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KYBERNETIKA — VOLUME 53 (2017), NUMBER 3, PAGES 394-417

CONSTRUCTION OF UNINORMS ON BOUNDED LATTICES

GUL DENIZ CAYLI AND FUNDA KARAGAL

In this paper, we propose the general methods, yielding uninorms on the bounded lat-
tice (L, <,0,1), with some additional constraints on e € L\{0, 1} for a fixed neutral element
e € L\{0,1} based on underlying an arbitrary triangular norm T on [0,e] and an arbitrary
triangular conorm S. on [e, 1]. And, some illustrative examples are added for clarity.
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1. INTRODUCTION

Triangular norms (t-norms) and triangular conorms (t-conorms) on the unit interval
were systematically investigated by Schweizer and Sklar in [19]. These operators have
been extensively used in many application in fuzzy set theory, fuzzy logics, multicriteria
decision support and several branches of information sciences. For more details on t-
norms, we refer to [1,2,/17]. Uninorms were introduced in [22] and further investigated
in [23] by Yager and Rybalov and in [14] by Fodor, Yager and Rybalov, which are also
generalizations of t-norms and t-conorms. Uninorms on the real unit interval admit a
neutral element e to be an arbitrary point from [0,1] (if e = 1, we are in t-norm case,
while if e = 0, we are in t-conorm case) and have to satisfy an additional condition.
Such uninorms are interesting not only from a theoretical point of view (because of
their structure, namely combination of a t-norm and a t-conorm), but also for their
applications, since they have proved to be useful in several fields like expert systems,
neural networks, fuzzy quantifiers. The uninorms were also studied by many authors in
other papers [5,6,7,/9,104[11,/12}[13}|18}[20L[21].

Karagal and Mesiar have shown the existence of uninorms on an arbitrary bounded
lattice L, leaving the freedom for the neutral element e € L\{0,1} in [15]. Their con-
struction exploits the existence of a t-norm 7' and a t-conorm S for an arbitrary bounded
lattice L, and as a by-product, existence of the smallest uninorm and of the greatest
uninorm on L with a fixed neutral element e € L\{0,1} was shown.

In this paper, we study and discuss uninorms on an arbitrary bounded lattice
(L,<,0,1). We introduce the new methods of constructing uninorms on an arbitrary
bounded lattice (L, <,0,1) where some additional constraints on e € L\{0,1} that is
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considered as neutral element are required by using the existence of t-norms on [0, €]
and t-conorms on [e, 1]. The construction methods to obtain uninorm on bounded lat-
tices that is proposed in this study is different from the proposal of Karagal and Mesiar
in [15]. If both z and y are incomparable with e, then the construction method in
Theorem puts  V y and on the remain domains these constructions coincide with
the construction of the uninorm U; proposal in [13]. If both = and y are incomparable
with e, then the construction method in Theorem [3.5| puts = A y and on the remain
domains these construction coincide with the construction of the uninorm Uy proposal
in [13]. If both = and y are incomparable with e or x is from [e, 1] and y is incomparable
with e or y is from [e, 1] and « is incomparable with e, then the construction method in
Theorem [3.9] puts =V y and on the remain domains these construction coincide with the
construction of the uninorm U, proposal in [13]. If both & and y are incomparable with
e or z is from [0, e] and y is incomparable with e or y is from [0, e] and z is incomparable
with e, then the construction method in Theorem puts A y and on the remain
domains these construction coincide with the construction of the uninorm Uy proposal
in [13]. In case of e = 1, we obtain already t-norms and in case of e = 0, we already
obtain t-conorms. And, some illustrative examples are given to clearly understand these
methods of characterizing uninorms on bounded lattices.

2. PRELIMINARIES

In this section, some preliminaries concerning bounded lattices and uninorms (t-norms,
t-conorms) on them are recalled.

Definition 2.1. (Birkhoff [4]) A lattice (L, <) is bounded lattice if L has the top and
bottom elements, which are written as 1 and 0, respectively, that is, there exist two
elements 1,0 € L such that 0 <z <1, for all z € L.

Let L be a bounded lattice. An upper bound of the elements x,y € L is an element
a € L containing the elements both = and y. The least upper bound of the elements
x,y € Lis an upper bound contained by every other upper bound, it is denoted sup {z, y }
or xVy . An lower bound of the elements x,y € L is an element b € L contained by the
elements both x and y. The greatest lower bound of the elements x,y € L is an lower
bound containing every other lower bound, it is denoted inf {z,y} or x Ay .

Definition 2.2. (Birkhoff [4]) Given a bounded lattice (L,<,0,1) and a,b € L, if a
and b are incomparable, in this case we use the notation a || b.

Definition 2.3. (Birkhoff [4]) Given a bounded lattice (L, <,0,1) and a,b € L, a < b,
a subinterval [a, b] of L defined as

[a,b) ={x €L |a<z<b}

Similarly, we define (a,b] = {z € L |a <z < b},[a,b) ={zr € L | a <z < b} and
(a,b)={x e L]|a<xz<b}.

Let (L, <,0,1) be a bounded lattice and e € L. Let A(e) = [0, €] x [e, 1]U[e, 1] x [0, €]
and I ={x € L |z | e}.
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Remark 2.4. (Birkhoff [4]) Given a bounded lattice (L, <,0,1), and a,b € L, a < b.
Subinterval [a,b] of L is a sublattice of L, but the rest of subinterval in Definition 2 is
not necessary sublattice of L.

Definition 2.5. (Karacal and Mesiar [15|, Karagal et al. [16]) Let (L,<,0,1) be
a bounded lattice. Operation U : L? — L is called a uninorm on L (shortly a uni-
norm, if L is fixed) if it is commutative, associative, increasing with respect to both
variables and has a neutral element e € L.

Definition 2.6. (Asici [3], Cayh and Karagal [8]) Operation T': L? — L (S: L? — L)
is called a t-norm (t-conorm) if it is commutative, associative, increasing with respect
to both variables and has a neutral element e =1 (e = 0).

Proposition 2.7. (Karagal and Mesiar [15]) Let (L, <,0,1) be a bounded lattice, e €

) —

L\{0,1} and U be a uninorm on L with the neutral element e.
Then

i) T* =U|[0,€]? : [0,€]®> — [0, €] is a t-norm on [0, €],

ii) S* =Ul[e,1)? : [e,1]®> — [e, 1] is a t-conorm on [e, 1].

Proposition 2.8. (Karagal and Mesiar [15]) Let (L,<,0,1) be a bounded lattice, e €
L\{0,1} and U be a uninorm on L with the neutral element e. The following properties
hold:

3. UNINORMS WITH FIXED UNDERLYING T-NORMS AND T-CONORMS

Theorem 3.1. Let (L, <,0,1) be a bounded lattice and fix e € L\{0, 1}. Suppose that
either tVy >eforallz || eandy ||eorzVy ||eforallz || e and y || e. If T, is a t-norm
on [0, ¢], then the function U; : L x L — L defined as

T, (z,y) if (x,y) €0,€]?,
xVy if (x,y)e A(e)UI, x I,
Ui (z,y) =4 v if (z,y) €[0,e] x I, (1)
x if (x,y) € I, x [0,€],
1 otherwise,

is a uninorm on L with the neutral element e.
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Proof. i) Monotonicity: We prove that if < y then for all z € L, Uy(z, z) < Uy(y, 2).
The proof is split into all possible cases.
1. Let z <e.
1.1. y <e,
1.1.1. z < e,
Ut(xa Z) =T (xa Z) <T. (ya Z) = Ut(y72)
112. z>eor z | e,
Uiz, z) =z = U(y, 2)

1.2. y >e,
1.2.1. z<e,

Uz, z) =T (x,2) <ax <y=Uy,z2)
1.22. z>eor z | e,

Ut(gc,z) =z< 1= Ut(y7z)

13. ylle,
1.3.1. z <,
Ut(.’l?,z) :TE(‘T72) <z <y= U(y,Z)
1.3.2. z > e,
U(w,2) = 2 < 1= Uy, 2)
1.3.3. z || e,

U(w,2) =2 <yVz="Uy,2)

2. Let x > e. Then y > e.
2.1. z<e,
Ut(.’IJ,Z) =z < Y= Ut(yv'z)

22. z>eorz| e,
Ut(.’L',Z) =1= Ut(yvz)

3. Let x || e.
3.1. y >e,
3.1.1. z <,
Ut(.]?,Z) =z < Y= Ut(yVZ)
3.1.2. z > e,
Ut(ﬂf,Z) =1= Ut(y7z)
3.1.3. z || e,

U(z,z) =2V 2z<1=Uy,2)
32. y | e,
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3.2.1. z<e,
Ui(z,2) =2 <y =Uy, 2)
322. 2>,
Ui(z,2z) =1 =Uy, 2)
3.2.3. z | e,

U(z,z) =2V z<yVz=Uly,z).

ii) Associativity: We demonstrate that Uy (x, Ui (y, 2)) = Ug(U(z,y), ) for all z,y, z € L.
Again the proof is split into all possible cases considering the relationships of the elements
z,y,z and e.
1. Let z <e.
1l.ly <e,

1.2

1.1.1. z <e,
Ut(vat(yvz)) = Ut ($7TE (y,Z)) :Te ((E,Te (y72))
= Ut(Ut('r’y)vz)
1.1.2. z > e,

Ut(xaUt(yaZ) :Ut(l',y\/Z)ZUt(Z‘,Z):.’E\/Z:Z

= e(xvy) Vz
= Ut(Te(z,y), 2)
= Ut(Ut(wvy)aZ)
1.1.3. z || e,
Ui(z, Uiy, 2)) =Ui(z,2) =2
= Ut(Te(xay)az>
= Ui(Ut(z,y), 2)
Yy >e,
1.2.1. z < e,

Ui(z,U(y,2)) =Ui(z,yVz)=U(z,y)=aVy=y
=yVz
= Ut (y,Z)
- Ut (:L' \ y,Z)
- Ut(Ut(l',y),Z)

1.22. z>eor z | e,

Ui(z,Ue(y,2)) =Ui(xz,1])=2v1i=1

= U(Ui(x,9), )
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13. ylle,
1.3.1. z <,
Ui(z,U(y,2)) =Ui(z,y) =y
= Ut (y,Z)
= Ut(Ut(xay)vz)
1.3.2. z > e,
Ui(z,Us(y,2)) =Ui(xz,1])=2v1i=1
= Ut (y,Z)
= U(U(z,y), 2)
1.3.3. z > e,
Ut(ir?Ut(y?Z)) _Ut (x,y\/z)—y\/z
=U (y’z)
= Ut(Ut(ﬂf,y)aZ)
2. Let z > e.
21. y<e,
2.1.1. z<e,

Ut(CC,Ut(?J,Z)) :Ut(x7T6(yaZ)) ZLE\/Te(y,Z) =T
=xVz
=U (z,2)
=U(zVy,2)
= U(Ut(z,), 2)

21.2. z>e,

Ut(wa Ut(yaz)) -

2.1.3. z || e,
U(z,Ui(y,2)) =U(z,2) =1
=U; (2, 2)
=Ui(xVy,2)
= Ui(Ui(x,y), 2)
2.2. y>e,
2.2.1. z <,
Ut(xaUt(:%Z)) :Ut (.’L‘,y\/Z) :Ut (Jf,y) =1
=1Vz
= Ut (1,2’)

= U(Ui(x,y), )
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222 . z>eorz| e,

Ui(x,Us(y,2)) =Us(x,1)=1
=U: (la Z)
= Ut(Ut(zv y)7 Z)

23. y | e,
23.1. z<e,
Ut(m7 Ut(yaz)) = Ut (xuy) =1
=1Vz
= Ut (1,2)
= U(Ui(z,y), 2)
2.3.2. z > e,
Ut(xa Ut(yaz)) - Ut (.13, 1) =1
= Ut (1,2)
= U(Ui(z,y), 2)
2.3.2. z | e,
Ut(xa Ut(y,z)) = Ut (x,y \ Z) =1
= Ut (].,Z)
= Ut(Ut(x7y)7Z)
3. Let x || e.
3.1. y <e,
3.1.1. z<e,
U(z,Ut(y, 2)) =Us(2,Te (y,2)) ==
= Ut (LE,Z)
- Ut(Ut(xvy)vZ)
3.1.2. z > e,
Ut(vat(yaZ)) :Ut (x,y\/z) :Ut (ZL’,Z):].
= Ut (xaz)
- Ut(Ut(may)vz)
3.1.3. z || e,

3.2. y>e,
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3.2.1. z<e,
Ut(xaUt(yaZ)) = Ut (J?,y\/ Z) = Ut (Z‘,y) =
=1Vz
=U; (172)

= U(Ui(x,y), 2)

322 z>eorz]|e,

33. y | e,
3.3.1. z<e,
Ul(z,U(y,2)) =U(x,y) =xVy
= Ut (.’L‘ \ Y, Z)
= U(U(z,y), 2)
3.3.2. z>e,
U(z,Ui(y,2)) =U(z,1) =1
= Ut (.’13 \ Y, Z)
= Ui(Ui(,y), 2)
3.3.3. z | e,

From hypotheses of Theorem either t Vy >eforall z ||eand y || e or
xVyleforall z | eandy| e.
3331 ifzvy>eforalz|eandyle,

Ui(z,Us(y,2)) =Ui(xz,yVz) =1
=Ui(xVy,z)
= Ut(Ut(x7y)’Z)

3332 . ifzVyl|eforallaz| eandy]| e,

U@, Uy, 2)) =Ui(z,yVz) =aVyVz
= Ut (‘T \ y,Z)
= U(Ui(z,y), 2).

iii) Commutativity: We show that for all z,y € L, Uy(z,y) = Us(y, z). The proof is split
into all possible cases.
1. x <e,
1.1. y <e,
U(z,y) =T (m,y) =T (y,£) = Uiy, )

1.2. y >e,
Ui(z,y) =xVy=yVr=Ul(yx)



402 G.D. GAYLI AND F. KARACAL

1.3. y | e,
Ut(xay) =Yy = Ut(yax)'
2. x> e,
21. y<e,

Ulz,y) =xVy=yVae=U(y,x)

22.y>eorvy|e,
U(z,y) =1 = Us(y, x)

3.z e,
1.1. y <e,
Ut(xay) =T = Ut(yax)
1.2. y >e,
Ut(x7y) =1= Ut(y>x)
13. y| e,

Ulz,y) =xVy=yVr=U(y,x).

iv) Neutral element: We prove that for all x € L, U;(x,e) = x. The proof is split into
all possible cases.

1. x <e,
Ui(z,e) =T (z,e) =z
2. >e,
Ui(z,e)=xzVe=z
3. x| e,

Ui(x,e) = x.
]

Example 3.2. (i) The lattice L; in Figure[1]is a positive example satisfying constraint
of Theorem [3.1] since V3 > e for all z || e and y || e for neutral element e.

1

0

Fig. 1. The lattice L;.
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(ii) The lattice Ly in Figure [2| satisfy constraint of Theorem [3.1]since z Vy || e for all
z || e and y || e for the indicated neutral element e.

Fig. 2. The lattice Lo.

(iii) The next lattice L3 is negative example, where, for a chosen neutral element e,
constraints of Theorem are violated. Because, xVz =k >eforz | e, z || e and
yvm=m|efory| e m|e.

0

Fig. 3. The lattice Ls.

Example 3.3. Consider the lattice Lo depicted in Figure [2| By using the construction
method in Theorem [3.1|and [15, Theorem 1], taking the t-norm T, = T, (inf) on [0, ¢]?,
the uninorms U; on L is defined, respectively, by Table [1] and Table

In the following example, we show that on any bounded lattice that does not satisfy
constraints of Theorem the operation U defined by using (1)) can not be a uninorm.

Example 3.4. Consider the lattice L3 depicted in Figure Define a mapping U :
L3 x Ly — L3 by Table Then U is constructed using , but U is not a uninorm
on Ls.

If we take elements x,z € L3, we have that U(z,U(x,z)) = U(z,k) = 1 and
UU(x,x),z) =Ul(x,z) = k. So, we obtain that U is not a uninorm on Lg.
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U

m | m|m

Tab. 1. The uninorm U; on Ly constructed using [15, Theorem 1].

U

m |m|m|m

Tab. 2. The uninorm U; on Lo constructed using Theorem

1
1

m | k

m | k

m | k

z
z
z

1

m | m | m

Tab. 3. The operation U on Ls.
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Theorem 3.5. Let (L, <,0,1) be a bounded lattice and fix e € L\{0,1}. Suppose that
xAy<eforallz|eandyl| eorxAyl eforalz|eandy| e IfS.isat-conorm
on [e, 1], then the function Uy : L x L — L defined as

Se (z,y) if (2,y) € [e,1]%,
T Ay if (z,y) € A(e)Ul, x I,
Us ($7y) = Yy if (x,y) € [67 1} X Iea (2)
x if (z,y) € I, x [e, 1],
0 otherwise.

is a uninorm on L with the neutral element e.
It can be proved as dual of Theorem [3.1

Example 3.6. (i) The lattice L, depicted in Figurebring a positive example satisfying
constraint of Theorem [3.5since z Ay || e for all z || e and y || e for the indicated neutral
element e. Note that the lattice Ly given in Figure [1] is also positive example satisfying
constraint of Theorem [3.5|since x Ay < e for all z || e and y || e.

1

0

Fig. 4. The lattice Ly4.

(ii) The next lattice Ls is negative example, where, for a chosen neutral element e,
constraint of Theorem are violated. Because, t Az = m < e for x || e, z || e and
yANk=kl|eforyle, k| e.

0

Fig. 5. The lattice Ls.
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In the following example, we show that on any bounded lattice that does not satisfy
constraints of Theorem the operation U constructed by using can not be a
uninorm.

Example 3.7. Consider the lattice L5 depicted in Figure Define a mapping U :
Ls X Ls — Ls by Table 4l Then U is constructed using , but U is not a uninorm on
Ls.

HQQHN??‘QSOQ
(] feu] o) Hen) Nen] fen] Hen) Nen] Nan]
H@HN??‘@EO@
T O| O I FT OO
NNSNON O| O ™

@@SN??‘@OO@
H@HN??‘)—‘SOH

Tab. 4. The operation U on Ls.

If we take elements x,z € Ls, we have that U(x,U(x,z)) = U(z,m) = 0 and
UU(zx,x),z) =U(x,z) =m. So, we obtain that U is not a uninorm on Ls.

Example 3.8. Consider a bounded lattice L; = {0, e, z, y, 1} with given order in Figure
satisfying constraints of both Theorem [3.1] and Theorem

(i) Define a mapping U : L? — L; by Table |5 such that U is constructed using the
equality . Then, by Theorem U is a uninorm on L with a neutral element e.

H@&\‘DOQ
e | ] |O|IOO
R8I0 [O®
o Bl RN R R RS
R e IR e
e e i i il

Tab. 5. The uninorm U on L.

(ii) Define a mapping U : L¥ — L; by Table |§| such that U is constructed using the
equality . Then, by Theorem [3.5) U is a uninorm on L with a neutral element e.
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H@H@OQ
[en) Hen) Hen) New) Nev] Nan)

QIR | Oow | o
IO

IR0
ROR|R|OIR

Tab. 6. The uninorm U on L.

Theorem 3.9. Let (L,<,0,1) be a bounded lattice and e € L\{0,1}. Suppose that
aVy ||eforallz || eand y || e. If T, is a t-norm on [0, €], then the function Ur : LxL — L
defined as

Te (z,y) if (z,y) € [0,¢?,
1 if (2,y) € (e, 12,
Ur (:z:,y) = Yy if (xvy) € [076] x I, (3)
x if (z,y) € I. x [0,¢€],
zVy otherwise.

is a uninorm on L with the neutral element e.

Proof. i) Monotonicity: We prove that if # < y then for all z € L, Ur(x, z) < Ur(y, 2).
The proof is split into all possible cases.
1. Let z <e.
11. y<e,
1.1.1. z < e,

UT(J},Z) = Te (SL’,Z) < Te (y,Z) = UT(ZJVZ)
112, z>eor z | e,

Ur(z,z) =z =Ur(y, 2)

1.2. y>e,

1.2.1. z<e,

UT('I’Z) = Te (I,Z) <z< y= UT(yvz)
1.2.2. 2 > e,
Ur(z,z) =2<1=Ur(y, 2)
1.2.3. z || e,
Ur(z,2) =2 <yVz=Ur(y,z)

1.3. y | e,

1.3.1. z <e,
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1.32. z>eor z | e,
Ur(z,2) =2<yVz="Ur(y,z)

2. Let x > e. Then y > e.

2.1. z<e,
Ur(z,z) =2 <y =Ur(y,2)
2.2. z>e,
Ur(z,2) =1=Ur(y, 2)
2.3. z | e,
UT(JC,Z) =xVz Sy\/Z:UT(yaZ)
3. Let z || e.
3.1. y>e,
3.1.1. z<e,
Ur(z,z) =2 <y =Ur(y,z2)
3.1.2. z > e,
Ur(z,2) =2V z<1=Ur(y,z)
3.1.3. z || e,
Ur(z,2) =xVz<yVz=Ur(y,z)
3.2. y | e,
3.2.1. z <,

Ur(z,2) =z <y =Ur(y,2)
322 z>eorz|e,
Ur(z,2) =aVz<yVz=Ur(yz)

ii) Associativity: We demonstrate that Ur(x, Ur(y, 2)) = Ur(Ur(z,y), z) for all z,y, z €
L. Again the proof is split into all possible cases considering the relationships of the
elements z,y, z and e.

1. Let z <e.
1.1y <e,
1.1.1. z <e,
UT(xv UT(yvz)) :UT (I,Te (y72’)) :Te (vae (y,Z))
= Te (Te (l',y) 9 Z)
=Ur(Ur(z,y), 2)
1.1.2. z > e,
Ur(z,Ur(y,2)) =Ur(z,yVz)=Ur(z,2)=xVz=2
= Te(xay) Vz
=U
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1.1.3. z || e,
UT(xa UT(yaz)) - Ut (.’B,Z) =z
= Ut(Te(x,y),z)
=Ur(Ur(x,y),2)
1.2. y >e,
1.2.1. z <e,

UT(x7 UT(yvz)) =Ur (x,y\/z) =Ur (x,y) =zVy=y
=yVz
:UT (y,Z)
—Ur (s Vy.2)
:UT(UT<xay)7Z)

1.22. z > e,

Ui(z,Us(y,2)) =Us(z,1)=2aV1=

13. y| e,
1

1.32. z>eorz| e,

UT(’I’, UT(y,Z)) :Ut (x,y\/z) :y\/Z
=Ur (y’Z)
=Ur(Ur(z,y),2)

2. Let x > e.
2.1. y <e,
2.1.1. z <,
Ur(z,Ur(y,z)) =Ulz,Te(y,2)) =2V Te(y, 2) =z
=xVz
- UT (JJ,Z)
=Ur(zVy,z)

= Ur(Ur(z,y), 2)
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2.1.2. z> e,

22.y>e,
2.2.1. z <,

UT(x7UT(yaZ)) =U (Cll’,y \ Z) =U (x,y) =1
=1Vvz
= Ut (1,2)
= UT(UT(x,y)vz)

2.2.2. z > e,

Ur(z,Ur(y,z)) =Ur(z,1)=1
= UT (1, Z)
= Ur(Ur(z,y), 2)

2.2.3. z || e,

Ur(z,Ur(y,2)) =Ur(z,yVz)=1
=1Vz
= UT (1,2’)
= UT(UT(x7y)7Z)

e,

23.y|e
2.3.1. z <,

UT(l‘vUT(y,Z)) =Ur (J},y) =xVy
=(xVy)Vz
=Ur(zVy,z)
= UT<UT(1'7y)aZ)

23.2. z>e,

Ur(z,Ur(y,z)) =Ur(z,yVvz)=1
=Ur(zVy,z)
= UT(UT(x,y)vz)
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2.3.2. z || e, then y V z || e from hypotheses of Theorem (3.9
Ur(z,Ur(y,z)) =Ur(z,yVz)=aVyVz
=Ur (:L' VY, Z)
= Ur(Ur(z,y), 2)

3. Let x || e.
3.1. y <e,
3.1.1. z<e,
UT(xu UT(yv Z)) =Ur (vae (y7 Z)) =z
=Ur (z,2)
= Ur(Ur(z,y), 2)
3.1.2. z > e,
Ur(z,Ur(y,z)) =Ur(x,yVz) =Ur(z,2)=xVz
=Ur (z,2)
=Ur(Ur(z,y), 2)
3.1.3. z || e,
Ur(z,Ur(y,z)) =Ur(z,2)=zVz
=Ur (z,2)
- UT(UT x,y),z)
3.2. y > e,
3.2.1. z<e,
Ur(z,Ur(y,2)) =Ur(v,yVz) =Ur(rv,y)=zVy
=(xVy)Vz
- UT (l’ \ Y, Z)
=Ur(Ur(z,y), 2)
322. 2> e,
Ur(z,Ur(y,z)) =Ur(z,1) =zvli=1
= UT (.”L' \ Y, Z)
=Ur(Ur(z,y),2)
3.2.3. z || e,
Ur(z,Ur(y,2)) =Ur(z,yVz) =xVyVz
= UT (3: \ Y, Z)
= Ur(Ur(z,y), 2)
33. vy e,

3.3.1. z <e, then x V y || e from hypotheses of Theorem

UT(Z‘vUT(va)) =Ur (x’y) =zVy
=Ur(zVy,z)
= Ur(Ur(z,y),2)

411



412 G.D. GAYLI AND F. KARACAL

3.3.2. z > e, then z V y || e from hypotheses of Theorem [3.9

Ur(z,Ur(y,2)) =Ur(z,yVz) =xVyVz
= UT (3: \ Y, Z)
= Ur(Ur(z,y), 2)

3.33. z||e, then 2 Vy | e and y V z || e from hypotheses of Theorem [3.9]

Ur(z,Ur(y,2)) =Ur(z,yVz) =zVyVz
= UT (.’17 Vy, Z)
- UT(UT(x7y)vZ)

iii) Commutativity: We prove that for all z,y € L, Ur(x,y) = Ur(y,x). The proof is
split into all possible cases.

1. x <e,

1.1. y <e,

Ur(z,y) = Te (x,y) = Te (y, ) = Ur(y, )
1.2. y >e,
Ur(z,y)=a2Vy=yVaz=Ur(y,z)
1.3. y | e,
Ur(z,y) =y = Ur(y,x)

2. x> e,

21. y<eory| e,
Ur(z,y)=aVy=yVa=Ur(yz)

2.2. y > e,
UT($7y) =1= UT(y7x)

3. x| e,
3.1. y <e,
Ur(z,y) =z =Ur(y,x)

32.y>eoryle,
Ur(z,y) =xVy=yVa=Ur(yz)

iv) Neutral element: We show that for all © € L, Ur(z,e) = . The proof is split into
all possible cases.

1. x <e,
Ur(z,e) =T, (x,e) =x
2. >e,
Ur(z,e)=xzVe=cz
2.z e,

Ur(xz,e) =z
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Example 3.10. (i) The lattice Lg with given order in Figure |§| is a positive example
providing restriction of Theorem since z Vy || e for all || e and y || e for neutral
element e.

0

Fig. 6. The lattice Lg.

(ii) The next lattice L7 give a negative examples that does not enable constraint of
Theorem [3.9| for a chosen neutral element e. Because, z Vy =k >eforz ||eand y || e
for neutral element e.

Fig. 7. The lattice L.

In the following example, we show that on any bounded lattice that does not satisfy
constraint of Theorem the operation U defined by using can not be a uninorm.

Example 3.11. Consider the lattice L; depicted in Figure Define a mapping U :
L7 x Ly — L7 by Table[7l Then U is constructed using , but U is not a uninorm on
L.
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il I A IS A =] N
e k=] k==] Rev] Hen] Han] Ran]
Hie g |lo|oo

=R |RIOIR

Hl e e | o
Ll Bl =l =l =]l @l I ol
e I e e I e

Tab. 7. The operation U on L.

If we take elements z,y,k € L7, we have that U(k,U(z,y)) = U(k,k) = 1 and
UU(k,x),y) =U(k,y) = k. So, we obtain that U is not a uninorm on L.

Theorem 3.12. Let (L,<,0,1) be a bounded lattice and e € L\{0,1}. Suppose that
x Ay || eforall z | eandy | e If Seis a t-conorm on [e, 1], then the function

Us : L x L — L defined as

n O

e (2,y)
US (m,y) =

<

T
VAN

if (z,y) €10,€)?,

if (z,y) € [e, 1%,

if (x,y) €0,e] x I, (4)
if (z,y) € I. x [0,€],

otherwise.

is a uninorm on L with the neutral element e.

It can be proved as dual of Theorem 3.9

Example 3.13. (i) The lattice Lg given in Figure [§| give a positive example providing
for restraint of Theorem since x Ay || e for all z || e and y || e for neutral element e.

1

0

Fig. 8. The lattice Ls.

(ii) The next lattice Lg bring negative examples that does not satisfying restraint of
Theorem for a chosen neutral element e. Because, t Ay =s<eforz|eandy| e

for neutral element e.
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)

Fig. 9. The lattice Lg.

In the following example, we show that on any bounded lattice that does not satisfy
constraint of Theorem the operation U defined by using can not be a uninorm.

Example 3.14. Consider the lattice Ly depicted in Figure [} Define a mapping U :
Lg x Ly — Lg by Table[8l Then U is constructed using , but U is not a uninorm on
Lyg.

H@&(’D%Oq
(ev] Hen) Hev] Nen] Nen) Ban] Nan)
L D= Y = NV N e INayd
e e e I =l

| | n | OO ®»

—le|lg|ole oo
=R IK|®»w | OK

Tab. 8. The operation U on Lg.

If we take elements z,y,s € Lg, we have that U(s,U(z,y)) = U(s,s) = 0 and
UU(s,x),y) =U(s,y) = s. So, we obtain that U is not a uninorm on Lg.

4. CONCLUDING REMARKS

In this study, we have introduced and investigated characterization uninorms on bounded
lattices. We give the new construction methods for building uninorms on an arbitrary
bounded lattice (L, <, 0, 1) with arbitrary zero element e € L\{0, 1} with some additional
constraints on e € L\{0, 1} based on the knowledge of the existence of t-norms on and
t-conorms on an arbitrary given bounded lattice L. If L is a chain, then all elements
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in L are comparable with e indicated as neutral element. In this case, we consider only
domains [0, €]*, [e,1]%,[0, €] x [e,1] and [e, 1] x [0,¢]. So, by taking only these domains
in our characterization methods to obtain uninorms on bounded lattices, these methods
can be applied on chains without additional assumptions on e € L\{0, 1}.
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