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DISTRIBUTED CLASSIFICATION LEARNING BASED
ON NONLINEAR VECTOR SUPPORT MACHINES
FOR SWITCHING NETWORKS

Yinghui Wang, Peng Lin and Huashu Qin

In this paper, we discuss the distributed design for binary classification based on the nonlin-
ear support vector machine in a time-varying multi-agent network when the training data sets
are distributedly located and unavailable to all agents. In particular, the aim is to find a global
large margin classifier and then enable each agent to classify any new input data into one of
the two labels in the binary classification without sharing its all local data with other agents.
We formulate the support vector machine problem into a distributed optimization problem in
approximation and employ a distributed algorithm in a time-varying network to solve it. Our
algorithm is a stochastic one with the high convergence rate and the low communication cost.
With the jointly-connected connectivity condition, we analyze the consensus rate and the con-
vergence rate of the given algorithm. Then some experimental results on various classification
training data sets are also provided to illustrate the effectiveness of the given algorithm.

Keywords: nonlinear support vector machine, multi-agent system, distributed optimiza-
tion, connectivity

Classification: 68M15, 93A14

1. INTRODUCTION

In recent years, classification problems have attracted more and more research attention
in machine learning, pattern recognition, and data mining [2, 9]. The binary classifi-
cation setting is of great importance to classification problems because any multi-class
classification problem can be transformed into binary classification problems [23]. Sup-
port vector machine, intended to both maximize the margin and minimize the training
error over labeled training sets, is one of the most famous binary classification settings.
Over the past two decades, researchers have made great efforts to derive, implement
and analyze the effectiveness of different SVM solutions. These efforts include the de-
composition training based on dual SVMs [4, 21], the cutting-plane training based on
primal SVM with violated constraints [14, 26] and the sub-gradient training based on
the primal SVMs [15, 25].

Distributed SVM training becomes necessary due to the rapid growth of data and the
infeasibility of a centralized system for the reason of geographical factors and limited
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computational capabilities. The parallel design of centralized SVM training is the sim-
plest distributed SVM training. In the parallel setting [17, 18], agents learn from small
sub-data sets and send partial SVM information to the central unit. Then the central
unit combines and processes the information it gets. Parallel SVM training can handle
massive data sets if the central unit is available. However, if the central unit fails for
some physical or computational reasons, parallel SVM training is infeasible. Therefore,
the designs of the fully distributed [13, 27] SVM training without requiring any central
unit are urgent to binary classification learning.

Due to the limited communication capabilities and time-varying factors of the multi-
agent network, switching topologies between agents bring about great challenges in the
distributed design. Many distributed optimization algorithms have been proposed with
time-varying topologies [16, 20, 30]. Because the (distributed) binary classification prob-
lem can be converted to a distributed optimization problem [5, 11], some of distributed
SVM training has been constructed using distributed optimization approaches. For
example, [11] proposed a consensus-based distributed SVM algorithm, which adopted
the idea of alternating direction method of multipliers (ADMoM) [3] and distributed
decomposition training. The ADMoM method [11] , whose performance was almost
the same as that of centralized SVM training, employed neighborhood information ex-
change. Nevertheless, the communication cost was large since the algorithm should
maintain the network connectivity between the agents until it converged to centralized
SVM training. Furthermore, in nonlinear SVM training, the exchanged information was
very large, and [10] provided a distributed gossip algorithm based on directly rare sup-
port vectors exchange. This convenient method betrayed data privacy, where the goal
was to minimize the global structural error [7] with training data sets from different
agents without exchanging the training data information explicitly among them. [19]
was based on an improved distributed gossip convex hull algorithm in feature space,
where the computational limitations of each agent was fully considered.

This paper is motivated to study efficient distributed nonlinear SVM algorithms in
a time-varying multi-agent network. To this end, a distributed stochastic sub-gradient-
based SVM algorithm is proposed and analyzed. Agents in the network can only get
training subsets and have neighborhood information exchange. The technical contribu-
tions of the paper include:

• Distributed stochastic design for switching networks based on kernel
approximation: Different from the existing distributed algorithms, we propose
a distributed stochastic sub-gradient nonlinear support vector machines algorithm
based on kernel approximation in time-varying networks. We construct our dis-
tributed algorithm based on soft kernel SVM designs, whose corresponding feature
mapping may be infinity and need dimensional reduction. The feature mapping
approximation method is given to construct our algorithm in a low-dimensional
feature space. Similar to [11], the distributed sub-gradient iteration should hold
until it approaches to centralized SVM performances. However, our algorithm,
which uses stochastic sub-gradient for each agent in iteration and is constructed
in time-varying networks, is of relatively low communication cost compared with
[11]. Different from [7] and [19] based on random gossip network protocol, our
algorithm is based on another class of time-varying network, the jointly-connected
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network [16, 30].

• Convergence and performance analysis: We strictly give the convergence
rate and consensus rate of our algorithm. Different from the existing distributed
SVM algorithms [11] and [19], we adopt stochastic sub-gradient-based distributed
algorithm, which can help to take advantage of the high convergence rate. Nu-
merical simulations are given to show that our algorithm can get the same result
as the centralized ones.

The rest of the paper is organized as follows. Section 2 introduces the traditional
SVM model and some necessary preliminaries to the distributed nonlinear SVM problem.
Then, in Section 3, we formulate a distributed nonlinear SVM learning formulation in a
low-dimensional feature space and give a method to reduce the dimension of the feature
space. Next, in Section 4 the distributed stochastic sub-gradient-based SVM algorithm
and its performance analysis are given. Then, Section 5 details the experimental results.
Finally, conclusions are presented in Section 6.

2. PRELIMINARIES AND SVM FORMULATION

In this section, we first formulate a standard nonlinear SVM problem. Then we present
some preliminary knowledge related to the distributed nonlinear SVM problem.

Consider the standard semi-supervised binary classification problem. The training
set for agent i consists of ni labeled samples {(xij , yij)}ni

j=1 with xij ∈ Rp, yij ∈ {−1, 1}.
Given a feature mapping φ : Rp → R2d, a convex loss function C(·) : R → R ∪ {∞},
coefficients λ > 0 and the local variables wi, bi, the primal nonlinear support vector
machines problem [5] can be stated as follows:

min
wi∈R2d,bi∈R

λ

2
||wi||2 +

1
ni

ni∑
j=1

C(yij , hi(φ(xij)), cij), (1)

where hi(x) = w>i x + bi is the maximum-margin linear discriminant function; cij are
the slack variables which contribute to the nonlinear separable training data sets. We
choose hinge loss function as the loss function, given by

C(y, h(x), z) = max{0, 1− yh(x)− z}c, (2)

where c is a positive integer. Different from [6, 24], we choose c = 1 for the second term
in (1) for accuracy.

Here, the training data set is not available on the central unit, but each agent i in
the M -agent network has access to a stream of ni labeled samples with

∑M
i=1 ni = N .

As usual, the network with M agents is modeled by a graph G(t) = (M, E(t)),
t = 0, 1, 2, . . . with vertex set M := {1, . . . ,M} representing the agent/node set, and
edges E(t) describing (time-varying) communication links among the agents at time t.
The one-hop neighborhood of agent i at time t is defined by Ni(t) = {q|(q, i) ∈ E(t)}.
Define the weights aqi (t) of the adjacency matrix A(t) ∈ RM×M matching G(t), i. e.
aqi (t) > 0 if (q, i) ∈ E(t) or q = i; aqi (t) = 0 otherwise. Moreover, we make the following
assumptions on the network model:
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Assumption 2.1. The graph G(t) = (M, E(t)) and the adjacency matrix A(t) satisfy:

(a) A(t) is doubly stochastic, i. e. A(t)1 = 1 and 1>A(t) = 1>.

(b) For all i ∈M, aqi (t) > v if (q, i) ∈ E(t) or q = i, where v is a positive scalar.

(c) The graph ∪t+B−1
m=t G(m) = (M, E(t) ∪ E(t + 1) ∪ · · · ∪ E(t + B − 1)) is strongly

connected for all t > 0 and some positive integer B.

Assumption 2.1(c) provides a widely used connectivity condition [20] for the dis-
tributed optimization. In addition, Assumption 2.1(c) guarantees that each agent i can
collect information from its one-hop neighbors at least once during each period of B,
though the network topology is time-varying.

The following concepts are about convex function. A differentiable function f is
convex over a convex set Ω, whose sub-gradient at a point x is denoted by ∇f(x), if

f(x) > f(y) + 〈∇f(y), x− y〉, ∀x, y ∈ Ω. (3)

Moreover, the differentiable, convex function f is σ-strongly convex over the convex set
Ω if

f(x) > f(y) + 〈∇f(y), x− y〉+
σ

2
||x− y||2, ∀x, y ∈ Ω. (4)

3. DISTRIBUTED NONLINEAR SVM LEARNING

In this section, we first formulate a distributed nonlinear SVM problem in a low-
dimensional feature space in Section 3.1. Then, a feature mapping approximation of
φi for finding the low-dimensional feature space is introduced in Section 3.2.

3.1. Distributed nonlinear SVM in a low-dimensional feature space

In distributed binary classification learning, the goal is to find a global h(x), and then
enable each agent to classify any new input vector x ∈ Rp to one of {−1, 1} without
communicating its samples to other agents q 6= i. In a network consisting of M agents,
the proposed distributed reformulation of (1) becomes:

min
wi∈R2d,bi∈R

λ

2

M∑
i=1

||wi||2 +
M∑
i=1

1
ni

ni∑
j=1

C(yij , hi(φ(xij)), cij)

s. t. wi = wq, bi = bq, i ∈M, q ∈M. (5)

Problem (5) can be solved in the distributed system because each agent i can optimize
(1) and also meet wi = wq, bi = bq, by communicating with its one-hop neighbors.
Moreover, Assumption 2.1 ensures the network-wide consensus.

Define, for notational brevity:{
ξi = [w>i , bi]

>,

φ
′
(Xij) = [φ>(xij), 1]>

(6)
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It follows from (6) that wi = (I2d+1 − Π2d+1)ξi, where Π2d+1 is a (2d + 1) × (2d + 1)
matrix with zeros except for [Π2d+1](2d+1)(2d+1) = 1. Therefore, problem (5) can be
rewritten as

min
ξi∈R2d+1

λ

2

M∑
i=1

ξ>i (I2d+1 −Π2d+1)ξi +
M∑
i=1

1
ni

ni∑
j=1

C(yij , ξ>i φ
′
(xij), cij)

s. t. ξi = ξq, i ∈M, q ∈M. (7)

Substitute ξi in (7) according to the Karush–Kuhn–Tucker condition [22]:

ξi =
N∑
j=1

αijφ
′
(xij), (8)

and set αi = [αi1, αi2, αini
]> and φ

′

i = [φ
′
(xi1), φ

′
(xi2), . . . , φ

′
(xini

)]. Then we transform
(7) to the following form:

min
αi∈Rni

λ

2

M∑
i=1

α>i (φ
′

i)
>(I2d+1 −Π2d+1)φ

′

iαi +
M∑
i=1

1
ni

ni∑
j=1

C(yij ,Φ
j
iαi, cij)

s. t. α>i φi = α>q φq, i ∈M, q ∈M, (9)

where Φi ∈ Rni×ni is defined by

Φjti := φ
′
(xij)>φ

′
(xit), j, t = 1, 2 . . . , ni, (10)

and Φji stands for the jth row of matrix Φi.

Proposition 3.1. αi ∈ Rni is the solution of (9). Then, with wi defined by (8),
(wi, bi) ∈ R2d ×R is a solution of (5).

Suppose the original feature mapping is φo : Rp → H, where H is a Hilbert space.
There exists a kernel ko : Rp ×Rp → R satisfying the conditions of Mercer Theorem
[2], and the Hilbert space H is induced by the given kernel ko. Suppose there exists a
low-dimensional feature approximation φ : Rp → R2d of the original feature mapping
φoi for agent i, where

koi (xij , xit) ≈ φ(xij)>φ(xit), j, t = 1, 2 . . . , ni. (11)

Construct a matrix Qi ∈ Rni×2d and Ki ∈ Rni×(2d+1) for agent i’s training data set by
defining the jth rows of Qi and Ki, respectively, as

Qji = φ(xij)>,K
j
i = φ

′
(xij)>, j = 1, 2, . . . ni, (12)

Therefore,

Φi := KiK
>
i ≈ Φoi = [φ

′
(xij)>φ

′
(xit)]j,t=1,2,...,ni

. (13)
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Φi is a positive semidefinite rank-(2d+ 1) kernel approximation to Φoi . Substitute Φi =
KiK

>
i in (9) and we get:

min
αi∈Rni

λ

2

M∑
i=1

α>i Ki(I2d+1 −Π2d+1)K>i αi +
M∑
i=1

1
ni

ni∑
j=1

C(yij ,K
j
iK
>
i αi, cij)

s. t. K>i αi = K>q αq, i ∈M, q ∈M. (14)

The variable substitution

γi = K>i αi (15)

leads to

min
γi∈R2d+1

λ

2

M∑
i=1

γ>i (I2d+1 −Π2d+1)γi +
M∑
i=1

1
ni

ni∑
j=1

C(yij ,K
j
i γi, cij)

s. t. γi = γq, i ∈M, q ∈M. (16)

According to (6) and (12), Kj>
i = φ(xij)

′ ∈ R2d+1 holds. The Problem (16) can
be regarded as a distributed nonlinear SVM optimization with φi or φ

′

i ∈ R2d+1, i =
1, 2, . . . ,M , whose solution can be obtained by algorithms discussed in Section 4. The
feature mapping approximation technique to find φ

′

i is given in Section 3.2.
The following result can be easily obtained.

Proposition 3.2. γi ∈ R2d+1 is the solution of (9). Then, with αi defined in (15) and
wi defined in (8), (wi, bi) ∈ R2d ×R is a solution of (5).

3.2. Feature Mapping Approximation of φi

In this section, a method to find matrix Qi satisfying (13) is discussed, which needs to
construct approximate mappings φ based on random projections.

Use feature mapping method to define Qi. Find a mapping φ : Rp → R2d that
satisfies

〈φo(xij), φo(xit)〉 = E[〈φ(xis), φ(xit)〉]. (17)

The feature mapping φi for agent i can be explicitly approximated by random projection
method in [1],φ(x) =

√
1
2d [cos(v>1 x), cos(v>2 x), . . . , cos(v>d x), sin(v>1 x), sin(v>2 x), . . . , sin(v>d x)]>

φ
′
(x) =

√
1
2d [cos(v>1 x), cos(v>2 x), . . . , cos(v>d x), sin(v>1 x), sin(v>2 x), . . . , sin(v>d x),

√
2d]>

(18)

where v1, v2 . . . , vd ∈ Rp are i.i.d. sampled from a distribution whose density function
is p(v). The kernels we use can determine the density function p(v). For the Gaussian
kernel for agent i,

koi (xis, xit) = exp
(
−σ||xis − xit||22

)
, (19)



Distributed classification on nonlinear vector support machines 601

we get

p(v) =
1

(4πσ)d/2
exp(−||v||

2
2

4σ
), (20)

where p(v) is from the Fourier transformation of koi .
According to [15], we can assume that sampling of each vij ∈ Rp for agent i takes

O(p) time. The feature mapping approximation method requires O(pd) operations for
each training point. However, for a fixed d, the feature mapping approximation method
gives lower prediction accuracy than the previous one. Next, we describe how to predict
a new data point without recovering the αi in (9), when we are given the solution γ in
(16). By the definitions (8), (13) and (15), we obtain

hi(φ(x)) = wTi φi(x) + bi = φ
′

i(x)T
N∑
j=1

αijφ
′

i(xij) = φ
′

i(x)TKT
i αi = φ

′

i(x)T γi. (21)

Therefore, the time complexity is O(nd).

4. DISTRIBUTED STOCHASTIC SUB-GRADIENT-BASED SVM ALGORITHM

In order to solve the nonlinear SVM formulation (16), we discuss a distributed stochas-
tic sub-gradient-based SVM Algorithm. In general, we transfer problem (16) into the
following optimization problem:

min
γ∈Ω

F (γ) =
M∑
i=1

Fi(γ) =
M∑
i=1

(fi(γ) +
1
ni

ni∑
j=1

gij(γ))

where fi(γ) =
λ

2
γ>(I2d+1 −Π2d+1)γ, gij(γ) = C(yij ,K

j
i γi, cij) (22)

where Ω = {||γ||2 6 R} is a bounded closed convex set in R2d+1.

Remark 4.1. [25] requires Fi to be strongly convex in all wi and bi, thus modifies Fi
to be strongly convex in all γi. We also follow this assumption in this paper. Therefore,
we have that for all γ ∈ Ω, where Ω = {||γ||2 6 R} is a bounded closed convex set,
||∇fi(γ)|| 6 Mf and ||∇gij(γ)|| 6 Mg . Still, for function gij(γ), we assume that there
exists a ι > 0 such that mingij(γ)=0 ||∇gij(x)|| > ι.

Note that each Fi is available to agent i only. Define ∇Fij(γ) as the sub-gradient of
fi(γ)+gij(λ). The distributed stochastic sub-gradient-based SVM algorithm (Algorithm
1) is proposed to solve problem (22). The property of Fi and Lemma 4.2 help us to
construct Algorithm 1 and analyze its convergence performance.

Lemma 4.2. (Yuan et al. [30]) Under Assumption 2.1, denote A(t : s) as the transition
matrix with A(t : s) = A(t) · · ·A(s) and A(t : t) = A(t). For all i, q and all t > s, we
have

|[A(t : s)]iq −
1
N
| 6 ς−2ηt−s+1.

where ς = 1− v
4M2 , and η = ς1/B .
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Algorithm 1 Distributed Stochastic Sub-gradient-based SVM Algorithm
Input: Xi = {(xi1, yi1), . . . , (xiN , yini)},Φ0

i ,positive integer T , Bounded convex set Ω,
1: Set γi(0) = 0,µ(t) = 1

t .
2: for t = 0, 1, . . . T do
3: for i = 1, 2, . . . ,M do
4: Choose κi(t) ∈ {1, 2 . . . ni} at random.
5: Kj

i = φ
′

i(xij) in (18).
6: zi(t) = γi(t)− µ(t)∇Fiκi(t)(γi(t)).
7: γ̄i(t+ 1) =

∑M
q=1 a

q
i (t)zq(t).

8: γi(t+ 1) = PΩ(γ̄i(t+ 1)).
9: end for

10: end for
Output: γi(T )

Denote

ρ(t) =
1
M

M∑
i=1

γi(t). (23)

and γ̃i(T ) = PΩ(γ̂i(T )) where γ̂i(T ) = 1
T

∑>
t=1 γi(t). We need to analyze the convergence

performance of Fi(·) at γ̃i(T ) for every i ∈ M and the convergence rate of Algorithm
1. Theorem 4.3 shows that the consensus rate among the agents in the time-varying
network is at an expected rate O(lnT/T ).

Theorem 4.3. Let the step-size sequence be µ(t) =
1
σt

, t = 1, 2, . . . , T . With Assump-
tion 2.1 and Remark 4.1, for all i ∈M and any iteration T > 3, we have

1
T

T∑
t=1

M∑
i=1

||γi(T )− ρ(t)|| 6 C1
lnT
T

where C1 = 2M
σ ( 3M

ς2(1−η) + 4)(Mf +Mg).

P r o o f . ρ(t) evolves as follows:

ρ(t) =
1
M

M∑
i=1

zi(t− 1) +
1
M

M∑
i=1

pi(t), (24)

where pi(t) = PΩ(γ̄i(t))−γ̄i(t). Summing up equation (24) over s = 1, 2, . . . , t, we obtain

ρ(t) = ρ(1)−
t−1∑
s=1

µ(s)
1
M

M∑
i=1

∇Fiκi(s)(γi(s)) +
t−1∑
s=1

1
M

M∑
i=1

pi(s+ 1). (25)
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Analogously, γi(t) evolves as follows:

γi(t) =
M∑
q=1

[A(t− 1 : 1)]iqγq(1)−
t−1∑
s=1

µ(s)
M∑
q=1

[A(t− 1 : s)]iq∇Fqκq(s)(γq(s))

+
t−2∑
s=1

M∑
q=1

[A(t− 1 : s+ 1)]iqpq(s+ 1) + pi(t). (26)

Combining (25) and (26), we get

||γi(t)− ρ(t)|| 6 ||
M∑
q=1

[A(t− 1 : 1)]iqγq(1)− ρ(1)||+ ||pi(t)||

+
t−1∑
s=1

µ(s)
M∑
q=1

|[A(t− 1 : s)]iq −
1
M
|||∇Fqκq

(γq(s))||

+
t−2∑
s=1

M∑
q=1

|[A(t− 1 : s+ 1)]iq −
1
M
|||pq(s+ 1)||+ || 1

M

M∑
i=1

pi(t)||. (27)

For all q ∈M, γq(1) = 0 and ρ(1) = 0 holds. Therefore,

||
M∑
q=1

[A(t− 1 : 1)]iqγq(1)− ρ(1)|| = 0. (28)

The second term ||pi(t)|| is bounded as follows:

||pi(t)|| 6 ||PΩ[γ̄i(t)]−
M∑
q=1

aqi (t− 1)γq(t− 1)||

+ µ(t− 1)
M∑
q=1

aqi (t− 1)||∇Fqκq(t−1)(γq(t− 1))||

6 2µ(t− 1)
M∑
q=1

aqi (t− 1)||. (29)

According to Remark 4.1, the following inequality holds:

||∇Fiκi(γi(t))|| 6 ||∇fiκi(γi(t))||+ λ||∇giκi(γi(t))|| 6Mf +Mg. (30)

Hence,

||pi(t)|| 6 2µ(t− 1)
M∑
q=1

aqi (t− 1)||∇Fqκq
(γq(t− 1))|| 6 2(Mf +Mg)µ(t− 1). (31)
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Therefore, according to (27) and Lemma 4.2, we have

||γi(t)− ρ(t)|| 6M(Mf +Mg)ς−2
t−1∑
s=1

µ(s)ηt−s + 2M(Mf + λMg)ς−2
t−2∑
s=1

µ(s)ηt−s−1

+ 4(Mf +Mg)µ(t− 1). (32)

Since ς < 1,

T∑
t=1

||γi(t)− ρ(t)|| 6 3M(Mf +Mg)ς−2
T∑
t=2

t−2∑
s=1

µ(s)ηt−s−1 + 4(Mf +Mg)
T∑
t=2

µ(t− 1).

(33)

Note that
∑T
t=2

∑t−2
s=1 µ(s)ηt−s−1 6 1

ς2(1−η)

∑T−1
t=1 µ(t), and, for all T > 3,

∑T
t=1 µ(t) 6

2
σ lnT . Thus, the conclusion follows. �

The following lemma analyzes the convergence performance of the Distributed Stochas-
tic Sub-gradient-based SVM Algorithm (Algorithm 1).

Lemma 4.4. With Assumptions 2.1 and Remark 4.1, for all i ∈ M and any iteration
t > 1, we have

F (γq(t))− F (γ) 6
1

2µ(t)
((1− σµ(k))

M∑
i=1

ri(t)−
M∑
i=1

ri(t+ 1))

+
M

2
(Mf +Mg)2µ(t) + (Mf +Mg)

M∑
i=1

||γi(t)− γq(t)||,

where ri(t) = ||γi(t)− γ||2, for all γ ∈ Ω and t > 1.

P r o o f . Clearly, the following inequality holds

ri(t+ 1) 6
M∑
q=1

aqi (t)||zq(t+ 1)− γ||2. (34)

Therefore,

||zq(t+ 1)− γ||2 = rq(t) + µ2(t)||∇Fqκq(t)(γq(t))||2 + 2µ(t)〈γ − γq(t),∇Fqκq(t)(γq(t))〉.
(35)

Substitute (35) into (34). Summing over all i ∈M gives

M∑
i=1

ri(t+ 1) 6
M∑
q=1

(rq(t) + µ2(t)||∇Fqκq(t)(γq(t))||2 + 2µ(t)〈γ − γq(t),∇Fqκq(t)(γq(t))〉).

(36)
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According to Remark 4.1, the term ||∇Fqκq(t)(γq(t))||2 satisfies the following inequality:

||∇Fqκq(t)(γq(t))||2 6 (Mf +Mg)2. (37)

Combining (36) and (37) yields

M∑
i=1

〈γi(t)− γ,∇Fiκi(t)(γi(t))〉 6
1

2µ(t)
(
M∑
i=1

ri(t)−
M∑
i=1

ri(t+ 1)) +
M

2
(Mf +Mg)2.

(38)

Due to Fi(γ) 6 Fi(γi(t)) + 〈γ − γi(t),∇Fiκi(t)(γi(t))〉 + σ
2 ||γi(t) − γ||

2), the following
inequality holds:

M∑
i=1

(Fi(γi(t))− Fi(γ) +
σ

2
||γi(t)− γ||2)

> F (γq(t))− F (γ) +
σ

2

M∑
i=1

ri(t)− (Mf +Mg)
M∑
i=1

||γi(t)− γq(t)||, (39)

Combining (39) with (38) yields the conclusion. �

Theorem 4.5 shows that the convergence of the Distributed Stochastic Sub-gradient-
based SVM Algorithm (Algorithm 1) is also at an expected rate O(lnT/T ).

Theorem 4.5. Let µ(t) =
1
σt

, t = 1, 2, . . . , T . Denote ξ∗ = arg minξ∈Ω f(ξ) and set

κ =
lnT
T

. With Assumption 2.1 and Remark 4.1, for all q ∈M and any iteration T > 3,
we have

F (γ̃q(T ))− F (γ∗) 6 C2
lnT
T

,

where C2 = M
σ ( 12M

ς2(1−η) + 17)(Mf +Mg)2.

P r o o f . Summing the inequality in Lemma 4.4 over t = 1, . . . , T , we have

T∑
t=1

F (γq(t))− F (γ) 6 IT + IIT + IIIT , (40)

where 
IT =

∑T
t=1

1
2µ(t) ((1− σµ(k))

∑M
i=1 ri(t)−

∑M
i=1 ri(t+ 1)),

IIT = M
2 (Mf +Mg)2

∑T
t=1 µ(t),

IIIT = (Mf +Mg)
∑T
t=1

∑M
i=1 ||γi(t)− γq(t)||.

(41)
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Since µ(t) = 1
σt , the terms IT , IIT and IIIT are bounded:

IT = − 1
2µ(T )

∑M
i=1 ri(T + 1) 6 0,

IIT = M
2 (Mf + λMg)2

∑T
t=1

1
σt 6

M
σ (Mf +Mg)2 lnT,

IIIT 6 2(Mf + λMg)C1 lnT 6 4M
σ ( 3M

ς2(1−η) + 4)(Mf +Mg)2 lnT.
(42)

Combining (42) with (40) yields

[F (γ̂q(T )))− F (γ∗)] 6
M

σ
(

12M
ς2(1− η)

+ 17)(Mf +Mg)2 lnT
T

, (43)

We complete the proof by F (γ̂q(T )) 6
∑>
t=1 F (γq(t)). �

Remark 4.6. If we choose µ(t) = 1
σ̄t with σ̄ 6 σ, the convergence rate of the Dis-

tributed Stochastic Sub-gradient-based SVM Algorithm (Algorithm 1) is also at an ex-
pected rate O( lnT

T ). In fact, although we consider a class of deterministic time-varying
multi-agent networks, the analysis idea can be simplified to some stochastic time-varying
networks, for example, random sleeping networks (referring to [29]).

5. SIMULATION

In this section, two simulations are given to evaluate the performance of the distributed
stochastic sub-gradient-based SVM algorithm on open data sets from UCI data set. Sim-
ulation 5.1 is on Iris data set to illustrate the feature mapping performance of Algorithm
1 on a two-agent network, the test accuracy rate is given for different choices of d and
iterations T . Simulation 5.2 is on DSPS data set, which reveals that Algorithm 1 can
get the same test accuracy rate as the centralized algorithms.

Simulation 5.1. We choose three different species of a well-known plant, Iris, (that
is, Iris-setosa, Iris-versicolor and Iris-virginica) for the classification. Each species data
set for the classification consists of 50 four-dimensional entities. Consider a two-agent
network; each agent can get all these 150 data points and the labels Yi.

Name φ
′
(xij) λ cij hi(x)

setosa vs versicolor φ(xij) in (18) 0.005 0.01 hi1(x) = w>i1x+ bi1
versicolor vs virginica φ(xij) = [xij , 1]> 7× 10−7 0.001 hi2(x) = w>i2x+ bi2

setosa vs virginica φ(xij) = [xij , 1]> 7× 10−7 0.001 hi3(x) = w>i3x+ bi3

Tab. 1. Iris data set and training parameters.

Transform the Iris multivariate classification into three SVM problems using one-
versus-one method [28]. Table 1 illustrates the three Iris SVM tasks and the different
training parameters we choose. Denote yikj as the output of hik . Take the super majority
voting principle to get the final classifier as follows:

Hi(x) =

{
yikj , if hik(x) > 0.5

∑3
k=1 hik(x);

reject, otherwise.
(44)

http://archive.ics.uci.edu/ml/index.html
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(b) The test accuracy rate for different dimension d.

Fig. 1. The test accuracy rate for Iris data set.

Figure 1(a) shows that the testing performance keeps improved as iterations T increases
for a given dimension d = 50. Figure 1(b) shows that the testing performance improves
as dimension d increases for T = 3000. In practice, we can give a large dimension d for
our algorithm to solve the SVM classification problem.

A1 A2

A3A4

Fig. 2. Topology of the 4-agent network.

Simulation 5.2. We choose USPS(binary codes training sets) as the training sets. Con-
sider a four-agent network. The topology of the network is connected as shown in Fig-
ure 2. Agent 1, 2, 3 all have access to 1823 training points and agent 4 has access to
1822 training points. We need to classify these 7291 training points into 10 different
groups through one-versus-rest method. Use USPS(binary codes validation set) (There

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps
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are total 2007 samples in the validation set.) to test the test accuracy performance of
Algorithm 1 for these 4 agents.
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Fig. 3. The test accuracy rate for different iterations T .

Figure 3 shows the test accuracy rate for different iterations T , with cij = 0, φ(xij) =
[xij , 1]> and λ = 7 × 10−7. The testing performance keeps improved as iterations T
increases. Figure 4 shows the test accuracy rate for different λ, with cij = 0, φ(xij) =
[xij , 1]> and T = 2500. The testing performance keeps improved as λ decreases. The
test accuracy rates of our algorithm are 0.8864, 0.8834, 0.8839 and 0.8839 which are the
same as centralized stochastic SVM algorithm.
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Fig. 4. The test accuracy rate for different λ.
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6. CONCLUSION

In this paper, we discussed the support vector machines formulation for binary clas-
sification and a distributed SVM algorithm, for the cases with decentralized training
data unavailable to all agents. We proposed a distributed stochastic sub-gradient-based
SVM problem, and solved the binary classification problem by making agents achieve
global consensus only through one-hop neighborhood communication with time-varying
topologies. Moreover, we analyzed the convergence rate and consensus rate of the given
algorithm. Finally, We did simulations using various real classification training sets, and
compared its performance to a centralized SVM training to demonstrate the effectiveness
our algorithm.
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