-semilattice is
distributive. Applying Lemma 4.2, we get readily that

Proposition 4.3. Let S be a distributive 〈0,∨〉-semilattice. Then u → v implies

u = v for all u, v ∈ JS, i.e., the graph GS has no edges distinct from loops.
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Following [5] we say that a join-semilattice S is modular provided that a ≤
b ≤ a ∨ c implies that there is x ≤ c in S such that b = a ∨ x (see [9] for
alternative definitions of modularity of semilattices). Similarly as in the previous
case, a join-semilattice is modular if and only if its ideal lattice is modular.

Proposition 4.4. The graph of a modular 〈0,∨〉-semilattice S is symmetric, i.e.,

u → v implies v → u for all u, v ∈ JS.

Proof: Let u, v be join-irreducible elements of S such that u → v. By the
definition of edges, there is x ∈ S such that u ≤ x∨ v but u � x∨ y for all y < v.

Claim 1. v ≤ x ∨ u.

Proof of Claim: Since x ≤ x ∨ u ≤ x ∨ v, there is y ≤ v with x ∨ u = x ∨ y,
by the modularity. It follows that u ≤ x ∨ y, hence y = v. We conclude that
v ≤ x ∨ u. �

Let z ≤ u be such that v ≤ x ∨ z. Then z ≤ u ≤ x ∨ v = x ∨ z, hence, by
modularity, there is w ≤ x with u = w ∨ z. Since u is join-irreducible, either
u = w ≤ x, which is not the case, or u ≤ z. The latter means u = z. Thus we
have proved that v → u. �

There is an alternative way to prove Proposition 4.4. Each 〈0,∨〉-semilatti-
ce S embeds into the lattice Id(S) via the correspondence a 7→ ↓(a), sending
each element of S to the corresponding principal ideal. It is straightforward to
observe that a ∈ S is join-irreducible if and only if the principal ideal ↓(a) is
join-irreducible in Id(S).

Lemma 4.5. Let S be a 〈0,∨〉-semilattice, let u, v ∈ JS. Then

u → v if and only if ↓(u) → ↓(v).

Proof: (⇒) Suppose that u → v. By the definition there is x ∈ S such that
u ≤ x ∨ v but u � x ∨ y for all y < v. It follows that ↓(u) ⊆ ↓(x) ∨ ↓(v) and
let I ⊆ ↓(v) be an ideal of S such that ↓(u) ⊆ ↓(x) ∨ I. Then there is z ∈ I
with u ≤ x ∨ z. Since I ⊆ ↓(v), we have that z ≤ v, hence z = v. It follows that
I = ↓(v), and so we have proved that ↓(u) → ↓(v).

(⇐) Suppose that ↓(u) → ↓(v). Then there is an ideal of S, say I, such that
↓(u) ⊆ I ∨ ↓(v) and ↓(u) * I ∨ J for every ideal J ( ↓(v). The first inequality
implies that there is x ∈ I with u ≤ x ∨ v. Suppose that there is y < v with
u ≤ x ∨ v. Then ↓(y) ( ↓(v) and ↓(u) ⊆ I ∨ ↓(y). This is not the case, and so
u → v. �

It follows from Lemma 4.5 that Proposition 4.4 reduces to the case when S is
a modular lattices. In this case we can argue as in [7, Theorem 10.9].

Finally, we say that a 〈0,∨〉-semilattice S is relatively complemented if for all
x ≤ y ≤ z in S there is c ∈ S such that the meet y ∧ c exists, x = y ∧ c, and
z = y ∨ c; we view the 〈0,∨〉-semilattice S as a partial lattice, assuming that
the meet is defined whenever it exists. Note that S is not necessarily a lattice:
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take for example the lattice of all subspaces of an infinite-dimensional vector
space V . Consider its proper infinite-dimensional subspace, say W , and remove
all infinite-dimensional subspaces of W . The result is a relatively complemented
〈0,∨〉-semilattice that is not a lattice.

Lemma 4.6. Let S be a relatively complemented 〈0,∨〉-semilattice, let u, v ∈ JS.

Then

u → v =⇒ v → u.

Proof: We can argue as in the proof of [7, Theorem 10.9], observing that all
join-irreducible elements of S are atoms. �

5. Congruences and join-irreducible elements

Let S be a 〈0,∨〉-semilattice, let Θ be a congruence of S, and let a, b ∈ S.
We write a ≡Θ b when (a, b) ∈ Θ, and a ≤Θ b when (a ∨ b, b) ∈ Θ. Observe
that a ≤Θ b is equivalent to a ∨ b ≡Θ b. Let us state simple properties of these
relations; we leave the elementary verification to the reader.

Lemma 5.1. Let S be a 〈0,∨〉-semilattice, let Θ be a congruence of S. Then

the following holds true.

(1) For all a, b ∈ S, a ≡Θ b if and only if both a ≤Θ b and b ≤Θ a.

(2) The binary relation ≤Θ is a quasi-order on S.

Let S be a 〈0,∨〉-semilattice and let Θ be a congruence on S. We put

(5.1) J∨

Θ := {u ∈ JS | u ≤Θ x =⇒ u ≤ x, for all x ∈ S} .

Lemma 5.2. Let S be a 〈0,∨〉-semilattice, let Θ ∈ con∨(S), and let a, b ∈ S.

Then

(5.2) a ≤Θ b =⇒ ↓(a) ∩ J∨

Θ ⊆ ↓(b) ∩ J∨

Θ.

Proof: Let u ∈ ↓(a)∩J∨

Θ. Since u ≤ a and a ≤Θ b, by the assumption, we infer,
applying Lemma 5.1(2), that u ≤Θ b. Since u ∈ J∨

Θ, we conclude that u ≤ b, and
so u ∈ ↓(b) ∩ J∨

Θ. �

Combining Lemmas 5.1(1) and 5.2, we conclude that given a 〈0,∨〉-semilatti-
ce S, a congruence relation Θ ∈ con∨(S), and elements a, b ∈ S, the implication

(5.3) a ≡Θ b =⇒ ↓(a) ∩ J∨

Θ = ↓(b) ∩ J∨

Θ

holds true.
Given a 〈0,∨〉-semilattice S and a congruence relation Θ ∈ con∨(S), we set

(5.4) JΘ := {u ∈ JS | x < u =⇒ x 6≡Θ u, for all x ∈ S} .
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Lemma 5.3. Let S be a particle 〈0,∨〉-semilattice, let Θ be a congruence on S,

and let a, b ∈ S. Then

(5.5) ↓(a) ∩ JΘ ⊆ ↓(b) ∩ JΘ =⇒ a ≤Θ b.

Proof: The statement is clear when a = 0. Suppose that 0 < a and ↓(a)∩JΘ ⊆
↓(b) ∩ JΘ. Put

Ca :=
{

A ∈ [JS ]<ω | a ≡Θ

∨

A
}

.

One readily sees that Ca is saturated. Since S is a particle 〈0,∨〉-semilattice, the
poset JS join-generates S and it satisfies DCC. Since JS is join-generating in S,
the set Ca is non-empty. Since the poset JS satisfies DCC, there is an Ca-minimal
element, say F , due to Lemma 3.1.

Claim 1. The inclusion F ⊆ JΘ holds true.

Proof of Claim: Suppose the contrary. Then there is y ∈ F such that x ≡Θ y
for some x < y. If x = 0, then

∨

F ≡Θ

∨

(F \ {y}), hence F \ {y} ∈ Ca, which
contradicts the Ca-minimality of F . If 0 < x, then there is a finite X ⊆ JS with
x =

∨

X (recall that JS join-generates S). Put G = (X∪F )\{x}. From x =
∨

X
we infer that

∨

G =
∨

F ≡Θ a. It follows that G ∈ Ca. Observing that G ≪ F
and F * G, (since x ∈ F \ G) we get the contradiction with the Ca-minimality
of F . �

From Claim 1 we conclude that F ⊆ ↓(a) ∩ JΘ ⊆ ↓(b) ∩ JΘ ⊆ ↓(b). It follows
that b ∨ a ≡Θ b ∨

∨

F = b, hence a ≤Θ b. �

Comparing the definitions of the sets JΘ and J∨

Θ, we easily observe that J∨

Θ ⊆
JΘ. Indeed, JΘ corresponds to the set of all join-irreducible elements minimal
in their block Θ-blocks, while all elements of J∨

Θ are minimum elements of their
Θ-blocks. Suppose that L is a lattice and Θ ∈ con(L). We have that

u � x =⇒ x ∧ u < u =⇒ x ∧ u 6≡Θ u =⇒ u �Θ x,

for all u ∈ JΘ and x ∈ L. It follows that u ∈ JΘ =⇒ u ∈ J∨

Θ, hence JΘ = J∨

Θ.

Corollary 5.4. Let L be particle lattice, let Θ ∈ con(L). Then for all x, y ∈ L,

↓(x) ∩ JΘ ⊆ ↓(y) ∩ JΘ ⇐⇒ x ≤Θ y.

Proof: Apply Lemmas 5.2 and 5.3. �

Lemma 5.5. Let S be a 〈0,∨〉-semilattice, let Θ ∈ con∨(S), and let u, v ∈ JS.

Then the implication

(5.6) (u ∈ J∨

Θ and u → v) =⇒ (v ∈ JΘ)

holds true.
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Proof: Suppose that there are u, v ∈ JS such that u → v, u ∈ J∨

Θ, and v /∈ JΘ.
Since u → v, there is x ∈ S with u ≤ x ∨ v and u � x ∨ y for all y < v. Since
v /∈ JΘ, there is y ∈ S such that y < v and y ≡Θ v. The latter gives that
u ≤ x∨ v ≡Θ x∨ y. From u ∈ J∨

Θ and u ≤Θ x∨ y we obtain that u ≤ x∨ y. This
is a contradiction. �

•
0

•u •x • v

•
w

•
a

•
1

OOOOOOOOOOOOO

ooooooooooooo

///////
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44444444444

����������

Figure 1. The 〈0,∨〉-semilattice S.

Example 5.1. Consider the 〈0,∨〉-semilattice S depicted in Figure 1. Let Θ ∈
con∨(S) be the least congruence identifying elements w and x. The congruence Θ
has exactly two non-singleton blocks, namely {x, w} and {a, 1}. One easily ob-
serves that JΘ = {u, x, v} and J∨

Θ = {x, v}. Since u ≤ v ∨ w but u � w, we have
that u → w, u ∈ JΘ and w /∈ JΘ. Similarly, since v ≤ u ∨ x and v � x, we have
that v → u, v ∈ J∨

Θ, and u /∈ J∨

Θ. Therefore, the implication (5.6) cannot be
strengthen by either assuming that u ∈ JΘ or concluding that v ∈ J∨

Θ.

Of course, the situation simplifies when Θ is a lattice congruence. In this
case Lemma 5.5 corresponds to one implication of [7, Theorem 10.5], (see also [3,
Lemma 2.33]).

Corollary 5.6. Let L be a lattice, let u, v ∈ JL. Then for all Θ ∈ con(L):

(u ∈ JΘ and u → v) =⇒ v ∈ JΘ.

Lemma 5.7. Let S be 〈0,∨〉-semilattice satisfying the weak minimal join-cover

refinement property. Let H be a hereditary subset of JS (with respect to →).
Let ΘH be a binary relation on S defined by

(5.7) a ≡ΘH
b ⇐⇒ ↓(a) ∩ H = ↓(b) ∩ H (for all a, b ∈ S).

Then ΘH is a congruence of the 〈0,∨〉-semilattice S preserving all existing meets.

In particular, if S is a lattice, then ΘH ∈ con(S).

Proof: It is clear from the definition, that the binary relation ΘH is reflexive,
transitive, and symmetric, thus ΘH is an equivalence relation on S. Let a, b, c ∈ S



286 Růžička P.

and suppose that a ≡ΘH
b. This, by (5.7), means that ↓(a) ∩ H = ↓(b) ∩ H . Let

u ∈ ↓(a ∨ c) ∩ H . Since JS join-generates S due to Corollary 3.7, we can find
finite subsets A and C of JS such that a =

∨

A and c =
∨

C. Observe that A∪C
is a join-cover of u and since S satisfies the weak minimal join-cover refinement
property, A ∪ C refines to a minimal join-cover of u, say F . From Lemma 3.6 we
get that F ⊆ JS and by Lemma 4.1 we have that u → v for every v ∈ F . Since
H is hereditary, we infer that F ⊆ H . Since F ≪ A ∪ C, either v ⊆ a or v ⊆ c
for every v ∈ F . Since ↓(a) ∩ H = ↓(b) ∩ H , we have that v ⊆ a implies v ⊆ b,
hence v ≤ b ∨ c, for all v ∈ F . It follows that u ≤

∨

F ≤ b ∨ c. We conclude that
u ∈ ↓(b ∨ c) ∩ H .

Verifying that ΘH preserves existing meets is straightforward, indeed, for all
c ∈ S,

↓(c ∧ a) ∩ H = ↓(c) ∩ ↓(a) ∩ H = ↓(c) ∩ ↓(b) ∩ H = ↓(c ∧ b) ∩ H.

�

6. The Galois connection

In this final section we study the connections between the congruence lattices
of 〈0,∨〉-semilattices (resp. lattices) and the lattices of all hereditary subsets of
their graphs. We define a topology on the set of join-irreducible elements of a
lattice L, induced by the ordering of JL, and we prove that the congruence lattice
of a particle lattice is anti-isomorphic to the lattice of all closed hereditary subsets
of its graph. Thus we generalize [7, Corollary of Theorem 10.5]. We apply this
result to characterize the congruence lattices of atomistic lattices.

Let G = (J, E) be graph. We denote by hrd(G) the lattice of all hereditary
subsets of J. Given X ⊆ J we denote by ∂(X) the largest hereditary subset of X ;
equivalently, the union of all hereditary subsets of X .

Lemma 6.1. Let S be a 〈0,∨〉-semilattice. The pair (F, G) of maps defined as

(6.1)
F : con∨(S) → hrd(GS)

Θ 7→ ∂(J∨

Θ).
and

G : hrd(GS) → con∨(S)

H 7→ ΘH ,

forms a Galois connection.

Proof: First, let us carry out an easy verification of the antitonity of the maps
F and G. If Θ ⊆ Θ′ for some Θ, Θ′ ∈ con∨(S), then J∨

Θ ⊇ J∨

Θ′ readily from
definition (5.1). Consequently, ∂(J∨

Θ) ⊇ ∂(J∨

Θ′). To establish the latter, let H ⊆
H ′ be hereditary subsets of JS . It follows from definition (5.7) that

a ≡Θ
H′

b =⇒ ↓(a) ∩ H ′ = ↓(b) ∩ H ′ =⇒ ↓(a) ∩ H = ↓(b) ∩ H =⇒ a ≡ΘH
b

for all a, b ∈ S. Thus ΘH ⊇ Θ′

H .
It remains to prove that for all Θ ∈ con∨(S) and all H ∈ hrd(GS):

Θ ⊆ G(H) ⇐⇒ H ⊆ F (Θ).
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(⇒) Suppose that Θ ⊆ G(H) = ΘH . We are to prove that H ⊆ F (Θ) = ∂(J∨

Θ).
Since H is a hereditary subset of JS, it suffices to verify that H ⊆ J∨

Θ. So let
u ∈ H , and let a ∈ S be such that u ≤Θ a. The assumption Θ ⊆ ΘH gives
u ≤ΘH

a, hence ↓(u) ∩ H ⊆ ↓(a) ∩ H . Since u ∈ H , we infer that u ∈ ↓(a), that
is, u ≤ a. We conclude that u ∈ J∨

Θ.
(⇐) Suppose that H ⊆ F (Θ) = ∂(J∨

Θ). Applying Lemma 5.2, we have for all
a, b ∈ S that

a ≡Θ b =⇒ ↓(a) ∩ J∨

Θ = ↓(b) ∩ J∨

Θ =⇒ ↓(a) ∩ H = ↓(b) ∩ H =⇒ a ≡ΘH
b.

It follows that Θ ⊆ ΘH = G(H). �

Let L be a lattice and let Θ ∈ con(L) be a congruence. As noted above
JΘ = J∨

Θ, and by Corollary 5.6, J∨

Θ = ∂(J∨

Θ). On the other hand G(H) ∈
con(L) for every hereditary subset H of JL due to Lemma 5.7. It follows that the
Galois connection (F, G), defined by (6.1) above (now with the 〈0,∨〉-semilattice
S replaced by the lattice L), consists of the pair of maps

(6.2)
F : con(L) → hrd(GL)

Θ 7→ JΘ
and

G : hrd(GL) → con(L)

H 7→ ΘH .

Lemma 6.2. Let (F, G) be the Galois connection defined by (6.2). If L is a

particle lattice, then GF = 1con(L).

Proof: By the definition, GF (Θ) = ΘJΘ
for all Θ ∈ con(L). Recalling defini-

tion (5.7) and applying Corollary 5.4 we obtain the sequence of equivalences

a ≡ΘJΘ
b ⇐⇒ ↓(a) ∩ JΘ = ↓(b) ∩ JΘ ⇐⇒ a ≡Θ b, for all a, b ∈ L.

It follows that Θ = ΘJΘ
, which was to prove. �

Example 6.1. Even simple examples show that Lemma 6.1 cannot be similarly
extended when we consider the Galois connection between the congruence lattice
of a particle (even finite) 〈0,∨〉-semilattice and the lattice of hereditary subsets
of its graph. As an example consider the 〈0,∨〉-semilattice reduct of five-element
modular non-distributive lattice M3. The 〈0,∨〉-semilattice M3 has a graph with
no proper non-trivial hereditary subset but its join-preserving congruences form
the twelve element lattice on Figure 2.

Let L be a lattice, let x, v ∈ L be such that v is join irreducible and x < v.
For each such a pair of elements put

(6.3) U(v, x) = {u ∈ JL | u � x and u ≤ v} = (↓(v) \ ↓(x)) ∩ JL.

For each v ∈ JL set

(6.4) B(v) = {U(v, x) | x < v in L} .
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Figure 2. The 〈0,∨〉-semilattice M3.

Lemma 6.3. Let L be a lattice. The collection {B(v)}v∈JL
is a neighborhood

system of a topological space.

Proof: We shall verify that the collection {B(v)}v∈JL
satisfies properties (BP1–

BP3) of [2, p. 12], namely that

(BP1) B(u) is non-empty and u ∈ U for every U ∈ B(u),
(BP2) if u ∈ V ∈ B(v), then there exists U ∈ B(u) such that U ⊆ V ,
(BP3) for all U1, U2 ∈ B(u) there exists U ∈ B(u) such that U ⊆ U1 ∩ U2,

for all u, v ∈ JL. These properties characterize neighborhood systems due to [2,
Proposition 1.2.3]. Let u ∈ JS. Then B(u) is non-empty as U(u, 0) ∈ B(u) and
clearly u ∈ U for each U ∈ B(u); thus (BP1) holds true. If u ∈ U(v, x) for
some x < v in S and some u ∈ JS, then u � x due to definition (6.3), hence
u ∧ x < u and we have that U(u, u ∧ x) ∈ B(u). Since u ≤ v, we conclude that
U(u, u ∧ x) ⊆ U(v, x). This settles property (BP2). Finally, let U1, U2 ∈ B(u)
for some u ∈ JL. By definition (6.4) there are xi < u such that Ui = U(u, xi),
i = 1, 2. Since u is join-irreducible, x = x1 ∨ x2 < u, and so U = U(u, x) is the
desired neighborhood of u with U ⊆ U1 ∩ U2. This proves property (BP3). �

Let TL be the topology on the set JL generated by the neighborhood system
⋃

v∈JL
B(v) (cf. [2, Proposition 1.2.3]).

Lemma 6.4. Let L be a lattice, let v ∈ JL and let x < v in L. Then the

neighborhood U(v, x) is closed in the topology TL.

Proof: Let u ∈ JS satisfy u /∈ U(v, x). If u � v, then u ∧ v < u and it is
straightforward from (6.3) that U(u, u ∧ v) ∩ U(v, x) = ∅. Suppose that u ≤ v.
From u /∈ U(v, x), we conclude that u ≤ x, hence U(u, 0)∩U(v, x) = ∅. It follows
that JL \ U(v, x) is open, and so U(v, x) is closed. �
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Recall that a topological space is zero-dimensional provided that it is T1 and
it has a basis consisting of clopen sets, i.e., sets that are both closed and open,
(see [2, p. 360]). Let L be a lattice. It follows readily from definition (6.3) that
{v} =

⋂

B(v) for each v ∈ JL, thus the topology TL is T1. It follows from
Lemma 6.4 that the topology TL has a basis of clopen sets, and so the topology
is zero-dimensional.

Given a lattice L, let hrd(GL) denote the lattice of all closed (w.r.t. the topo-
logy TL) hereditary subsets of JL.

Lemma 6.5. Let L be a lattice and let (F, G) be the Galois connection defined

by (6.2). Then the following holds true.

(1) For every Θ ∈ con(L), F (Θ) = JΘ ∈ hrd(GL).

(2) For every H ∈ hrd(GL), H = JΘH
= FG(H).

Proof: (1) Let Θ ∈ con(L) and let v ∈ JL \ JΘ. By definition (5.4), there is
x ∈ L such that x < v and x ≡Θ v. We are going to show that the neighborhood
U(v, x) is included in JL \JΘ. Let u ∈ U(v, x), i.e., u is a join-irreducible element
of L such that u ≤ v and u � x. Since u � x, the inequality x∧u < u holds true.
From x ≡Θ v and u ≤ v, we infer that x ∧ u ≡Θ v ∧ u = u. We conclude that
u ∈ JL \ JΘ, and so the set JL \ JΘ is open, hence its complement JΘ is closed.
Recall that JΘ is a hereditary subset of JL due to Corollary 5.6.

(2) Let H ∈ hrd(GL). Since, by Lemma 6.2, the maps (F, G) form a Galois
connection, formula (2.2) says that H ⊆ JΘH

. In order to prove that JΘH
⊆ H ,

pick u ∈ JΘH
and let x ∈ L be such that x < u. Then x 6≡ΘH

u, and so
↓(x) ∩ H ( ↓(u) ∩ H due to (5.7), hence U(u, x) = (↓(u) \ ↓(x)) ∩ H 6= ∅. It
follows that u belongs to the closure of H . Since H is supposed to be closed, we
conclude that u ∈ H . Thus we have proved the opposite inclusion JΘH

⊆ H . �

Theorem 6.6. Let L be a particle lattice and let (F, G) be the Galois connec-

tion defined by (6.2). Then the image of the map F is hrd(GL), and the maps

F : con(L) → hrd(GL) and G′ := G ↾ hrd(GL) : hrd(GL) → con(L) are mutually

inverse lattice anti-isomorphisms. In particular, the lattice con(L) is isomorphic

to the lattice of all open co-hereditary subsets of JL.

Proof: It follows from Lemma 6.5 that the image of the map F corresponds to
hrd(GL) and that FG′ = 1hrd(GL). If L is a particle lattice, we apply Lemmas 6.2

and 6.5(1) to infer that G′F = 1con(L). We conclude that F and G′ are mutu-
ally inverse lattice anti-isomorphisms. The last statement of the theorem easily
follows. �

Proposition 6.7. Let L be a lattice such that the set JL is join-generating and

↓(v) is finite for every v ∈ JL. Then the lattice con(L) is strongly distributive.

Proof: The lattice L is clearly particle. Let v ∈ JL. Since ↓(v) is finite, we infer
that the singleton {v} =

⋂

x<v U(v, x) is open. It follows that the topology TL

is discrete. By Theorem 6.6, the lattice con(L) is anti-isomorphic to the lattice
of all hereditary subsets of the graph GL. Let ≪ be a transitive and reflexive
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closure of EL. Now it is straightforward to see that the lattice of all hereditary
subsets of the graph GL is anti-isomorphic to the lattice of all order ideals of the
maximal antisymmetric quotient of the quasi-ordered set (JL,≪). It follows that
the lattice con(L) is strongly distributive (cf. Lemma 2.1(4)). �

It was proved by M. Tischendorf [10] that every finite lattice has a congruence
preserving extension into an atomistic lattice. The construction of [5], adapted in
[7, Theorem 10.8], provides a representation of each algebraic strongly distributive
lattice as con(L) for a principally chain finite (i.e., no principal ideal of L contains
an infinite chain [7, p. 112]) atomistic lattice. Applying Proposition 6.7 we prove
that

Corollary 6.8. Congruence lattices of atomistic lattices are exactly strongly

distributive lattices.

It was proved by F. Wehrung [11] that every algebraic distributive lattice with
ℵ0 ≤ λ ≤ ℵ1 compact elements is isomorphic to the congruence lattice of a sec-
tionally complemented modular lattice of cardinality λ. One easily finds algebraic
distributive lattices with ℵ0 compact elements that are not strongly distributive.
Thus Corollary 6.8 shows that Tischendorf’s result cannot be fully extended to
infinite lattices.
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