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Abstract. Compared to conforming P1 finite elements, nonconforming P1 finite element
discretizations are thought to be less sensitive to the appearance of distorted triangula-
tions. E.g., optimal-order discrete H

1 norm best approximation error estimates for H2

functions hold for arbitrary triangulations. However, the constants in similar estimates for
the error of the Galerkin projection for second-order elliptic problems show a dependence
on the maximum angle of all triangles in the triangulation. We demonstrate on an example
of a special family of distorted triangulations that this dependence is essential, and due
to the deterioration of the consistency error. We also provide examples of sequences of
triangulations such that the nonconforming P1 Galerkin projections for a Poisson problem
with polynomial solution do not converge or converge at arbitrarily low speed. The results
complement analogous findings for conforming P1 finite elements.

Keywords: nonconforming P1 element; lowest order Raviart-Thomas element; discrete
energy norm estimate; divergence of finite element method; maximum angle condition;
distorted triangulation
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1. Introduction

Convergence estimates for the finite element method (FEM) in two and higher di-

mensions involve some shape regularity assumptions for the underlying partitions. In

two dimensions, to obtain optimal-order convergence estimates in the energy norm

for triangular elements when the maximal element diameter h tends to zero, the

maximum angle condition introduced in [2], [11] is sufficient. The natural question

The work was triggered by a question by C. Carstensen after a talk given by the author
at the 2016 European Finite Element Fair about the results from [14].
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if this condition is also necessary has attracted less attention, even though mesh

generation strategies for the resolution of boundary and interior layers or discretiza-

tions involving moving meshes may lead to severely distorted triangle shapes. For

conforming triangular P1 finite elements and the Poisson equation

(1) −∆u = f, u ∈ H1
0 (Ω),

in [2], Section 3 it was already shown on a particular example that the optimal-order

O(h) energy norm error estimate for smooth solutions u ∈ H2(Ω) may not hold

if the underlying sequence of triangulations severely violates the maximum angle

condition. However, as was demonstrated in [10], there are many types of distorted

triangulations violating the maximum angle condition but still admitting optimal-

order error bounds for the Galerkin finite element method. In recent works [12], [14],

some more precise statements about the necessity of the maximum angle condition

for conforming triangular P1 finite element discretizations have been made. E.g.,

in [14] for a particular Poisson problem on a square with polynomial solution, and

a family of uniformly distorted triangulations already used in [2] and originating

from [16], matching lower and upper bounds for the Galerkin energy norm error

(or, equivalently, the error of best approximation by conforming P1 elements in

the H1 norm) have been obtained. These bounds precisely quantify the effect of

the violation of the maximum angle condition on the convergence speed, and provide

examples of sequences of triangulations where the Galerkin method does not converge

to the solution at all as h → 0. In [12], a larger class of triangulations violating the

maximum angle condition was investigated.

One may wonder if the effects observed for conforming P1 elements in [2], [10],

[12], [14] also hold for nonconforming and mixed finite element discretizations, where

the maximum angle condition also figures as a sufficient condition, see [1], [4], [7]

for a discussion of the lowest order Crouzeix-Raviart element [9] (commonly called

nonconforming P1 element) and the closely related lowest order Raviart-Thomas el-

ement [15]. The examples from [14] show that the conforming P1 method may con-

verge very slowly or even not converge at all while the nonconforming P1 method con-

verges at the optimal O(h) rate for H2 solutions. From an approximation-theoretic

point of view, the triangular nonconforming P1 element spaces generally provide bet-

ter approximation properties in the discrete H1 norm, independently of the shapes

of triangles [1], and the hope is that this may also extend to the error analysis of the

Galerkin projection. However, since the Galerkin error of a nonconforming method

also involves a consistency error, such an extension is not automatic, and, as it turns

out, not possible. In the present paper, we modify the approach taken in [14], and

show for the same family {Tn,m} of triangulations as in [2], [14] that for the prob-
lem (1) with polynomial solution u(x, y) = x(1 − x)y(1 − y) and right-hand side
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f(x, y) = 2(x(1 − x) + y(1 − y)) the nonconforming P1 Galerkin projections un,m

w.r.t. the triangulations Tn,m satisfy

(2) |u− un,m|H1,Tn,m
≈ min(1,m/n2), m > n > 1.

Here, |·|H1,T stands for the discrete (sometimes called broken) H
1 norm associated

with the triangulation T , see Section 2 for the definition. For n = 4, m = 8, the

triangulation Tn,m is depicted in Figure 1. Since for Tn,m the mesh-size parameter h
equals 1/n, and the growth of m/n measures the amount of deterioration of the

maximum angle condition, we see that in general a violation of the maximum angle

condition immediately leads to a loss of convergence speed, and eventually to the loss

of convergence, unless m/n2 → 0 as n→ ∞. However, examples in the spirit of [10]
show that not every sequence of triangulations containing irregularly shaped triangles

shares this behavior, and that the family {Tn,m} provides an extreme test case for
the investigation of convergence problems with respect to distorted triangulations

also in the nonconforming P1 element case.

Figure 1. Babuška-Aziz triangulation T4,8.

The two-sided estimate (2) formally looks the same as the corresponding result

from [14] for the conforming P1 element case but is different in several aspects. First

of all, the result from [14] is about the deterioration of the error of best approximation

w.r.t. the conforming P1 element space on Tn,m for a Poisson problem with slightly
different boundary conditions and with the polynomial solution u(x, y) = x(1−x)/2
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depending only on the variable x. It can be checked that for problems with smooth

solutions depending only on the variable x the nonconforming P1 Galerkin projec-

tions for the triangulations on Tn,m converge at optimal speed O(n−1), independently

of the mesh distortion given by m/n (m > n). We sketch the argument in Section 4.

Thus, we need a truly two-dimensional approach. Secondly, the statement of (2) is

essentially about the consistency error induced by the nonconforming P1 element

space on Tn,m, and not about the best approximation error in the discrete H1 norm.

The remainder of the paper is organized as follows. Section 2 introduces notation

and reviews the known upper estimates. In Section 3 the main result, the lower

bound in (2), is proved, some technical parts of this proof are postponed into ap-

pendices. The final Section 4 offers complementary numerical evidence and contains

some further remarks.

2. Notation and known facts

Throughout the paper, we consider smooth solutions u ∈ H2(Ω) ∩ H1
0 (Ω) of the

Poisson problem (1) for a bounded polygonal domain Ω ⊂ R
2. Consequently, f ∈

L2(Ω). Let T denote an arbitrary finite triangulation of Ω identified with a collection
of closed triangles partitioning Ω with no hanging nodes. I.e., the intersection of any

two triangles in T is either empty or belongs to the vertex set V or to the edge set E
of the triangulation. Two characteristics of T are of interest to us: The mesh-width

hT := max
∆∈T

h∆,

and the maximum angle

αT := max
∆∈T

α∆,

where h∆ denotes the length of the longest edge and α∆ the largest interior angle in

a triangle ∆ ∈ T .
The space of nonconforming P1 elements on T associated with homogeneous

Dirichlet boundary conditions is denoted by VT , and consists of all piecewise lin-

ear functions that are continuous across the midpoints of interior edges, and are zero

at the midpoints of boundary edges. I.e., if e ∈ E is an interior edge shared by the
triangles ∆+ and ∆−, then the two functions v± = v|∆± are linear polynomials on

∆±, respectively, and satisfy
∫

e

v+ ds =

∫

e

v− ds.

For boundary edges e, the edge integrals of v ∈ VT vanish. The discrete H
1
0 space

associated with T , containing both VT and H1
0 (Ω) as closed subspaces and appro-

priate for the convergence analysis of the nonconforming P1 element method [6],
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consists of functions u for which u|∆ ∈ H1(∆) for any triangle ∆ ∈ T and which
satisfy the same compatibility conditions for integrals along interior and boundary

edges e ∈ E as indicated above for elements of VT . It will be denoted by H1
0 (Ω, T ).

The expressions

|u|H1,T :=

(∑

∆∈T

|u|21,∆
)1/2

, |u|1,∆ :=

(∫

∆

|∇u|2 dxdy
)1/2

,

define a norm on H1
0 (Ω, T ) which turns it into a Hilbert space with scalar product

denoted by (·, ·)H1,T . We call |u|H1,T the discreteH
1 norm, and note that it coincides

with the standard norm for u ∈ H1
0 (Ω). Here and throughout the paper, ∇u =

(ux, uy) is the gradient of u, and ux, uy, uxx, uxy, uyy, . . . is our notation for the

partial derivatives of u (if properly defined). Thus, the variational problem of finding

uT ∈ VT such that

(uT , v)H1,T = (f, v)L2
∀ v ∈ VT ,

has a unique solution which we call the Galerkin solution of (1) in VT .

In this paper we are concerned with estimates for the discrete H1 norm error

(called Galerkin error for short)

ET (u) := |u− uT |H1,T =

(∑

∆∈T

∫

∆

|∇(u− uT )|2 dxdy
)1/2

,

if the solution u of (1) is in H2(Ω). The second Strang Lemma implies that

(3) max(EBA,T (u), EC,T (u)) 6 ET (u) 6 EBA,T (u) + EC,T (u),

i.e., that estimating the Galerkin error requires estimating both the best approxima-

tion error

EBA,T (u) := inf
v∈VT

|u− v|H1,T

of the solution u by elements of VT , and the consistency error

EC,T (u) := sup
w∈VT : |w|

H1,T
=1

|(u,w)H1,T − (f, w)L2
|.

In contrast to conforming P1 elements [2], [12], [14], in the nonconforming P1 case

the best approximation error EBA,T admits an optimal bound for any T . To formu-
late it, consider the Crouzeix-Raviart interpolation operator PT : H1

0 (Ω, T ) → VT
introduced in [9] and defined by the condition

∫

e

(u− PT u) ds = 0 ∀ e ∈ E .

The following result is a consequence of, e.g., Lemma 2.2 in [1].
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Theorem 1. If u ∈ H2(Ω) ∩H1
0 (Ω) then, with a constant C0 independent of T ,

we have

EBA,T (u) 6 |u− PT u|H1,T 6 C0

(∑

∆∈T

h2∆|u|22,∆
)1/2

6 C0hT |u|H2 ,

where

|u|2,∆ :=

(∫

∆

|D2u|2 dxdy
)1/2

, |D2u|2 := u2xx + 2u2xy + u2yy,

and |u|H2 := |u|2,Ω stands for the H2 semi-norm of u.

Unfortunately, the consistency error EC,T (u) does not admit a similar estimate

with constants uniform in T . Indeed, the standard estimate of EC,T (u) is based on

the transformation

(4) (u,w)H1,T − (f, w)L2
=

∑

e∈E

∫

e

(∇u · ne)[w] ds, w ∈ VT ,

where ne is a fixed unit normal with respect to the edge e, and [w] denotes the

(properly signed) difference of the traces of w from both sides of e (set w = 0

outside Ω). When each of these edge integrals is bounded by the trace theorem,

see [3], [6], a dependence on the shape of the triangles attached to e enters the

constants. Implicitly, this can be seen from [7], Theorem 6.2 which contains the

following estimate for the Galerkin error (for simplicity, we do not state it with the

explicit constants given in [7]):

Theorem 2. If u ∈ H2(Ω) ∩ H1
0 (Ω) then, with constants C1, C2 independent

of T , we have

ET (u) 6

(∑

∆∈T

h2∆

{
C2

1

∫

∆

|f − f∆|2 dxdy + C2
2 tan

2
(α∆

2

) ∫

∆

|D2u|2 dxdy
})1/2

6 hT

(
C1‖f‖L2

+ C2 tan
(αT

2

)
|u|H2

)
,

where f∆ := |∆|−1
∫
∆
f dxdy denotes the average value of f on ∆.

The appearance of the factor tan(αT /2) is troublesome, as it indicates a deteri-

oration of the error bound if αT → π. Moreover, for sequences of triangulations

with hT tan(αT /2) → ∞ even boundedness of the Galerkin error is not guaranteed!
Whether ET (u) → ∞ may happen for some u ∈ H2(Ω) ∩ H1

0 (Ω) is doubtful but
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currently not disproved. This question is closely related to a possible deterioration

of the constant in the discrete Friedrichs inequality

(5) ‖w‖L2
6 CΩ,T |w|H1,T ∀w ∈ VT ,

namely, if, for fixed polygonal Ω, the supremum of the optimal constants CΩ,T in (5)

over all possible T may become infinity. There is some ambiguity on the dependence
of CΩ,T on the shape regularity properties of T in the literature, see e.g. [6], [17],
which we could not yet sort out.

The family of triangulations Tn,m of the unit square we concentrate on in this
paper, does not exhibit such an extreme divergence behavior. However, it shows that

the dependency on αT present in the estimate of Theorem 2 is essential, and that

(bounded) divergence of the nonconforming P1 method is possible. Let us introduce

the notation used in Section 3. We consider the solution u(x, y) := x(1− x)y(1− y)

of the Poisson problem

(6) −∆u(x, y) = f(x, y) := 2(x(1− x) + y(1− y)), (x, y) ∈ [0, 1]2,

equipped with homogeneous Dirichlet boundary conditions

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0, x, y ∈ [0, 1],

and the associated sequence of nonconforming P1 element Galerkin solutions

un,m := uTn,m
∈ Vn,m := VTn,m

, m > n > 1.

Even though Figure 1 is self-explaining, we give the formal definition of the trian-

gulation Tn,m. It is generated by the intersection of three line systems with [0, 1]2,

namely

{
(x, y) : y =

j

2m
, x ∈ [0, 1]

}
j=1,...,2m−1

,

{
(x, y) : y =

n

m
x+

j

m
, x ∈ [0, 1]

}
j=1−m,...,m−1

,

{
(x, y) : y = − n

m
x+

j

m
, x ∈ [0, 1]

}
j=1,...,2m−1

.

Its vertex set consists of all points Pi,j = ( i
2n ,

j
2m ) with indices i = 0, 2, . . . , 2n if

j = 0, 2, . . . , 2m is even, and indices i = 0, 1, 3, . . . , 2n−1, 2n if j = 1, 3, . . . , 2m−1 is

odd. The typical triangle∆ in Tn,m has its longest edge of length 1/n located parallel
to the x-axis, an associated height of length 1/(2m), area |∆| = 1/(4nm), and two
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remaining sides of equal length. It becomes severely distorted, with the maximum

angle α∆ satisfying tan(α∆/2) = m/n, if m/n→ ∞ (the exceptional triangles along
the vertical sides of the square are right-angled, have shorter longest edges, and area

1/(8nm)). Thus, we have

hTn,m
=

1

n
, tan

(αTn,m

2

)
=
m

n
, m > n > 1.

The triangulations Tn,m have been used in [2], [14] for studying H1 best approxi-

mation with conforming P1 elements but seem to have appeared for the first time

in H. Schwarz’ seminal note [16] on the definition of the surface area by triangular

approximation.

We denote by En,m = |u− un,m|H1,Tn,m
the Galerkin error of our model problem

with respect to Tn,m. Then Theorem 2 gives the upper bound

(7) En,m 6 C3
m

n2
, m > n > 1,

where the constant C3 is independent of n and m. The main result of this paper is

a two-sided estimate for En,m and shows that the upper estimate (7) is essentially

sharp in the range n 6 m 6 n2.

Theorem 3. For the model problem (6) with solution u(x, y) = x(1− x)y(1− y)

and the family of triangulations Tn,m we have

(8) C′
4 min

(
1,
m

n2

)
6 En,m 6 C4 min

(
1,
m

n2

)
, m > n > 1,

with constants C4, C
′
4 independent of n and m. In particular, to achieve convergence

in the discrete H1 semi-norm for a certain sequence of triangulations Tn,m with
n→ ∞, one needs to satisfy m/n2 → 0.

The behavior of the Galerkin error for our model problem needs to be contrasted

with the behavior of the best approximation error:

(9) EBA,Tn,m
(u) ≈ 1

n
, m > n > 1.

The upper estimate in (9) follows from Theorem 1, a matching lower bound is ob-

tained if we invoke the two-sided Poincaré inequality

(10) inf
c∈R

‖v − c‖2L2(∆) = ‖v − v∆‖2L2(∆) ≈
∫

∆

( 1

n2
v2x +

1

m2
v2y

)
dxdy, v ∈ H1(∆),
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for the best approximation by constants, valid for any triangle ∆ ∈ Tn,m and any
fixed polynomial u(x, y) with positive constants depending on the degree. To see (10),

just use the coordinate transform x′ = x, y′ = m
n y, apply the equivalence of the H

1

semi-norm and the L2 norm on the finite-dimensional subspace of H
1(∆′) consisting

of polynomials of fixed degree with zero average which holds, with uniform constants,

for the transformed, undistorted triangle ∆′, and then transform back. If one ap-

plies (10) separately to the partial derivatives ux and uy of the solution of (6), and

adds the results for all ∆ ∈ Tn,m, then

EBA,Tn,m
(u)2 >

∑

∆∈Tn,m

inf
c,c′∈R

(‖ux − c‖2L2(∆) + ‖uy − c′‖2L2(∆))

>
C′

0

n2

∫

Ω

(
u2xx + u2xy +

n2

m2
u2yy

)
dxdy

with some C′
0 > 0. This shows the lower bound in (9). Thus, our main result

formulated in Theorem 3 is equivalent to showing a two-sided estimate similar to (8)

for the consistency error EC,Tn,m
(u).

3. Proof of Theorem 3

We first deal with the upper bound in (8). Due to (7) all we need is to establish

a complementing upper bound for En,m by a constant independent of n andm. Since

En,m 6 EBA,Tn,m
(u) + EC,Tn,m

(u) 6 ‖u‖H1 + EC,Tn,m
(u),

and

|(u,w)H1,Tn,m
− (f, w)L2

| 6 ‖u‖H1 |w|H1,Tn,m
+ ‖f‖L2

‖w‖L2
, w ∈ Vn,m,

the upper bound in (8) holds with a constant C4 = max(C3, 2‖u‖H1 + 1
2‖f‖L2

), since

for the triangulations Tn,m we have the discrete Friedrichs inequality

(11) ‖w‖L2
6

1

2
|w|H1,Tn,m

, w ∈ Vn,m, m > n > 1.

Since we could not find a reference for (11) in the literature, we give the elementary

argument in Section 5.1.

The rest of the proof is concerned with proving the matching lower bound in (8).

As was pointed out before, this is equivalent to establishing the appropriate lower

bound for

EC,Tn,m
(u) = sup

06=w∈Vn,m

|(u,w)H1,Tn,m
− (f, w)L2

|
|w|H1,Tm,n

.
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To this end, it is enough to pick a suitable w̃ ∈ Vn,m, estimate its discrete H
1 norm

from above, the consistency term |(u, w̃)H1,Tn,m
− (f, w̃)L2

| from below, and check
the quotient of these estimates. We arrived at a good guess for such a candidate w̃

after performing some numerical experiments, see Section 4. We define the nodal

values w̃(Me) as follows: For all edges e in the lower left subsquare Ω
′ := [0, 12 ]

2 of Ω,

we set

(12) w̃(Me) =





0, e on the boundary, or parallel to the x-axis,

ψ(Me), e has slope n/m,

−ψ(Me), e has slope −n/m,

where ψ(x, y) = 2hxuxy(x, y) = 2hx(1− 2x)(1− 2y). Nodal values for the remaining

part of Ω are obtained by symmetry, i.e., such that w̃(1 − x, y) = w̃(x, 1 − y) =

w̃(1 − x, 1 − y) = w̃(x, y) for all (x, y) ∈ Ω′. Note that this w̃ is highly oscillating,

and related to the mixed derivative uxy = (1 − 2x)(1 − 2y), scaled by h and with

values damped towards the vertical edges of Ω by the factor min(2x, 2(1− x)).

By symmetry, we need to evaluate the integrals defining (u, w̃)H1,Tn,m
, (f, w̃)L2

,

and ‖w̃‖2H1,Tn,m
only on the subsquare Ω′. Thus, estimates will be conducted for the

triangles depicted in Figure 2 that intersect with Ω′. We use the notation introduced

by Figure 2, with the reference point P = (x0, y0) (or P = (0, y0)) representing

the origin of a local coordinate system (t, s), and h := 1/(2n) and k := 1/(2m) the

typical lengths in t- and s-direction, respectively. We also denote

κ := h2k−1 =
m

2n2
.

O

t

s
k

−k

h

P =(x0, y0)

−h

∆+

∆−

O

t

s
k

−k

h

P =(0, y0)

∆+

∆−

Figure 2. Triangle pairs in the interior (on the left), and attached to the boundary (on the
right).

Formulas for the piecewise constant gradient ∇w̃|∆± =: (w̃±
x , w̃

±
y ) for all triangles

intersecting with Ω′ follow from the definition of w̃ by elementary calculus, and
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immediately lead to estimates for the discrete H1 norm of w̃. The result is collected

into the following lemma, see Section 5.2 for its derivation.

Lemma 1. Let w̃ ∈ Vn,m be given by (12).

a) For the triangles ∆± ⊂ Ω′ with reference point P = (0, y0), 0 < y0 < 1/2 (see

Figure 2 on the right), we have

(13) w̃±
x = 2h(1− h)(±(1− 2y0) + k), w̃±

y = −2κ(1− h)((1 − 2y0)∓ k),

For the triangles ∆± ⊂ Ω′ with reference point P = (x0, y0), 0 < x0 < 1/2,

0 6 y0 6 1/2 (see Figure 2 on the left), we have

(14) w̃±
x = (4x0(1− 2x0)− 2h2)(∓(1− 2y0) + k), w̃±

y = κ(4x0 − 1)(1− 2y0 ∓ k).

Finally, for the triangles ∆± with reference point P = (1/2, y0), 0 6 y0 6 1/2, on

the symmetry line x = 1/2, we have

(15) w̃±
x = 0, w̃±

y = 2κ(1− h)(1− 2y0 ∓ k).

b) The discrete H1 norm of w̃ satisfies

(16) |w̃|H1,Tn,m
= O(1 + κ), m > n > 1.

We come to the lower estimate for the consistency term evaluated at w̃. As it turns

out, the dominating contributions to the consistency term come from the integrals

∫

∆±

uyw̃y dxdy

for interior triangle pairs ∆± ⊂ Ω′, as depicted in Figure 2 on the left, and are of

the order m/n2. The other terms are negligible compared to them. In particular, we

have the following lemma whose proof is given in Section 5.3.

Lemma 2. For the w̃ under consideration and the right-hand side f in (6), we

have

(17) |(f, w̃)L2
| = O(kh2), m > n > 1.

The crucial part of the proof is a lower bound for (u, w̃)H1,Tn,m
. We first deal with

the contributions to (u, w̃)H1,Tn,m
from the triangles ∆± ⊂ Ω′ depicted in Figure 2

on the left. Have in mind that in local coordinates we have

ux(x0 + t, y0 + s) = (1− 2x0 − 2t)(y0(1− y0) + (1− 2y0)s− s2),
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analogously for uy(x0 + t, y0 + s), while w̃±
x , w̃

±
y are constant on ∆±, respectively,

and given by (14). Using the simplifications based on symmetry arguments and

integration over triangles as detailed in Section 5.3, we have

∫

∆±

ux dxdy = (1− 2x0)

∫

∆±

0

y0(1 − y0) + (1 − 2y0)s− s2 dt ds

= hk(1− 2x0)
(
y0(1− y0)±

1

3
(1− 2y0)k −

1

6
k2
)

= hk(1− 2x0)(y0(1− y0) +O(k)),

and

∫

∆±

uy dxdy =

∫

∆±

0

(x0(1− x0)− t2)(1− 2y0 − 2s) dt ds

= hk
((
x0(1− x0)−

1

6
h2

)
(1 − 2y0)∓

2

3
kx0(1− x0)±

1

15
h2k

)

= hk((1− 2y0)x0(1− x0) +O(k + h2)).

Here ∆±
0 denotes the triangle pair associated with the reference point (0, 0). Substi-

tuting the values

w̃±
x = ∓4x0(1 − 2x0)(1− 2y0) +O(h2 + k), w̃±

y = κ((4x0 − 1)(1− 2y0) +O(k)),

obtained from (14), we get

∫

∆±

∇u · ∇w̃ dxdy = w̃±
x

∫

∆±

ux dxdy + w̃±
y

∫

∆±

uy dxdy

= ∓ 4hk(x0(1− 2x0)
2y0(1− y0)(1 − 2y0) +O(h2 + k))

+ hkκ((4x0 − 1)x0(1− x0)(1 − 2y0)
2 +O(h2 + k)).

If we sum with respect to the O(nm) triangles in Ω′ considered so far (call the

result Σ′), we see that

(18) Σ′ = κ(I ′ +O(h+ k2/h2)),

with a constant I ′ > 0 given below. Indeed, for the terms in the sum Σ′ related to the

gradient in x-direction, the leading parts ∓4hkx0(1− 2x0)
2y0(1− y0)(1− 2y0) cancel

for triangle pairs ∆± ⊂ Ω′ with the same reference point P = (x0, y0), and vanish for

triangles ∆+ with y0 = 0 and ∆− with y0 = 1/2. Therefore, only the subdominant

part O(hk(h2+k)) needs to be taken into account which gives an overallO(h2+k) =

O(κ(k + k2/h2)) contribution to Σ′. Moreover, for the terms in Σ′ related to the
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gradient in y-direction, the sum of the leading factors hk(4x0−1)x0(1−x0)(1−2y0)
2

(without the factor κ) tends to the integral

I ′ :=

∫

Ω′

(4x− 1)x(1 − x)(1 − 2y)2 dxdy =
1

384

at a speed of at least O(h) as h, k → 0. Altogether, this gives (18) if one takes the

common factor κ = h2/k out, and uses k = O(h). We can silently include into Σ′ the

contributions from the O(m) triangles ∆± crossing the symmetry line x = 1/2, as

the estimation steps are identical, with the only change that (14) is replaced by (15).

The contribution of the remaining triangles ∆± with P = (0, y0), depicted in

Figure 2 on the right and attached to the left boundary of Ω′, is negligible compared

to the leading part in the lower estimate (18). Indeed, we again expand in local

coordinates (t, s) as

ux(t, y0+s) = −2t(y0(1−y0)+(1−2y0)s−s2), uy(t, y0+s) = (t−t2)(1−2y0−2s),

where 0 6 t 6 h(1− |s|/k), 0 6 s 6 k for ∆+, and −k 6 s 6 0 for ∆−, and compute

with (28) the integrals

∫

∆±

ux dxdy = −h
2k

3

(
y0(1− y0)±

k

2
(1− 2y0)−

k2

5

)
= O(h2k),

and, similarly,

∫

∆±

uy dxdy =
h2k

6

(
(1− 2y0)

(
1− h

2

)
∓ k

(1
2
− h

5

))
= O(h2k).

Combining this with

w̃±
x = ±2h(1− 2y0 +O(h)), w̃±

y = −2κ(1− 2y0 +O(h)),

see (13), we obtain rough estimates

w̃±
x

∫

∆±

ux dxdy = O(h3k) = O(κhk2), w̃±
y

∫

∆±

uy dxdy = O(κh2k).

Summing the contributions with respect to allO(m) triangles attached to the bound-

ary x = 0 of Ω′ (call the result Σ′′), we get

(19) Σ′′ = O(κh2).
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Combining (18), (19), and (17), we see that

(20) (u, w̃)H1,Tn,m
− (f, w̃)L2

= 4(Σ′ +Σ′′)− (f, w̃)L2
= κ(I ′ +O(h+ k2/h2)).

Eventually, by (20) and (16), we get, with an absolute constant C′
5 > 0,

EC,Tn,m
(u) >

(u, w̃)H1,Tn,m
− (f, w̃)L2

|w̃|H1,Tn,m

> C′
5

κ

1 + κ
>
C′

5

3
min(1,m/n2),

if m > n > n0 with n0 large enough, and n/m 6 ε0 with ε0 small enough. This

proves (8) in the asymptotic range. For the remaining values m > n, note that for

them tan(αTn,m
/2) = m/n 6 C6 for some absolute C6 depending on n0 and ε0, i.e.,

these remaining triangulations Tn,m uniformly satisfy the maximum angle condition.
Thus, in this case 1/n 6 m/(C6n

2), and the lower bound in (8) is taken care of by

the lower bound (9) for the best discrete H1 approximation error of our u. With

the constant C′
4 in (8) defined from C′

5, C6, and from the constant in (9) in a proper

way, Theorem 3 is now fully proved.

4. Numerical examples and further remarks

We have conducted a couple of numerical experiments in the pre-asymptotic range

(with relatively small values n, m), for exactly the model problem described in the

previous sections. We have used the standard nodal basis {ϕe} for nonconforming
P1 elements associated with the interior edges of Tn,m, and computed the integrals
defining the entries of the stiffness matrix A and load vector b, as well as the error

measures exactly (within machine accuracy). First we confirmed the result of The-

orem 3 by running simulations for values m = n, m ≈ n3/2, m = n2, and m ≈ n5/2,

respectively, for a suitable range of values n. The first two cases shown in Figure 3

101 102

10−3

10−2

Consistency error

H1 error

Linear convergence: Case m=n

101

0.02

0.03

0.04

0.05

0.06

0.07

Consistency error

H1 error

h
1/2

Slowed convergence: Case m=n
3/2

Figure 3. Behavior of En,m for m = n (optimal order convergence, on the left) and for

m ≈ n
3/2 (slowed convergence, on the right).
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illustrate optimal O(n−1) and slowed O(n−1/2) convergence, in agreement with (8).

The latter two cases demonstrate the failure of convergence if m/n2 does not con-

verge to zero, see Figure 4. Blue (dark) lines represent the Galerkin error, red (light)

lines the consistency error.
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0.02

0.03

0.04
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0.06
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H1 error

Non-convergence: Boundary case m=n
2

2
0

4

0.01

6

0.02

8

0.03

10

0.04

12

0.05

14

0.06

16

0.07

18

0.08

20

0.09

0.1

Consistency error

H1 error

Divergence: m=n
5/2

Figure 4. Failure of convergence for m = n
2 (on the left) and for m ≈ n

5/2 (on the right).

We also needed some intuition on how an appropriate candidate w̃ for maximizing

the consistency error should look like. Since the constrained problem

(u, w̃)H1,Tn,m
− (f, w̃)L2

→ max subject to |w̃|H1,Tn,m
= 1

is easy to solve, the coefficient vector of the maximizer w̃ and the value of EC,Tn,m
(u)

can be found from the formulas

x̃ = ±A−1(c− b)/
√
(c− b)TA−1(c− b), EC,Tn,m

(u) =
√
(c− b)TA−1(c− b),

where c has entries ce = (u, ϕe)H1,Tn,m
. The result is visualized in Figure 5 by

depicting the nodal values of the Galerkin solution un,m given by x = A−1b (upper

row), and of the maximizer of the consistency error given by x̃ (lower row) at the

midpoints of edges with slope ±n/m. We show two cases: n = m = 10 (on the left),

and n = 10, m = n2 = 100 (on the right). The graphs suggested a distinct oscillation

behavior for w̃ which we slightly simplified to the choice for w̃ used in the proofs of

the previous section (it took us a while to realize that for the deterioration of the

consistency error the non-oscillating part of w̃ visible in Figure 5 is not essential).

It also looks as if un,m is still close to u in L2 and L∞ distance, even in cases

when the discrete H1 error does not converge to zero. This is in contrast to the

counterexamples for conforming P1 elements used in [14].
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Figure 5. Solutions (upper row) and maximizers for the consistency error (lower row) for
n = 10 and m = n (on the left) and m = n

2 (on the right).

Our example automatically provides similar matching lower bounds for lowest-

order Raviart-Thomas elements [15] if the mixed formulation of (1) is used. Indeed,

due to [13], on each triangle ∆ ∈ Tn,m, the discrete flux σn,m of the mixed method
belonging to the lowest-order Raviart-Thomas space on Tn,m and the gradient of
the nonconforming P1 Galerkin solution ũn,m of a modified Poisson problem with

a solution ũ and piecewise constant right-hand side f̃ defined by

(f̃ |∆)(x, y) = f∆, (x, y) ∈ ∆, ∆ ∈ Tn,m,

are related by

(21) ∇ũn,m(x, y)− σn,m(x, y) =
1

2
f∆((x, y) −M∆), (x, y) ∈ ∆.

Here M∆ denotes the barycenter of ∆, and f∆ is the average value of f on ∆ as

defined before. See also [4], [7], [8], where the connections between the energy norm
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errors for conforming and nonconforming P1 elements as well as lowest-order Raviart-

Thomas elements have been examined in order to obtain sharp a posteriori estimates

for the Poisson problem. For our model problem (6), since on each triangle ∆ of Tn,m

∇un,m − σn,m = (∇un,m −∇ũn,m) + (∇ũn,m − σn,m),

the error of the lowest order mixed Raviart-Thomas method, i.e., the L2 vector norm

of∇u−σn,m, and the Galerkin error of the nonconforming P1 method are bounded by
the sum of two terms, namely ‖∇ũn,m−σn,m‖L2

and ‖∇ũn,m−∇un,m‖L2
. Using (21),

the first can be estimated by

1

2

( ∑

∆∈Tn,m

f2
∆

∫

∆

|(x, y)−M∆|2 dxdy
)1/2

= O(hTm,n
‖f‖L2

) = O
( 1

n
|u|H2

)
,

while for the other

‖∇ũn,m −∇un,m‖L2
6 ‖∇(ũ− u)‖L2

6 C7‖f̃ − f‖L2
6 C′

7

1

n

due to the orthogonality properties of the nonconforming P1 Galerkin projection,

elliptic regularity, and the fact that our f is smooth. Thus, from (8) we conclude

that

(22) C′
8 min(1,m/n2) 6 ‖∇u− σn,m‖L2

6 C8 min(1,m/n2)

with some positive constants C′
8, C8, where the lower bound is guaranteed to hold if

n/m is small enough, i.e., when the maximum angle condition fails.

What we did not consider in this note are extensions along the lines of [12] where

it was observed that long chains of distorted triangles are the reason for convergence

deterioration in the conforming P1 case. For higher-order elements, similar effects

are to be expected, even though there are differences (e.g., the critical exponent β

for which m/nβ 6→ 0 implies convergence failure grows with polynomial degree).

We conclude with a sketch of the argument for a statement made in the introduc-

tion of this paper. Consider the model Poisson problem

−∆u(x, y) = 1, (x, y) ∈ [0, 1]2,

satisfying the boundary conditions u(0, y) = u(1, y) = 0 in x-direction and periodic

boundary conditions in y-direction, whose solution is given by the univariate poly-

nomial u(x) = 1
2x(1 − x). In [14], we showed that for this problem the conforming

P1 element Galerkin solutions ûn,m on the triangulations Tn,m satisfy

‖u− ûn,m‖H1 ≈ min(1,m/n2), m > n > 1.
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I.e., for conforming P1 elements the H1 energy norm convergence rate may degener-

ate with the mesh distortion even for an essentially one-dimensional solution. Inter-

estingly enough, for this problem the nonconforming P1 Galerkin solutions converge

at optimal speed:

(23) |u− un,m|H1,Tn,m
= O

( 1

n

)
, m > n > 1.

This also shows that the convergence behavior of conforming and nonconforming

P1 Galerkin solutions may be drastically different if the triangulations violate the

maximum angle condition.

To prove (23), it is sufficient to bound the consistency error. In this case, it is

convenient to use (4) and we will give the estimate for any C2 smooth u = u(x)

depending only on x. Indeed, all integrals in (4) with respect to horizontal edges

of the triangulations Tn,m automatically vanish, since ∇u = (u′(x), 0) and in this

case ne = (0,±1). Integrals with respect to the vertical boundary edges on the line

x = 0 also vanish, since ∇u · ne = ±u′(0) is constant and [w] has zero average on e;

similarly for the vertical boundary edges on the line x = 1. On all remaining edges,

we have

∇u · ne = ± k√
h2 + k2

u′(x),

while

[w] = ±2(x− xe)
√
h2 + k2

h
(w+

e − w−
e ),

where xe is the x-coordinate of the midpoint Me of the edge e, and w
±
e denotes the

constant derivatives in direction e of the restrictions of w ∈ Vn,m to the two triangles

∆±
e attached to e, respectively. These formulas can be checked by elementary cal-

culus, the signs in them depend on the ordering of triangles and the choice of edge

normals but are irrelevant for the subsequent estimates. What is important is that

[w] has average zero on e, thus
∣∣∣∣
∫

e

(∇u · ne)[w] ds

∣∣∣∣ 6 inf
c

2k

h

∣∣∣∣
∫

e

(u′(x) − c)(x− xe)(w
+
e − w−

e ) ds

∣∣∣∣

6
2k

h

h

2
‖u′′‖L∞

h|e|
2

(|w+
e |+ |w−

e |)

6 Ckh2(|∇(w|∆+
e
)|+ |∇(w∆−

e
)|)

with a constantC depending on u(x) only. Now apply the Cauchy-Schwarz inequality

to the sum of these upper estimates. This gives

|(u,w)H1,Tn,m
− (f, w)L2

|2 6 C

(∑

e

′
h3k

)(∑

e

′
hk(|∇(w|∆+

e
)|2 + |∇(w∆−

e
)|2)

)

6
C′

n2
|w|2H1,Tn,m

,
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where
∑′

e is the sum over the O(nm) edges with nontrivial edge integrals in (4),

and C′ is a new absolute constant. This is the desired bound for the consistency

error, and together with Theorem 1 implies (23).

5. Appendix

5.1. Proof of (11). First of all, since nonconforming P1 element functions w ∈
VT are piecewise linear, and can be parametrized by their edge midpoint values

w(Me), e ∈ E , we can explicitly estimate their discrete H1 and L2 norm:

(24)
∑

∆∈T

|∆|
(∑

e⊂∆

|De,∆w|2
)

6 3‖w‖2H1,T ,

where the constant directional derivative De,∆w of the linear function w|∆ along the
edge e equals 2(w(Me′ )−w(Me′′))/|e|, where e′, e′′ are the other two edges of ∆. In
the opposite direction, the inequality holds only with a constant depending on αT .

Moreover,

(25) ‖w‖2L2
=

1

3

∑

∆∈T

|∆|
(∑

e⊂∆

|w(Me)|2
)
.

Consider all 2n + 1 triangles in the strip Ωj = [0, 1] × [ j−1
2m , j

2m ], and enumerate

them consecutively starting from the left. Each ∆i ∈ Ωj , i = 0, . . . , 2n, has exactly

one edge (denoted by ei) parallel to the x-axis, and two edge midpoints (denoted by

Mi and Mi+1) on the line y = 2j−1
4m . Obviously, for i = 1, . . . , 2n− 1, we have

|w(Mei)| 6
1

2
|w(Mi+1) + w(Mi)|+

∣∣∣w(Mei )−
1

2
(w(Mi+1) + w(Mi))

∣∣∣

6
1

2
(|w(Mi+1)|+ |w(Mi)|) +

1

4m
|(w|∆i

)y|,

with the obvious modification

|w(Me0)| 6 |w(M0)|+ |w(Me0 )− w(M0)| = |w(M0)|+
1

4m
|(w|∆0

)y|

for i = 0, and similarly for i = 2n. Thus, taking squares and using the inequality

(a+ b)2 6 2(a2 + b2) the appropriate number of times, we get

2n∑

i=0

|∆i||w(Mei )|2 6
1

2nm

2n∑

i=1

|w(Mi)|2 +
1

8m2

2n∑

i=0

|∆i||(w|∆i
)y|2,
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and substitution gives

(26)
1

3

∑

∆⊂Ωj

|∆|
(∑

e⊂∆

|w(Me)|2
)

6
1

8m2

∑

∆⊂Ωj

|w|21,∆ +
1

3nm

2n∑

i=1

|w(Mi)|2.

It remains to estimate the second term in (26). Since w(M0) = 0, we have

n∑

i=1

|w(Mi)|2 =

n∑

i=1

∣∣∣∣
i∑

l=1

(w(Ml)− w(Ml−1)

∣∣∣∣
2

6

n∑

i=1

i

i∑

l=1

|w(Ml)− w(Ml−1)|2

6
n(n+ 1)

2

n∑

l=1

|w(Ml)− w(Ml−1)|2.

Now, taking into account that

|w(Ml)− w(Ml−1)|2 =
1

4n2
|(w|∆l−1

)x|2 6
m

n
|w|21,∆l−1

, l = 2, . . . , n,

and

|w(M1)− w(M0)|2 =
1

16n2
|(w|∆l−1

)x|2 6
m

2n
|w|21,∆0

,

we see that
n∑

i=1

|w(Mi)|2 6
m(n+ 1)

2

n−1∑

l=0

|w|21,∆l
.

In a similar fashion we also obtain

2n∑

i=n+1

|w(Mi)|2 6
m(n+ 1)

2

2n∑

l=n+1

|w|21,∆l
.

Substitution into (26) gives

1

3

∑

∆⊂Ωj

|∆|(
∑

e⊂∆

|w(Me)|2) 6
( 1

8m2
+
n+ 1

6n

) ∑

∆⊂Ωj

|w|21,∆ <
1

2

∑

∆⊂Ωj

|w|21,∆

and, after summing up with respect to Ωj , j = 1, . . . , 2m, according to (24) and (25)

we arrive at (11).

5.2. Proof of Lemma 1. We start with establishing (14) for all triangles interior

to Ω′ depicted in Figure 2 on the left. By definition of the nodal values of w̃, and
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the fact that uxy is the product of two univariate linear polynomials, we compute

w̃+
x = h−1

(
ψ
(
x0 +

h

2
, y0 +

k

2

)
− ψ

(
x0 −

h

2
, y0 +

k

2

))

= −
(
(2x0 + h)uxy

(
x0 +

h

2
, y0 +

k

2

)
+ (2x0 − h)uxy

(
x0 −

h

2
, y0 +

k

2

))

= −4xuxy

(
x0, y0 +

k

2

)
− h

(
uxy

(
x0 +

h

2
, y0 +

k

2

)
− uxy

(
x0 −

h

2
, y0 +

k

2

))

= −4x0uxy

(
x0, y0 +

k

2

)
− h2uxxy

(
x0, y0 +

k

2

)

= −(4x0(1 − 2x0)− 2h2)(1 − 2y0 − k),

and, similarly,

w̃−
x = 4x0uxy

(
x0, y0−

k

2

)
+h2uxxy

(
x0, y0−

k

2

)
= (4x0(1− 2x0)− 2h2)(1− 2y0+k).

Moreover,

w̃+
y = k−1

(
ψ
(
x0 +

h

2
, y0 +

k

2

)
+ ψ

(
x0 −

h

2
, y0 +

k

2

))

= − hk−1
(
(2x0 + h)uxy

(
x0 +

h

2
, y0 +

k

2

)
− (2x0 − h)uxy

(
x0 −

h

2
, y0 +

k

2

))

= − hk−1
(
2x0(uxy

(
x0 +

h

2
, y0 +

k

2

)
− uxy

(
x0 −

h

2
, y0 +

k

2

))

+ 2huxy

(
x0, y0 +

k

2

))

= − 2h2k
(
uxy

(
x0, y0 +

k

2

)
+ x0uxxy

(
x0, y0 +

k

2

))
= κ(4x0 − 1)(1− 2y0 − k),

and

w̃−
y = −2h2k

(
uxy

(
x0, y0 −

k

2

)
+ x0uxxy

(
x0, y0 −

k

2

))
= κ(4x0 − 1)(1− 2y0 + k).

This shows (14). The contribution of these triangles to the value of |w̃|2H1,Tn,m

(see (24) for the formula) is of the order O(1 + κ2).

For the triangles shown in Figure 2 on the right, we have w̃(Me) = 0 for the

horizontal and vertical edges, which immediately leads to (13) if one substitutes

the value for the remaining edge midpoint from (12). This yields an O(h2 + κ2)

contribution to |w̃|2H1,Tn,m
from the triangles with sides on the vertical boundaries

of Ω.

It remains to check the triangles crossing the symmetry line x = 1/2. Obviously,

by the extension rule w̃±
x = 0 for all those triangles while

w̃±
y = ±k−1ψ

(1
2
− h

2
, y0 ±

k

2

)
= ±2κ(1− h)(1− 2y0 ∓ k).
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This gives (15). Consequently, we have to add another O(κ2) term to |w̃|2H1,Tn,m
,

which altogether yields the desired estimate (16) for the discrete H1 norm of w̃.

Lemma 1 is proved.

5.3. Proof of Lemma 2. We give a bit more detail on the computations of the

integrals involved than absolutely necessary. For triangles ∆± depicted in Figure 2

on the left, in local coordinates, the linear function w̃± := w̃|∆± equals

w̃±(x0 + t, y0 + s) = w̃±
x t+ w̃±

y s, −h(1− k−1|s|) 6 t 6 h(1− k−1|s|),

where 0 6 s 6 k for ∆+, and −k 6 s 6 0 for ∆−. Therefore, we can use symmetries

for triangle pairs ∆± when evaluating their contributions to (f, w̃)L2
. To do the

calculations, we will use the following elementary formulas. For integers α, β > 0

and the triangles ∆± depicted in Figure 2 on the left, we have

(27) I±α,β :=

∫

∆±

0

tαsβ dt ds =





0, α odd,

(±1)β
2α!β!

(α+ β + 2)!
hα+1kβ+1, α even,

while for the triangles ∆± depicted in Figure 2 on the right

(28) Ĩ±α,β :=

∫

∆±

0

tαsβ dt ds = (±1)β
α!β!

(α+ β + 2)!
hα+1kβ+1.

Since, in local coordinates,

f(x0 + t, y0 + s) = 2(x0(1− x0) + y0(1 − y0) + (1 − 2x0)t+ (1− 2y0)s− t2 − s2),

using (27) we compute
∫

∆±

fw̃ dxdy = 2w̃±
x (1− 2x0)I

±
2,0

+ 2w̃±
y ((x0(1− x0) + y0(1 − y0))I0,1 + (1− 2y0)I

±
0,2 − I±0,3 − I±2,1)

=
h3k

3
(1− 2x0)w̃

±
x +

(
±2hk2

3
(x0(1− x0) + y0(1− y0))

+
hk3

3
(1− 2y0)∓

(hk4
5

+
h3k2

15

))
w̃±

y .

Thus, the integral over ∆+ ∪∆− equals

∫

∆+∪∆−

fw̃ dxdy = hk

(
h2

3
(1− 2x0)(w̃

+
x + w̃−

x ) +
k2

3
(1 − 2y0)(w̃

+
y + w̃−

y )

+
(2k
3
(x0(1− x0) + y0(1− y0))−

1

5
k3 − h2k

15

)
(w̃+

y − w̃−
y )

)
.
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Using (14) for w̃±
x and w̃

±
y , we have

w̃+
x + w̃−

x = 2(4x0(1− 2x0)− 2h2)k = O(k),

and

w̃+
y + w̃−

y = 2κ(4x0−1)(1−2y0) = O(h2k−1), w̃+
y − w̃−

y = −2κ(4x0−1)k = O(h2),

and after substitution we see that each such integral is of order O(h3k2). It is not

hard to see that similar estimates hold for all triangles having an edge on one of

the horizontal sides y = 0, y = 1/2 of Ω′, or crossing the symmetry line x = 1/2.

Consequently, the integral over the union of all such triangle pairs contained in Ω′ is

at most of order O(h2k).

For the triangles with P = (0, y0) depicted in Figure 2 on the right, we have the

following representations in local coordinates:

f(t, y0 + s) = 2(y0(1 − y0) + t+ (1− 2y0)s− t2 − s2)

and

w̃(t, y0 + s) = w̃± + w̃±
x t+ w̃±

y s, 0 6 t 6 h(1− k−1|s|),

where 0 6 s 6 k for ∆+, and −k 6 s 6 0 for ∆−. Here, the absolute terms w̃± can

be computed from the definition of w̃ as

w̃± = ±h2(1 − h)(1− 2y0 ∓ k) = ±h2(1− h)(1− 2y0)− h2(1 − h)k,

while the derivatives ψ±
x and ψ

±
y are given by (13). Using (28) for the integrals Ĩ

±
α,β ,

we obtain

∫

∆±

fw̃ dxdy = w̃±
(
hky0(1− y0) +

h2k

3
± hk2

3
(1− 2y0)−

h3k + hk3

6

)

+ w̃±
x

(h2k
3
y0(1− y0) +

h3k

6
± h2k2

12
(1− 2y0)−

3h4k + h2k3

30

)

+ w̃±
y

(
±hk

2

3
y0(1 − y0)±

h2k2

12
+
hk3

6
(1− 2y0)∓

h3k2 + 3hk4

30

)
.

Due to (13) we have

w̃+
x + w̃−

x = 4hk(1− h) = O(hk), w̃+
x − w̃−

x = 4h(1− h)(1− 2y0) = O(h),

and

w̃+
y + w̃−

y = −4κ(1− 2y0)(1− h) = O(h2k−1), w̃+
y − w̃−

y = 4κk(1− h) = O(h2).
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Together with the formula for w̃± this yields

∫

∆+∪∆−

fw̃ dxdy

=
h3k2

3
(1 − 2y0)(1 − h)(1− 2y0)− h3k2(1 − h)

(
y0(1 − y0) +

h

3
− h2 + k2

6

)

+
(h2k

3
y0(1− y0) +

h3k

6
− 3h4k + h2k3

30

)
(w̃+

x + w̃−
x )

+
h2k2

12
(1− 2y0)(w̃

+
x − w̃−

x ) +
hk3

6
(1− 2y0)(w̃

+
y + w̃−

y )

+
(hk2

3
(y0(1 − y0) +

h2k2

12
− 1

30
(h3k2 + 3hk4))(w̃+

y − w̃−
y )

)

= O(h3k2).

Summation with respect to all O(k−1) triangle pairs of this type gives an additional

term of order O(h3k). All in all we arrive at the statement of Lemma 2.
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