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Abstract. This paper studies the uniqueness of meromorphic functions

f
n

k∏

i=1

(f (i))ni and g
n

k∏

i=1

(g(i))ni

that share two values, where n, nk, k ∈ N, ni ∈ N ∪ {0}, i = 1, 2, . . . , k − 1. The results
significantly rectify, improve and generalize the results due to Cao and Zhang (2012).
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1. Introduction, definitions and results

In this paper by meromorphic functions we shall always mean meromorphic func-

tions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a ∈ C. We say

that f and g share a CM (counting multiplicities) provided that f −a and g−a have

the same zeros with the same multiplicities. Similarly, we say that f and g share

a IM (ignoring multiplicities) provided that f − a and g − a have the same zeros

ignoring multiplicities. In addition we say that f and g share∞ CM, if 1/f and 1/g

share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

We adopt the standard notation of value distribution theory (see [8]). We denote

by T (r) the maximum of T (r, f) and T (r, g). The symbol S(r) denotes any quantity

satisfying S(r) = o(T (r)) as r → ∞, outside of a possible exceptional set of finite

DOI: 10.21136/MB.2017.0021-15 357



linear measure. A meromorphic function a(z) is called a small function with respect

to f provided that T (r, a) = S(r, f).

Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z) be a small

function with respect to f(z) and g(z). We say that f(z) and g(z) share a(z) CM

if f(z)− a(z) and g(z)− a(z) have the same zeros with the same multiplicities, and

we say that f(z), g(z) share a(z) IM if we do not consider the multiplicities. For the

sake of simplicity we also use the notation

n∗

i :=

{

0 if ni = 0,

1 if ni 6= 0,

and

n∗∗

i =

{

0 if ni = 0,

ni if ni 6= 0.

A finite value z0 is called a fixed point of f if f(z0) = z0 or z0 is a zero of f(z)− z.

The following well known theorem in value distribution theory was posed by Hayman

and settled by several authors almost at the same time ([2], [4]).

Theorem A. Let f(z) be a transcendental meromorphic function, n ∈ N. Then

fnf ′ = 1 has infinitely many solutions.

To investigate the uniqueness result corresponding to Theorem A, both Fang and

Hua [5], Yang and Hua [16] obtained the following result.

Theorem B. Let f and g be two non-constant entire (meromorphic) functions,

n ∈ N such that n > 6 (n > 11). If fnf ′ and gng′ share 1 CM, then either

f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2, c ∈ C satisfy 4(c1c2)
n+1c2 = −1, or f ≡ tg

for a constant t such that tn+1 = 1.

Considering the uniqueness question of entire or meromorphic functions having

fixed points, Fang and Qiu [6] obtained the following theorem.

Theorem C. Let f and g be two non-constant meromorphic (entire) functions,

n ∈ N such that n > 11 (n > 6). If fnf ′ − z and gng′ − z share 0 CM, then either

f(z) = c1e
cz2

, g(z) = c2e
−cz2

, where c1, c2, c ∈ C satisfy 4(c1c2)
n+1c2 = −1, or

f ≡ tg for a constant t such that tn+1 = 1.

We recall the following result by Xu, Yi and Zhang [13]
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Theorem D. Let f be a transcendental meromorphic function, n ∈ N \ {1},
k ∈ N. Then fnf (k) takes every finite nonzero value infinitely many times or has

infinitely many fixed points.

Recently, Cao and Zhang [3] proved the following theorems.

Theorem E. Let f and g be two transcendental meromorphic functions, whose

zeros are of multiplicities at least k, where k ∈ N. Let n ∈ N be such that n >

max{2k − 1, k + 4/k + 4}. If fnf (k) and gng(k) share z CM, f and g share ∞ IM,

then one of the following two conclusions holds:

(i) fnf (k) ≡ gng(k);

(ii) f(z) = c1e
cz2

, g(z) = c2e
−cz2

, where c1, c2, c ∈ C such that 4(c1c2)
n+1c2 = −1.

Theorem F. Let f and g be two non-constant meromorphic functions, whose

zeros are of multiplicities at least k + 1, where k ∈ N is such that k 6 5. Let n ∈ N

be such that n > 10. If fnf (k) and gng(k) share 1 CM, f (k) and g(k) share 0 CM, f

and g share ∞ IM, then one of the following two conclusions holds:

(i) f ≡ tg, where t is a constant such that tn+1 = 1;

(ii) f(z) = c3e
dz, g(z) = c4e

−dz, where c3, c4, d ∈ C are such that (−1)k(c3c4)
n+1 ×

d2k = 1.

R em a r k 1.1. Theorems E (Theorem 1.2 in [3]) and F (Theorem 1.3 in [3]) are

new and seem fine. However, in the statements of both the Theorems E and F there

are some contradiction. It is assumed that f and g have zeros of multiplicities at

least k in Theorem E and k + 1 in Theorem F. But further authors concluded that

“f(z) = c1e
cz2

, g(z) = c2e
−cz2

, where c1, c2, c ∈ C are such that 4(c1c2)
n+1c2 = −1”

in Theorem E and “f(z) = c3e
dz, g(z) = c4e

−dz, where c3, c4, d ∈ C are such that

(−1)k(c3c4)
n+1d2k = 1” in Theorem F. Here we see that f and g have no zeros, so

their multiplicities are equal to k = 0. Furthermore, it is assumed that k ∈ N, but

in both Theorems E and F the case k = 0 is also considered, which is very strange.

The above discussion is sufficient enough to make oneself inquisitive to investigate

the accurate forms of Theorems E and F. Also it is quite natural to ask the following

questions.

Q u e s t i o n 1.2. Can one remove the condition “zeros of f and g are of multi-

plicities at least k(k + 1), where k ∈ N” in Theorem E (Theorem F) keeping all the

conclusions intact?

Q u e s t i o n 1.3. Does Theorem F hold for k > 6?

We now explain the notation of weighted sharing as introduced in [10].
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Definition 1.1 ([10]). Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞} we denote by
Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is counted

m times if m 6 k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g

share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.

Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 6 p < k. Also

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞),

respectively.

2. Main results

In this paper, taking the possible answers of the above questions into background

we obtain the following results which significantly rectify, improve and generalize

Theorems E and F. Throughout this paper we use the following notation:

s =

k
∑

i=1

n∗∗

i , t =

k
∑

i=1

n∗

i , m =

k
∑

i=1

in∗

i and m1 =

k
∑

i=1

in∗∗

i ,

where ni ∈ N ∪ {0}, i = 1, 2, . . . , k − 1 and nk, k ∈ N. Also it is clear that m1 6 sm.

In this paper we always use p(z) to denote a nonzero polynomial such that either

deg(p) 6 n+ s− 1 or the zeros of p(z) are of multiplicities at most n− 1, i.e.,

(2.1) p(z) = an(z − z1)
l1(z − z2)

l2 . . . (z − zt)
lt ,

where an ∈ C \ {0}, zi ∈ C, i = 1, 2, . . . , t are distinct and l1, l2, . . . , lt ∈ N. Here we

see that either
t
∑

i=1

li 6 n+ s− 1 or li 6 n− 1 for all i = 1, 2, . . . , t.

Theorem 2.1. Let f , g be two transcendental meromorphic functions, let

n, nk, k ∈ N, ni ∈ N ∪ {0}, i = 1, 2, . . . , k − 1 be such that n > 2s + m + 2t + 2

and let p(z) be defined as in (2.1). Let fn
k
∏

i=1

(f (i))ni − p(z) and gn
k
∏

i=1

(g(i))ni − p(z)

share (0, k1), where k1 = (3 +m1 − s)/(n+ s+m1 − 2m− 1)+3, and f and g share

∞ IM.

Suppose p(z) is not a constant. Then

(1) when each li is a multiple of n1, i = 1, 2, . . . , t, where li is defined as in (2.1),

then one of the following two conclusions holds:

(1.1) fn
k
∏

i=1

(f (i))ni ≡ gn
k
∏

i=1

(g(i))ni . In particular, when f , g share 0 CM and

f(z)/g(z) 6= eaz+b, where a, b ∈ C (a 6= 0), then f ≡ tg, where t is a

constant such that tn+s = 1;
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(1.2) f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z), whereQ(z) =
∫ z

0
p1/n1(t) dt, c1, c2, c ∈ C

are such that c2n1(c1c2)
n+n1 = (−1)n1 ,

(2) when at least one of li is not a multiple of n1, i = 1, 2, . . . , t, then

fn
k
∏

i=1

(f (i))ni ≡ gn
k
∏

i=1

(g(i))ni .

In particular, when f , g share 0 CM and f(z)/g(z) 6= eaz+b, where a, b ∈ C

(a 6= 0), then f ≡ tg, where t is a constant such that tn+s = 1.

Suppose p(z) = b ∈ C \ {0}. Then one of the following two conclusions holds:

(i) fn
k
∏

i=1

(f (i))ni ≡ gn
k
∏

i=1

(g(i))ni . In particular, when f , g share 0 CM and

f(z)/g(z) 6= eaz+b, where a, b ∈ C (a 6= 0), then f ≡ tg, where t is a constant

such that tn+s = 1;

(ii) f(z) = c3e
cz, g(z) = c4e

−cz, where c3, c4, c ∈ C are such that (−1)m1(c3c4)
n+s ×

c2m1 = b2.

R em a r k 2.1. Instead of f and g share 0 CM, one can assume that f (k) and g(k)

share 0 CM in Theorem 2.1 when ni = 0, i = 1, 2, . . . , k − 1.

We now explain some definitions and notation which are used in the paper.

Definition 2.1 ([12]). Let p ∈ N and a ∈ C ∪ {∞}.
(i)N(r, a; f |> p) (N(r, a; f |> p)) denotes the counting function (reduced counting

function) of those a-points of f whose multiplicities are not less than p.

(ii) N(r, a; f |6 p) (N(r, a; f |6 p)) denotes the counting function (reduced count-

ing function) of those a-points of f whose multiplicities are not greater than p.

Definition 2.2. We denote by N(r, a; f |= k) the reduced counting function of

those a-points of f whose multiplicities are exactly k, where k ∈ N.

Definition 2.3 ([19]). For a ∈ C ∪ {∞} and p ∈ N we denote by Np(r, a; f) the

sum N(r, a; f)+N(r, a; f |> 2)+. . .+N(r, a; f |> p). Clearly N1(r, a; f) = N(r, a; f).

Definition 2.4 ([1]). Let f and g be two non-constant meromorphic functions

such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p,

a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting function

of those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting function of

those 1-points of f and g where p = q = 1 and by N
(2

E (r, 1; f) the counting function

of those 1-points of f and g where p = q > 2, each point in these counting functions

being counted only once. In the same way we can define NL(r, 1; g), N
1)
E (r, 1; g),

N
(2

E (r, 1; g).
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Definition 2.5 ([10]). Let f , g share a value a IM. We denote by N∗(r, a; f, g)

the reduced counting function of those a-points of f whose multiplicities differ from

the multiplicities of the corresponding a-points of g. Clearly

N∗(r, a; f, g) ≡ N∗(r, a; g, f) = NL(r, a; f) +NL(r, a; g).

3. Lemmas

Let F , G be two non-constant meromorphic functions. Henceforth we shall denote

by H and V the functions

(3.1) H =
(F ′′

F ′
− 2F ′

F − 1

)

−
(G′′

G′
− 2G′

G− 1

)

and

(3.2) V =
( F ′

F − 1
− F ′

F

)

−
( G′

G− 1
− G′

G

)

=
F ′

F (F − 1)
− G′

G(G− 1)
.

Lemma 3.1 ([20]). Let f be a non-constant meromorphic function and p, k ∈ N,

then

Np(r, 0; f
(k)) 6 Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 3.2 ([11]). If N(r, 0; f (k) |f 6= 0) denotes the counting function of those

zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according

to its multiplicity, then

N(r, 0; f (k) |f 6= 0) 6 kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |> k) + S(r, f).

Lemma 3.3 ([8]). Suppose that f is a non-constant meromorphic function, k ∈
N \ {1}. If

N(r,∞; f) +N(r, 0; f) +N(r, 0; f (k)) = S
(

r,
f ′

f

)

,

then f(z) = eaz+b, where a ∈ C \ {0}, b ∈ C.

Lemma 3.4 ([15]). Let f be a non-constant meromorphic function and P (f) =

a0 + a1f + a2f
2 + . . . + anf

n, where a0, a1, . . . , an−1 ∈ C and an ∈ C \ {0}. Then
T (r, P (f)) = nT (r, f) +O(1).
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Lemma 3.5. Let f be a transcendental meromorphic function and n, nk, k ∈ N

and ni ∈ N∪{0}, i = 1, 2, . . . , k− 1. Then ϕ = fn(f ′)n1 . . . (f (k))nk is non-constant.

P r o o f. Suppose ϕ is constant. Then N(r, 0; f) = 0 and N(r,∞; f) = 0. Also

we see that
( 1

f

)n+s

≡ (f ′)n1 . . . (f (k))nk

f s

1

ϕ
.

Then by Lemma 3.4 we have

(n+ s)T (r, f) 6

k
∑

i=1

n∗

iT
(

r,
f (i)

f

)

+ T
(

r,
1

ϕ

)

+O(1)

6

k
∑

i=1

n∗

iN
(

r,∞;
f (i)

f

)

+ S(r, f)

6

k
∑

i=1

n∗

i (Ni(r, 0; f) + iN(r,∞; f)) + S(r, f) = S(r, f),

which is impossible. Hence ϕ is non-constant. This completes the proof. �

Lemma 3.6 ([17]). Let fj, j = 1, 2, 3 be meromorphic and f1 non-constant.

Suppose that
3

∑

j=1

fj ≡ 1

and
3

∑

j=1

N(r, 0; fj) + 2
3

∑

j=1

N(r,∞; fj) < (λ+ o(1))T (r),

as r → ∞, r ∈ I, λ < 1 and T (r) = max
16j63

T (r, fj). Then f2 ≡ 1 or f3 ≡ 1.

Lemma 3.7 ([17], Theorem 1.24). Let f be a non-constant meromorphic function

and let k ∈ N. Suppose that f (k) 6≡ 0, then

N(r, 0; f (k)) 6 N(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 3.8 ([7]). Let f(z) be a non-constant entire function and let k ∈ N \ {1}.
If f(z)f (k)(z) 6= 0, then f(z) = eaz+b, where a ∈ C \ {0}, b ∈ C.

Lemma 3.9 ([8], [18]). Let f be a non-constant meromorphic function and let

a1(z), a2(z) be two meromorphic functions such that T (r, ai) = S(r, f), i = 1, 2.

Then

T (r, f) 6 N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).
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Lemma 3.10. Let f , g be two non-constant meromorphic functions and F =

fn
k
∏

i=1

(f (i))ni , G = gn
k
∏

i=1

(g(i))ni , where n, nk, k ∈ N, ni ∈ N∪{0}, i = 1, 2, . . . , k−1.

Suppose H 6≡ 0. If F , G share (1, k1), f , g share (∞, p), where k1 ∈ N ∪ {0} ∪ {∞},
p ∈ N ∪ {0} ∪ {∞}, then

((n+ s)(p+ 1) +m1 − 1)N(r,∞; f |> p+ 1)

6 N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r).

P r o o f. Suppose ∞ is an e.v.P of both f and g, then the lemma follows imme-

diately.

Next suppose∞ is not an e.v.P of f and g. We assert that V 6≡ 0. If not, suppose

V ≡ 0. Then by integration we obtain

1− 1

F
≡ A

(

1− 1

G

)

.

It means that if z0 is a pole of f then it is a pole of g. Hence from the definition

of F and G we have 1/F (z0) = 0 and 1/G(z0) = 0. So A = 1 and hence F ≡ G.

Consequently H ≡ 0, which contradicts our assumption. Hence V 6≡ 0. Let z0 be

a pole of f with multiplicity q and a pole of g with multiplicity r. If both q and r

are 6 p, then q = r but when both q and r are > p + 1, they may or may not be

equal. Clearly z0 is a pole of F with multiplicity (n+ s)q+m1 and a pole of G with

multiplicity (n + s)r + m1. We note that there is no pole of F and G of order t1
satisfying (n + s)p +m1 + 1 6 t1 6 (n + s)(p + 1) + m1 − 1. Since f and g share

(∞, p), from the definition of V it is clear that z0 is a zero of V with multiplicity at

least (n+ s)(p+ 1) +m1 − 1.

So from the definition of V we have

((n+ s)(p+ 1) +m1 − 1)N(r,∞; f |> p+ 1)

6 N(r, 0;V ) 6 N(r,∞;V ) + S(r, f) + S(r, g)

6 N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r).

This completes the proof. �

Lemma 3.11. Let f , g be two non-constant meromorphic functions, n, nk, k ∈ N,

ni ∈ N∪{0}, i = 1, 2, . . . , k− 1. Suppose H 6≡ 0. If F , G share (1, k1) and f , g share

(∞, 0), where F and G are given as in Lemma 3.10, k1 ∈ N ∪ {0} ∪ {∞}, then

N(r,∞; f) 6
2(t+ 1)

n+ s+m1 − 2m− 1
T (r)

+
1

n+ s+m1 − 2m− 1
N∗(r, 1;F,G) + S(r).
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P r o o f. Using Lemmas 3.2 and 3.10 for p = 0 we get

(n+ s+m1 − 1)N(r,∞; f)

6 N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 N(r, 0; f) +

k
∑

i=1

n∗

iN(r, 0; f (i) |f 6= 0) +N(r, 0; g)

+

k
∑

i=1

n∗

iN(r, 0; g(i) |g 6= 0) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 N(r, 0; f) +mN(r,∞; f) + tN(r, 0; f) +N(r, 0; g) +mN(r,∞; g)

+ tN(r, 0; g) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 2(t+ 1)T (r) + 2mN(r,∞; f) +N∗(r, 1;F,G) + S(r).

Hence the lemma follows. �

Lemma 3.12. Let f be a non-constant meromorphic function, F = fn
k
∏

i=1

(f (i))ni ,

where n, nk, k ∈ N and ni ∈ N ∪ {0}, i = 1, 2, . . . , k − 1 are such that n > s. Then

(n− s)T (r, f) 6 T (r, F )− sN(r,∞; f)−N

(

r, 0;

k
∏

i=1

(f (i))ni

)

+ S(r, f).

P r o o f. Note that

N(r,∞;F ) = N(r,∞; fn) +N

(

r,∞;

k
∏

i=1

(f (i))ni

)

= N(r,∞; fn) + sN(r,∞; f) +m1N(r,∞; f) + S(r, f).

That is,

N(r,∞; fn) = N(r,∞;F )− sN(r,∞; f)−m1N(r,∞; f) + S(r, f).

Also

m(r, fn) = m

(

r,
F

∏k
i=1(f

(i))ni

)

6 m(r, F ) +m

(

r,
1

∏k
i=1(f

(i))ni

)

+ S(r, f)

= m(r, F ) + T

(

r,

k
∏

i=1

(f (k))nk

)

−N

(

r, 0;

k
∏

i=1

(f (k))ni

)

+ S(r, f)
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= m(r, F ) +N

(

r,∞;
k
∏

i=1

(f (i))ni

)

+m

(

r,
k
∏

i=1

(f (i))ni

)

−N

(

r, 0;
k
∏

i=1

(f (i))ni

)

+ S(r, f)

6 m(r, F ) + sN(r,∞; f) +m1N(r,∞; f) +m

(

r,
1

f s

k
∏

i=1

(f (i))ni

)

+m(r, f s)−N

(

r, 0;

k
∏

i=1

(f (i))ni

)

+ S(r, f)

= m(r, F ) + sT (r, f) +m1N(r,∞; f)−N

(

r, 0;

k
∏

i=1

(f (i))ni

)

+ S(r, f).

Now

nT (r, f) = N(r,∞; fn) +m(r, fn)

6 T (r, F ) + sT (r, f)− sN(r,∞; f)−N

(

r, 0;

k
∏

i=1

(f (i))ni

)

+ S(r, f),

i.e.,

(n− s)T (r, f) 6 T (r, F )− sN(r,∞; f)−N

(

r, 0;

k
∏

i=1

(f (i))ni

)

+ S(r, f).

This completes the proof. �

Lemma 3.13. Let f be a transcendental meromorphic function, n, nk, k ∈ N,

ni ∈ N ∪ {0}, i = 1, 2, . . . , k − 1 and let a(z) (6≡ 0,∞) be a small function of f . If

n > s+ 1, then fn(f ′)n1 . . . (f (k))nk − a(z) has infinitely many zeros.

P r o o f. Let F = fn(f ′)n1 . . . (f (k))nk . Now in view of Lemma 3.12 and the

second theorem for small functions (see [14]) we get

(n− s)T (r, f) 6 T (r, F )− sN(r,∞; f)−N(r, 0; (f ′)n1 . . . (f (k))nk) + S(r, f)

6 N(r, 0;F ) +N(r,∞;F ) +N(r, a(z);F )− sN(r,∞; f)

−N(r, 0; (f ′)n1 . . . (f (k))nk) + (ε+ o(1))T (r, f)

6 N(r, 0; f) +N(r, a(z);F ) + (ε+ o(1))T (r, f)

6 T (r, f) +N(r, a(z);F ) + (ε+ o(1))T (r, f)

for all ε > 0. Take ε < 1. Since n > s + 1, from the above one can easily see that

F − a(z) has infinitely many zeros. This completes the proof. �
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Lemma 3.14 ([9]). Let f and g be two non-constant meromorphic functions.

Suppose that f and g share 0 and∞ CM, f (k) and g(k) share 0 CM for k = 1, 2, . . . , 6.

Then f and g satisfy one of the following conditions:

(i) f ≡ tg, where t (6= 0) is a constant,

(ii) f(z) = eaz+b, g(z) = ecz+d, where a, b, c and d are constants such that ac 6= 0,

(iii) f(z) = a/(1− beα(z)), g(z) = a/(e−α(z) − b), where a, b are nonzero constants

and α(z) is a non-constant entire function,

(iv) f(z) = a(1−becz), g(z) = d(e−cz−b), where a, b, c and d are nonzero constants.

Lemma 3.15. Let f and g be two transcendental meromorphic functions such

that f(z)/g(z) 6= eaz+b, where a, b ∈ C (a 6= 0) and let n, nk, k ∈ N, ni ∈ N ∪ {0},
i = 1, 2, . . . , k − 1 be such that n > 2. Suppose f and g share 0 CM and ∞ IM. If

fn
k
∏

i=1

(f (i))ni ≡ gn
k
∏

i=1

(g(i))ni , then f ≡ tg, where t is a constant such that tn+s = 1.

P r o o f. Suppose

(3.3) fn
k
∏

i=1

(f (i))ni ≡ gn
k
∏

i=1

(g(i))ni ,

i.e.,

(3.4)
fn

gn
≡

k
∏

i=1

(g(i))ni

/ k
∏

i=1

(f (i))ni .

Since f and g share ∞ IM, it follows from (3.3) that f and g share ∞ CM and

so f (i) and g(i) share ∞ CM, where i = 1, 2, . . . , k. Let h1 = f/g and h2 =
k
∏

i=1

(f (i))ni

/ k
∏

i=1

(g(i))ni . Since f and g share 0 CM, it follows that h1 6= 0,∞ and

h2 6= 0,∞. From (3.4) we see that

(3.5) hn
1h2 ≡ 1.

First we suppose h1 is a non-constant entire function. Clearly h2 is also a non-con-

stant entire function. Let F1 = hn
1 and G1 = h. From (3.5) we get

(3.6) F1G1 ≡ 1.

Clearly F1 6≡ dG1, where d is a nonzero constant, otherwise F1 would be a constant

and so h1 would be a constant. Since F1 6= 0,∞ and G1 6= 0,∞ there exist two non-
constant entire functions α and β such that F1 = eα and G1 = eβ. Now from (3.6)
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we see that α+ β = C, where C ∈ C. Therefore α′ = −β′. Note that F ′

1 = α′eα and

G′

1 = β′eβ . This shows that F ′

1 and G
′

1 share 0 CM. Note that F1 6= 0,∞, G1 6= 0,∞
and F1 6≡ dG1, where d is a nonzero constant. Now in view of Lemma 3.14 we have

to consider the case

F1(z) = c1e
az and G1(z) = c2e

−az,

where a, c1, c2 are nonzero constants such that c1c2 = 1. Since (f(z)/g(z))n = c1e
az,

it follows that

(3.7)
f(z)

g(z)
= t1e

a/nz = t1e
cz,

where c, t1 are nonzero constants such that t
n
1 = c1 and c = a/n.

Now from (3.7) we arrive at a contradiction. Hence h1 is constant. Then from (3.3)

we get hn+s
1 = 1. Therefore we have f ≡ tg, where t is a constant such that tn+s = 1.

This completes the proof. �

R em a r k 3.1. Instead of f and g share 0 CM, one can assume that f (k) and g(k)

share 0 CM in Lemma 3.15 when ni = 0, i = 1, 2, . . . , k − 1.

Lemma 3.16. Let f , g be two transcendental meromorphic functions and

let fn
k
∏

i=1

(f (i))ni − p(z) and gn
k
∏

i=1

(g(i))ni − p(z) share 0 CM and f , g share

∞ IM, where p(z) is defined as in (2.1) and n, nk ∈ N, ni ∈ N ∪ {0}. Suppose
fn(f ′)n1 . . . (f (k))nkgn(g′)n1 . . . (g(k))nk ≡ p2.

(i) If p(z) is not a constant and li is a multiple of n1 for all i = 1, 2, . . . , t, where li

is defined as in (2.1), then f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z), where Q(z) =
∫ z

0
p1/n1(t) dt, c1, c2, c ∈ C are such that c2n1(c1c2)

n+n1 = (−1)n1 ,

(ii) if p(z) = b ∈ C \ {0}, then f(z) = c3e
dz, g(z) = c4e

−dz, where c3, c4, d ∈ C are

such that (−1)m1(c3c4)
n+sd2m1 = b2 .

P r o o f. Suppose

(3.8) fn(f ′)n1 . . . (f (k))nkgn(g′)n1 . . . (g(k))nk ≡ p2.

Since f and g share ∞ IM, from (3.8) one can easily see that f and g are transcen-

dental entire functions. We now consider the following cases.

Case 1. Let deg(p(z)) = l ∈ N. From (3.8) it follows that N(r, 0; f) = O(log r)

and N(r, 0; g) = O(log r). Let

(3.9) F1 =
fn(f ′)n1 . . . (f (k))nk

p
and G1 =

gn(g′)n1 . . . (g(k))nk

p
.
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From (3.8) we get

(3.10) F1G1 ≡ 1.

By Lemma 3.5, we have F1 6≡ cG1, where c ∈ C \ {0}. Let

(3.11) Φ =
fn(f ′)n1 . . . (f (k))nk − p

gn(g′)n1 . . . (g(k))nk − p
.

We deduce from (3.11) that

(3.12) Φ ≡ eβ ,

where β is an entire function. Let f1 = F1, f2 = −eβG1 and f3 = eβ. Here f1 is

transcendental. Now from (3.12) we have f1 + f2 + f3 ≡ 1. Hence by Lemma 3.7 we

get

3
∑

j=1

N(r, 0; fj) + 2
3

∑

j=1

N(r,∞; fj) 6 N(r, 0;F1) +N(r, 0; eβG1) +O(log r)

6 (λ+ o(1))T (r),

as r → ∞, r ∈ I, λ < 1 and T (r) = max
16j63

T (r, fj). So by Lemma 3.6 we get

either eβG1 ≡ −1 or eβ ≡ 1. But here the only possibility is that eβG1 ≡ −1, i.e.,

gn(g′)n1 . . . (g(k))nk ≡ −e−βp(z) and so from (3.8) we obtain F1 ≡ eγ1G1, i.e.,

fn(f ′)n1 . . . (f (k))nk ≡ eγ1gn(g′)n1 . . . (g(k))nk ,

where γ1 is a non-constant entire function. Then from (3.8) we get

(3.13) fn(f ′)n1 . . . (f (k))nk ≡ ceγ1/2p(z), gn(g′)n1 . . . (g(k))nk ≡ ce−γ1/2p(z),

where c ± 1. This shows that fn(f ′)n1 . . . (f (k))nk and gn(g′)n1 . . . (g(k))nk share

0 CM. Since N(r, 0; f) = O(log r) and N(r, 0; g) = O(log r), so we can take

(3.14) f(z) = h1(z)e
α(z), g(z) = h2(z)e

β(z),

where h1 and h2 are nonzero polynomials and α, β are two non-constant entire func-

tions. We deduce from (3.8) and (3.14) that either both α and β are transcendental

entire functions or both α and β are polynomials. We now consider the following

cases.
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Subcase 1.1. Let k ∈ N \ {1}. First we suppose both α and β are transcendental

entire functions. Let α1 = α′ + h′

1/h1 and β1 = β′ + h′

2/h2. Clearly both α1 and β1

are transcendental. Note that

S(r, α1) = S
(

r,
f ′

f

)

, S(r, β1) = S
(

r,
g′

g

)

.

Moreover, we see that

N(r, 0; fn(f ′)n1 . . . (f (k))nk) 6 N(r, 0; p2) = O(log r),

N(r, 0; gn(g′)n1 . . . (g(k))nk) 6 N(r, 0; p2) = O(log r).

From these inequalities and using (3.14) we have

(3.15) N(r,∞; f) +N(r, 0; f) +N(r, 0; f (k)) = S(r, α1) = S
(

r,
f ′

f

)

and

(3.16) N(r,∞; g) +N(r, 0; g) +N(r, 0; g(k)) = S(r, β1) = S
(

r,
g′

g

)

.

Then from (3.15), (3.16) and Lemma 3.3 we have

(3.17) f(z) = eaz+b, g(z) = ecz+d,

where a, c ∈ C \ {0}, b, d ∈ C. But these types of f and g do not agree with the

relation (3.8). Next we suppose both α and β are polynomials. Also from (3.8) we

get α + β ≡ C i.e., α′ ≡ −β′. Therefore deg(α) = deg(β). We deduce from (3.14)

that

fn(f ′)n1 . . . (f (k))nk ≡ Ahn
1

k
∏

i=1

(h1(α
′)i + Pi−1(α

′, h′

1))
nie(n+s)α(3.18)

≡ p(z)e(n+s)α,

and

gn(g′)n1 . . . (g(k))nk ≡ Bhn
2

k
∏

i=1

(h2(β
′)i +Qi−1(β

′, h′

2))
nie(n+s)β(3.19)

≡ p(z)e(n+s)β ,

where A,B ∈ C\{0}, and Pi−1(α
′, h′

1) andQi−1(β
′, h′

2), i = 1, 2, . . . , k are differential

polynomials in α′, h′

1 and β′, h′

2, respectively.
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Since p(z) is a polynomial, from (3.18) and (3.19) we conclude that both h1, h2 ∈
C \ {0}. So we can rewrite f and g as

(3.20) f = eγ2 , g = eδ2 ,

where γ2 + δ2 ≡ C ∈ C \ {0} and deg(γ2) = deg(δ2). Clearly γ
′

2 ≡ −δ′2. If deg(γ2) =

deg(δ2) = 1, we then again get a contradiction from (3.8). Next we suppose deg(γ2) =

deg(δ2) > 2. We deduce from (3.20) that

f ′ = γ′

2e
γ2 ,

f ′′ = ((γ′

2)
2 + γ′′

2 )e
γ2 ,

f ′′′ = ((γ′

2)
3 + 3γ′

2γ
′′

2 + γ′′′

2 )eγ2 ,

f (iv) = ((γ′

2)
4 + 6(γ′

2)
2γ′′

2 + 3(γ′′

2 )
2 + 4γ′

2γ
′′′

2 + γ
(iv)
2 )eγ2 ,

f (v) = ((γ′

2)
5 + 10(γ′

2)
3γ′′

2 + 15γ′

2(γ
′′

2 )
2 + 10(γ′

2)
2γ′′′

2 + 10γ′′

2 γ
′′′

2 + 5γ′

2γ
(iv)
2 + γ

(v)
2 )eγ2 ,

...

f (k) =
(

(γ′

2)
k +

k(k − 1)

2
(γ′

2)
k−2γ′′

2 + Pk−2(γ
′

2)
)

eγ2 .

Similarly we get

g(k) =
(

(δ′2)
k +

k(k − 1)

2
(δ′2)

k−2δ′′2 + Pk−2(δ
′

2)
)

eδ2

=
(

(−1)k(γ′

2)
k +

k(k − 1)

2
(−1)k−1(γ′

2)
k−2γ′′

2 + Pk−2(−γ′

2)
)

eδ2 ,

where Pk−2(γ
′

2) is a differential polynomial in γ′

2. Since deg(γ2) > 2, we ob-

serve that deg((γ′

2)
k) > k deg(γ′

2) and so (γ′

2)
k−2γ′′

2 is either a nonzero constant

or deg((γ′

2)
k−2γ′′

2 ) > (k − 1) deg(γ′

2)− 1. Also we see that

deg((γ′

2)
k) > deg((γ′

2)
k−2γ′′

2 ) > deg(Pk−2(γ
′

2)) (or deg(Pk−2(−γ′

2))).

Since f and g have no zeros, from (3.13) it follows that (f ′)n1 . . . (f (k))nk and

(g′)n1 . . . (g(k))nk share 0 CM and so

((γ2)
′)n1

k
∏

i=2

(

(γ′

2)
i +

i(i− 1)

2
(γ′

2)
i−2γ′′

2 + Pi−2(γ
′

2)
)ni

≡ d(−1)n1((γ2)
′)n1(3.21)

×
k
∏

i=2

(

(−1)i(γ′

2)
i +

i(i− 1)

2
(−1)i−1(γ′

2)
i−2γ′′

2 + Pi−2(−γ′

2)
)ni

,

where d ∈ C \ {0}.

371



Now from (3.21) we arrive at a contradiction since k > 2.

Subcase 1.2. Let k = 1. Suppose that α and β are transcendental. Then from (3.8)

and (3.14) we get

(3.22) (h1h2)
n(h1α

′ + h′

1)
n1(h2β

′ + h′

2)
n1e(n+n1)(α+β) ≡ p2(z).

Let α+ β = γ and s1 = n+ n1. From (3.22) we know that γ is not a constant since

in that case we get a contradiction. Now from (3.22) we get

(3.23) (h1h2)
n(h1α

′ + h′

1)
n1(h2(γ

′ − α′) + h′

2)
n1es1γ ≡ p2(z).

We have T (r, γ′) = m(r, s1γ
′) + O(1) = m(r, (es1γ)′/es1γ) = S(r, es1γ). Thus from

(3.23) we get

T (r, es1γ) 6 T
(

r,
p2

(h1h2)n(h1α′ + h′

1)
n1(h2(γ′ − α′) + h′

2)
n1

)

+O(1)

6 n1T (r, α
′) + n1T (r, γ

′ − α′) +O(log r) +O(1)

6 2n1T (r, α
′) + S(r, α′) + S(r, es1γ),

which implies that T (r, es1γ) = O(T (r, α′)) and so S(r, es1γ) can be replaced by

S(r, α′). Thus we get T (r, γ′) = S(r, α′) and so γ′ is a small function with respect

to α′. In view of (3.23) and by Lemma 3.9 we get

T (r, α′) 6 N(r,∞;α′) +N(r, 0;h1α
′ + h′

1) +N(r, 0;h2(γ
′ − α′) + h′

2) + S(r, α′)

6 O(log r) + S(r, α′),

which shows that α′ is a polynomial and so α is a polynomial. Similarly we can

prove that β is also a polynomial. This contradicts the fact that α and β are tran-

scendental. Next suppose without loss of generality that α is a polynomial and β is

a transcendental entire function. Then γ is transcendental. So in view of (3.23) we

obtain

s1T (r, e
γ) 6 T

(

r,
p2

(h1h2)n(h1α′ + h′

1)
n1(h2(γ′ − α′) + h′

2)
n1

)

+O(1)

6 n1T (r, α
′) + n1T (r, γ

′ − α′) + S(r, eγ)

6 n1T (r, γ
′) + S(r, eγ) = S(r, eγ),

which leads to a contradiction. Thus both α and β are polynomials. From (3.8) we

conclude that α(z) + β(z) ≡ C ∈ C and so α′(z) + β′(z) ≡ 0. We deduce from (3.8)

that

(3.24) fn(f ′)n1 ≡ hn
1 (h1α

′ + h′

1)
n1e(n+n1)α ≡ p(z)e(n+n1)α,
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and

(3.25) gn(g′)n1 ≡ hn
2 (h2β

′ + h′

2)
n1e(n+n1)β ≡ p(z)e(n+n1)β .

Since p(z) is a polynomial, from (3.24) and (3.25) we conclude that both h1 and h2

are nonzero constant. So we can rewrite f and g as

(3.26) f = eγ3 , g = eδ3 .

Now from (3.8) we get

(3.27) (γ′

3)
n1(δ′3)

n1e(n+n1)(γ3+δ3) ≡ p2.

From (3.27) we can conclude that γ3(z) + δ3(z) ≡ C ∈ C and so γ′

3(z) + δ′3(z) ≡ 0.

Thus from (3.27) we get e(n+n1)C(γ′

3)
n1(δ′3)

n1 ≡ p2(z), i.e.,

(3.28) (−1)n1e(n+n1)C(γ′

3)
2n1 ≡ p2(z).

We now consider the following two subcases.

Subcase 1.2.1. Suppose at least one of li, i = 1, 2, . . . , t is not a multiple of n1.

As γ′

3 is a polynomial, from (3.28) we arrive at a contradiction.

Subcase 1.2.2. Suppose li is a multiple of n1 for all i = 1, 2, . . . , t. By computation,

from (3.28) we get

(3.29) γ′

3 = cp1/n1(z), δ′3 = −cp1/n1(z).

Hence

(3.30) γ3(z) = cQ(z) + b1, δ3(z) = −cQ(z) + b2,

where Q(z) =
∫ z

0 p1/n1(t) dt and b1, b2 ∈ C. Finally, we take f and g as

f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z),

where c1, c2 ∈ C and c ∈ C \ {0} such that c2n1(c1c2)
n+n1 = (−1)n1 .

Case 2. Let p(z) = b ∈ C \ {0}. Then from (3.8) we get

(3.31) fn(f ′)n1 . . . (f (k))nkgn(g′)n1 . . . (g(k))nk ≡ b2,

where f and g are transcendental entire functions. Clearly f and g have no zeros

and so we can take f and g as

(3.32) f = eα, g = eβ ,
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where α(z), β(z) are two non-constant entire functions. We now consider the follow-

ing two subcases.

Subcase 2.1. Let k > 2. From (3.31) it is clear that ff (k) 6= 0 and gg(k) 6= 0.

Then by Lemma 3.8 we have

(3.33) f(z) = eaz+b, g(z) = ecz+d,

where a, c ∈ C \ {0}, b, d ∈ C. But from (3.31) we see that a+ c = 0.

Subcase 2.2. Let k = 1. Considering Subcase 1.2 one can easily get

(3.34) f(z) = eaz+b, g(z) = ecz+d,

where a, c ∈ C \ {0}, b, d ∈ C. Finally, we can take f and g as

f(z) = c3e
dz, g(z) = c4e

−dz,

where c3, c4, d ∈ C \ {0} are such that (−1)m1(c3c4)
n+sd2m1 = b2. This completes

the proof. �

Lemma 3.17. Let f and g be two transcendental meromorphic functions and let

F = fn(f ′)n1 . . . (f (k))nk/p and G = gn(g′)n1 . . . (g(k))nk/p, where p(z) is defined as

in (2.1) and n, nk, k ∈ N, ni ∈ N∪{0}, i = 1, 2, . . . , k−1 are such that n > s+t+m+2.

If f , g share (∞, 0) and H ≡ 0 then either

fn(f ′)n1 . . . (f (k))nkgn(g′)n1 . . . (g(k))nk ≡ p2(z),

where fn(f ′)n1 . . . (f (k))nk − p(z) and gn(g′)n1 . . . (g(k))nk − p(z) share 0 CM or

fn(f ′)n1 . . . (f (k))nk ≡ gn(g′)n1 . . . (g(k))nk .

P r o o f. Since H ≡ 0, by integration we get

(3.35)
1

F − 1
≡ bG+ a− b

G− 1
,

where a, b ∈ C and a ∈ C \ {0}. From (3.35) it is clear that F and G share (1,∞).

We now consider the following cases.

Case 1. Let b ∈ C \ {0} and a 6= b. If b = −1, then from (3.35) we have

F ≡ −a

G− a− 1
.
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Therefore N(r, a + 1;G) = N(r,∞;F ) = N(r,∞; f) + N(r, 0; p). So in view of

Lemma 3.12 and the second fundamental theorem we get

(n− s)T (r, g) 6 T (r,G)− sN(r,∞; g)−N(r, 0; (g′)n1 . . . (g(k))nk) + S(r, g)

6 N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G)− dN(r,∞; g)

−N(r, 0; (g′)n1 . . . (g(k))nk) + S(r, g)

6 N(r, 0; g) +N(r, 0; (g′)n1 . . . (g(k))nk) +N(r,∞; f)

−N(r, 0; (g′)n1 . . . (g(k))nk) + S(r, g)

6 N(r, 0; g) +N(r,∞; g) + S(r, g)

6 2T (r, g) + S(r, g),

which is a contradiction since n > s+ 2. If b 6= −1, from (3.35) we obtain that

F −
(

1 +
1

b

)

≡ −a

b2(G+ (a− b)/b)
.

So N(r, (b − a)/b;G) = N(r,∞;F ) = N(r,∞; f)+N(r, 0; p). Using Lemma 3.12 and

the same argument as the one used in the case when b = −1 we get a contradiction.

Case 2. Let b ∈ C \ {0} and a = b. If b = −1, then from (3.35) we have FG ≡ 1,

i.e., fn(f ′)n1 . . . (f (k))nkgn(g′)n1 . . . (g(k))nk ≡ p2, where fn(f ′)n1 . . . (f (k))nk − p(z)

and gn(g′)n1 . . . (g(k))nk − p(z) share 0 CM. If b 6= −1, from (3.35) we have

1

F
≡ bG

(1 + b)G− 1
.

Therefore N(r, 1/(1 + b);G) = N(r, 0;F ). So in view of Lemmas 3.2, 3.12 and the

second fundamental theorem we get

(n− s)T (r, g) 6 T (r,G)− sN(r,∞; g)−N(r, 0; (g′)n1 . . . (g(k))nk) + S(r, g)

6 N(r,∞;G) +N(r, 0;G) +N
(

r,
1

1 + b
;G

)

− dN(r,∞; g)

−N(r, 0; (g′)n1 . . . (g(k))nk) + S(r, g)

6 N(r, 0; g) +N(r, 0;F ) + S(r, g)

6 N(r, 0; g) +N(r, 0; f) +

k
∑

i=1

n∗

iN(r, 0; f (i) |f 6= 0) + S(r, g)

6 N(r, 0; g) +N(r, 0; f) + tN(r, 0; f) +mN(r,∞; f) + S(r, g)

6 T (r, g) + T (r, f) + tT (r, f) +mT (r, f) + S(r, f) + S(r, g).
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Without loss of generality, we may suppose that there exists a set I with infinite

measure such that T (r, f) 6 T (r, g) for r ∈ I. So for r ∈ I we have (n− s)T (r, g) 6

(t+m+ 2)T (r, g) + S(r, g), which is a contradiction since n > s+ t+m+ 2.

Case 3. Let b = 0. From (3.35) we obtain

(3.36) F ≡ G+ a− 1

a
.

If a 6= 1 then from (3.36) we obtain N(r, 1 − a;G) = N(r, 0;F ). We can deduce a

contradiction similarly to Case 2. Therefore a = 1 and from (3.36) we obtain F ≡ G,

i.e., fn(f ′)n1 . . . (f (k))nk ≡ gn(g′)n1 . . . (g(k))nk . This completes the proof. �

Lemma 3.18. Let f and g be non-constant meromorphic functions sharing (1, k1),

where k1 ∈ N ∪ {∞} \ {1}. Then

N(r, 1; g)−N(r, 1; g) > N(r, 1; f |= 2) + 2N(r, 1; f |= 3) + . . .

+ (k1 − 1)N(r, 1; f |= k1) + k1NL(r, 1; f)

+ (k1 + 1)NL(r, 1; g) + k1N
(k1+1

E (r, 1; g).

4. Proofs of the theorems

P r o o f of Theorem 2.1. Let

F =
fn(f ′)n1 . . . (f (k))nk

p
and G =

gn(g′)n1 . . . (g(k))nk

p
.

Note that f and g are transcendental meromorphic functions, so p(z) is a small func-

tion with respect to both fn(f ′)n1 . . . (f (k))nk and gn(g′)n1 . . . (g(k))nk . Also F , G

share (1, k1) and f , g share (∞, 0).

Case 1. Let H 6≡ 0. From (3.1) it can be easily calculated that the possible poles

of H occur at

(i) multiple zeros of F and G,

(ii) those 1 points of F and G whose multiplicities are different,

(iii) those poles of F and G whose multiplicities are different,

(iv) the zeros of F ′(G′) which are not zeros of F (F − 1)(G(G− 1)).

Since H has only simple poles we get

N(r,∞;H) 6 N∗(r,∞; f, g) +N∗(r, 1;F,G) +N(r, 0;F |> 2)(4.1)

+N(r, 0;G |> 2) +N0(r, 0;F
′) +N0(r, 0;G

′),
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where N0(r, 0;F
′) is the reduced counting function of those zeros of F ′ which are

not zeros of F (F − 1), and N0(r, 0;G
′) is similarly defined.

Let z0 be a simple zero of F − 1 but p(z0) 6= 0. Then z0 is a simple zero of G− 1

and a zero of H . So

(4.2) N(r, 1;F |= 1) 6 N(r, 0;H) 6 N(r,∞;H) + S(r, f) + S(r, g).

Using (4.1) and (4.2) we get

N(r, 1;F ) 6 N(r, 1;F |= 1) +N(r, 1;F |> 2)(4.3)

6 N∗(r,∞; f, g) +N(r, 0;F |> 2) +N(r, 0;G |> 2)

+N∗(r, 1;F,G) +N(r, 1;F |> 2) +N0(r, 0;F
′)

+N0(r, 0;G
′) + S(r, f) + S(r, g)

6 N(r,∞; f) +N(r, 0;F |> 2) +N(r, 0;G |> 2)

+N∗(r, 1;F,G) +N(r, 1;F |> 2) +N0(r, 0;F
′)

+N0(r, 0;G
′) + S(r, f) + S(r, g).

Now in view of Lemmas 3.2 and 3.18 we get

N0(r, 0;G
′) +N(r, 1;F |> 2) +N∗(r, 1;F,G)(4.4)

6 N0(r, 0;G
′) +N(r, 1;F |= 2)

+N(r, 1;F |= 3) + . . .+N(r, 1;F |= k1) +N
(k1+1

E (r, 1;F )

+NL(r, 1;F ) +NL(r, 1;G) +N∗(r, 1;F,G)

6 N0(r, 0;G
′)−N(r, 1;F |= 3)− . . .− (k1 − 2)N(r, 1;F |= k1)

− (k1 − 1)NL(r, 1;F )− k1NL(r, 1;G)− (k1 − 1)N
(k1+1

E (r, 1;F )

+N(r, 1;G)−N(r, 1;G) +N∗(r, 1;F,G)

6 N0(r, 0;G
′) +N(r, 1;G)−N(r, 1;G)

− (k1 − 2)NL(r, 1;F )− (k1 − 1)NL(r, 1;G)

6 N(r, 0;G′ |G 6= 0)− (k1 − 2)NL(r, 1;F )− (k1 − 1)NL(r, 1;G)

6 N(r, 0;G) +N(r,∞; g)− (k1 − 2)NL(r, 1;F )− (k1 − 1)NL(r, 1;G)

= N(r, 0;G) +N(r,∞; g)− (k1 − 2)N∗(r, 1;F,G) −NL(r, 1;G),
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Hence using (4.3), (4.4) and Lemma 3.1 we get from second fundamental theorem

that

T (r, F ) 6 N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F
′)(4.5)

6 2N(r,∞; f) +N2(r, 0;F ) +N(r, 0;G |> 2) +N(r, 1;F |> 2)

+N∗(r, 1;F,G) +N0(r, 0;G
′) + S(r, f) + S(r, g)

6 3N(r,∞; f) +N2(r, 0;F ) +N2(r, 0;G)

− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 3N(r,∞; f) + 2N(r, 0; f) +N2(r, 0; (f
′)n1 . . . (f (k))nk)

+ 2N(r, 0; g) +

k
∑

i=1

n∗∗

i N2(r, 0; g
(i))

− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 3N(r,∞; f) + 2N(r, 0; f) +N(r, 0; (f ′)n1 . . . (f (k))nk)

+ 2N(r, 0; g) +
k

∑

i=1

n∗∗

i Ni+2(r, 0; g) +
k
∑

i=1

in∗∗

i N(r,∞; g)

− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 (3 +m1)N(r,∞; f) + 2N(r, 0; f) + 2N(r, 0; g)

+ sN(r, 0; g) +N(r, 0; (f ′)n1 . . . (f (k))nk)

− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g).

Now using Lemmas 3.11 and 3.12 we get from (4.5)

(n− s)T (r, f) 6 T (r, F )− sN(r,∞; f)−N(r, 0; (f ′)n1 . . . (f (k))nk) + S(r, f)(4.6)

6 (3 +m1 − s)N(r,∞; f) + 2N(r, 0; f) + 2N(r, 0; g)

+ sN(r, 0; g)− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
2(t+ 1)(3 +m1 − s)

n+ s+m1 − 2m− 1
T (r) + (4 + s)T (r) + S(r)

6

(4n+ (6 + 2t)m1 − 8m+ 8

n+ s+m1 − 2m− 1
+ s

)

T (r) + S(r).

In a similar way we can obtain

(4.7) (n− s)T (r, g) 6
(4n+ (6 + 2t)m1 − 8m+ 8

n+ s+m1 − 2m− 1
+ s

)

T (r) + S(r).

Combining (4.6) and (4.7) we see that

(n−s)T (r) 6
( (s+ 4)n+ (6 + 2t)m1 − 8m+ sm1 − 2sm+ s2 − s+ 8

n+ s+m1 − 2m− 1

)

T (r)+S(r),
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i.e.,

(4.8) ((n−K1)(n−K2))T (r) 6 S(r),

where

K1 =
2m+ s+ 5−m1 +

√
L

2
and K2 =

2m+ s+ 5−m1 −
√
L

2
,

where

L = (2m+ s+ 5−m1)
2 + 8s2 − 8s+ 4(6 + 2t)m1 + 8sm1 − 16sm− 32m+ 32.

Note that

L = (m1 + 3s)2 + 4(6 + 2t)m1 + 2s− 12sm− 4mm1 − 10m1 + 4m2 − 12m+ 57

6 (m1 + 3s)2 + 2m1 + 8tm1 + 2s− 4m(m1 −m)− 12(sm−m1)− 12m+ 57

< (m1 + 3s)2 + 2(m1 + 3s)(1 + 4t) + (1 + 4t)2 = (m1 + 3s+ 4t+ 1)2.

Therefore

K1 =
2m+ s+ 5−m1 +

√
L

2
<

2m+ s+ 5−m1 +m1 + 3s+ 4t+ 1

2
= 2s+m+ 2t+ 3.

Since n > 2s+m+ 2t+ 2, (4.8) leads to a contradiction.

Case 2. Let H ≡ 0. Then the theorem follows from Lemmas 3.17, 3.15 and 3.16.

�
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