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SCALAR PERTURBATIONS IN F(R) COSMOLOGIES

IN THE LATE UNIVERSE

Jan Novák

Abstract. Standard approach in cosmology is hydrodynamical approach,
when galaxies are smoothed distributions of matter. Then we model the
Universe as a fluid. But we know, that the Universe has a discrete structure
on scales 150 - 370 MPc. Therefore we must use the generalized mechanical
approach, when is the mass concentrated in points. Methods of computations
are then different. We focus on f(R)-theories of gravity and we work in the
cell of uniformity in the late Universe. We do the scalar perturbations and
we use 3 approximations. First we neglect the time derivatives and we do
the astrophysical approach and we find the potentials Φ and Ψ in this case.
Then we do the large scalaron mass approximation and we again obtain the
potentials. Final step is the quasi-static approximation, when we use the
equations from astrophysical approach and the result are the potentials Φ
and Ψ. The resulting potentials are combination of Yukawa terms, which are
characteristic for f(R)-theories, and standard potential.

1. Introduction

Modern observational phenomena, such as dark energy and dark matter, are
the great challenge for present cosmology, astrophysics and theoretical physics.
Within the scope of standard models, a satisfactory explanation to these problems
has not been offered yet. There are two major ways, how to deal with accelerated
expansion in our Universe, [14]. The first one is the standard lore based on Einstein
theory of general relativity with a supplement of energy momentum tensor by an
exotic component, dubbed dark energy, and the scenarios based upon large scale
modifications of gravity.

A promising way, how to build a model with accelerated expansion epoch, are
so called f(R)-theories of gravity. We obtain the Einstein equations by variation of
Einstein-Hilbert action

(1) SEH = 1
2κ2

∫
R
√
−g d4x ,
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with respect to metric tensor, where R is the Ricci scalar, g is the determinant of
metric tensor and κ2 = 8πG. We take a function f(R) instead of Ricci scalar R
and we calculate the variation with respect to metric tensor gµν . Then the resulted
field equations are more complicated than in the case of general relativity:

(2) F (R)Rµν −
1
2f(R)gµν + �Fgµν −∇µ∇νF = κTµν ,

where Tµν = 2√
−g

δSM (ψ,gµν)
δgµν , SM is the matter part of the action and F = df

dR .
We can also calculate the variation with respect to metric and independent

connection. Such theories are called Palatini theories. Interesting feature is that
we obtain the Levi-Civita connection like dynamical consequence of the theory
and we do not need to consider it like an a priori assumption. However, we will
concentrate on metric f(R)-theories.

We can take the trace of equation (2) and we obtain the following:

(3) F (R)R− 2f(R) + 3�F = κ2T ,

where κ2 = 8πG and �F = 1/
√
−g ∂µ(

√
−ggµν∂νF ). We could see from this

equation that there is an extra degree of freedom, so called scalaron. This equation
plays a role of wave equation for this field F .

We will consider a special class of f(R)-functions, which have de Sitter point.
This is a solution of

(4) F (R)R− 2f(R) = 0 .

We obtain this equation when R = const. and T = 0. This is an algebraic
equation for the de Sitter points. For example, for the case of Starobinsky model
f(R) = R2, there is infinitely many de Sitter points. We search for models with
at least 2 de Sitter points, one is for hypothetical cosmological inflation and the
second one is for accelerated expansion in the late stage of the evolution of the
Universe. The, so called, Hu-Sawicky model has 2 de Sitter points, [9],

f(R) = R− µ2 c1( Rµ2 )k + c3

c2( Rµ2 )k + 1
(5)

and MJWQ (Miranda-Joras-Waga-Quartin), [12],

f(R) = R− a
[

tanh
(
b
(R−R0)

2

)
+ tanh

(bR0

2

)]
(6)

also 2 de Sitter points. Both these 3 functions fulfill the local condition on the
function f(R), which is F (R) > 0, because gravity is attractive and F ′(R) > 0,
because scalaron is not a tachyon.

Because f(R) is an analytic function of R, we could make the Taylor expansion
around the de Sitter point and we obtain:

(7) f(R) = f(RdS) + f ′(RdS)(R−RdS) + o(R−RdS) .
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We could rewrite it by equation (4), so we get

(8) f(R) = −f(RdS) + 2f(RdS)
RdS

R+ o(R−RdS) .

Now, in order to have linear gravity in the late stage of Universe evolution, we
can choose 2 f(RdS)

RdS
= 1 and we obtain

(9) f(R) = R− 2Λ + o(R−RdS) ,

with Λ = RdS
4 . It is clear that these models go asymptotically to the de Sitter space,

when R → RdS 6= 0. This is exactly the case for the late FLRW Universe, when
the matter content becomes negligible with respect to cosmological constant.

We will now take the FLRW metric

(10) ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2)

and we plug it to the generalized field equations (2). We use for the background
tensor energy-momentum tensor

(11) T̄µν = (−ρ̄, P̄ , P̄ , P̄ ) .

As in the case of General Relativity, we obtain two equations:

3FH2 = (FR− f)
2 − 3HḞ + κ2ρ̄ ,

− 2FḢ = F̈ −HḞ + κ2(ρ̄+ P̄ ) ,(12)

where H = ȧ
a , the dot is a derivative with respect to synchronous time and

R = 6(2H2 + Ḣ). When we add also the continuity equation

(13) ˙̄ρ+ 3H(ρ̄+ P̄ ) = 0 ,

we obtain a system of 3 equations, which are not independent. We can construct
the second Friedmann equation from the first Friedmann equation and continuity
equation. The procedure is similar to the case of General Relativity.

The solution to the (13), for non-relativistic matter, with P̄ = 0 is

(14) ρ̄ = ρ̄c
a3 .

2. Mechanical approach

Above equations describe the homogeneous background. We consider the Uni-
verse in the late stage of its evolution when galaxies and cluster galaxies are already
formed. We could describe it by hydrodynamical approach, but inside the cell of
uniformity 150 - 370 Mpc it is highly inhomogeneous and the hydrodynamical
approach is already not adequate. We must use the mechanical approach, [5] and
[7].

In the framework of mechanical approach galaxies and clusters of galaxies
(composed from baryonic and dark matter) can be considered like separate compact
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objects. They could be described by the following rest mass density, when we are
far from their location:

(15) ρ = 1
a3

∑
i

miδ(~r − ~ri) ≡
ρc
a3 ,

where ~ri is the radius vector of the considered mass in the comoving coordinates.
This is the generalization of astrophysical approach to cosmological background.
Usually are the peculiar velocities of the objects small and the produced fields
are also small. The galaxies perturb the FLRW background and they produce the
following metric in conformal-Newtonian gauge:

(16) ds2 = (−1 + 2Φ)dt2 + a2(1− 2Ψ)(dx2 + dy2 + dz2) ,

where Φ, Ψ << 1.
It is important to note that smallness of peculiar velocities and the smallness of

non-relativistic gravitational potentials Φ and Ψ are two independent conditions.
We could have very light relativistic bodies and the produced potentials are still
small. So we can work in two steps. First we neglect peculiar velocities and we define
gravitational potentials Φ and Ψ. And then we use this potential for obtaining the
dynamical behavior of the galaxies. This procedure is important because it enables
us to take into consideration the gravitational attraction as well as the cosmological
expansion of the Universe. This work is devoted to the first step of this program.

We now write the perturbed field equations for the case of scalar perturbations:

−∆Ψ
a2 + 3H

(
HΦ + Ψ̇

)
= − 1

2F

[(
3H2 + 3Ḣ + ∆

a2

)
δF

− 3H ˙δF + 3HḞΦ + 3Ḟ
(
HΦ + Ψ̇

)
+ κ2δρ

]
,(17)

HΦ + Ψ̇ = 1
2F
( ˙δF −HδF − ḞΦ

)
,(18)

−F (Φ−Ψ) = δF ,(19)

3(ḢΦ +HΦ̇ + Φ̈) + 6H(HΦ + Ψ̇) + 3ḢΦ + ∇Φ
a2

= 1
2F [3 ¨δF + 3H ˙δF −−6H2δF − ∆δF

a2 − 3Ḟ Φ̇

− 3Ḟ (HΦ + Ψ̇)− (3HḞ + 6F̈ )Φ + κ2δρ] ,(20)

¨δF + 3H ˙δF − ∆δF
a2 − 1

3RδF = 1
3κ

2(δρ− 3δP )

+ Ḟ (3HΦ + 3Ψ̇ + Φ̇) + 2F̈Φ + 3HḞΦ− 1
3FδR ,(21)

δR = −2
[
3(ḢΦ +HΦ̇ + Ψ̈) + 12H(HΦ + Ψ̇) + ∆Φ

a2 + 3ḢΦ− 2∆Ψ
a2

]
,

(22) δF = F ′δR .
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F and F ′ are unperturbed quantities and we consider Laplacian ∆ in comoving
coordinates. As a source term we consider dust-like matter and therefore δp = 0
and

(23) δρ = ρ− ρ̄ = (ρc − ρ̄c)
a3 ,

where ρc and ρ are defined in (14) and (15). And it is also clear that this system
of equations is reduced to (2.18)–(2.20) in [5] for F (R) = 1.

3. Astrophysical approach

We will consider the equations (17)–(22) in, so called, astrophysical approach.
We will neglect all time dependences in these equations and we put time derivatives
to zero. The background model is also matter-free, ρ̄ = 0. There are 2 types of
limits: de Sitter space with R = 12H2 = const. 6= 0 and Minkowski space with
R = 0 and H = 0. However the system of equations (17)–(22) was obtained for
FLRW metric, where we had explicitly time dependent a. Therefore if we want
to get time independent astrophysical equations from (17)–(22), we put H = 0.
The background solution is then the Minkowski spacetime. And the background is
perturbed by dust-like matter with ρ̄ = 0, which means δρ = ρ.

In the case of Minkowski background and dropping the time derivatives, equations
(17)–(22) in the astrophysical approach are reduced to the following system:

−∆
a2 Ψ = − 1

2F

(∆
a2 δF + κ2δρ

)
,(24)

−F (Φ−Ψ) = δF ,(25)

∆
a2 Φ = 1

2F

(
− ∆
a2 δF + κ2δρ

)
,(26)

−∆
a2 δF = 1

3κ
2δρ− 1

3FδR ,(27)

δF = F ′δR , δR = −2
(∆
a2 Φ− 2 ∆

a2 Ψ
)
,(28)

From (24) and (26) we obtain respectively

(29) Ψ = 1
2F δF + ϕ

a
= F ′

2F δR+ ϕ

a
, Φ = − 1

2F δF + ϕ

a
= − F

′

2F δR+ ϕ

a
,

where the function ϕ satisfies the equation

(30) ∆ϕ = 1
2F κ

2a3δρ = 1
2F κ

2δρc = 4πGNδρc , GN = κ2

8πF .

Here we took into consideration that in the astrophysical approach δρc = ρc where
ρc is defined by (15). It is worth noting that in the Poisson equation the Newtonian
gravitational constant GN is replaced by an effective one Geff = GN/F .
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Equation (25) follows directly from (29) and consequently, may be dropped,
while from (27) we get the following Helmholtz equation with respect to the scalaron
function δR:

(31) ∆δR+ a2

3

(
R− F

F ′

)
δR = − a2

3F ′κ
2δρ .

On the other hand, it can be easily seen that the substitution of equations (29) and
(30) into (28) results in the same equation (31). Therefore, in the case of Minkowski
background, the mass squared of the scalaron is

(32) M2 = a2

3
F

F ′
.

Now we want to take into consideration cosmological evolution. This means that
the background functions may depend on time. In this case, it is hardly possible to
solve the system directly. Therefore, first we study the case of very large mass of
the scalaron. It should be noted also that we investigate the universe filled with
nonrelativistic matter with the rest mass density ρ ∼ 1

a3 . Hence we will drop all
terms which decrease (with increasing a) faster than 1

a3 . This is the accuracy of
our approach. Within this approach, δρ ∼ 1

a3 , [5].

4. Large scalaron mass

As we can see from equation (15), the limit of large scalaron mass corresponds
to F ′ → 0. Then δF is also negligible. Therefore, equations (17)–(22) read

−∆Ψ
a2 + 3H(HΦ + Ψ̇) = − 1

2F
[
3HḞΦ + 3Ḟ (HΦ + Ψ̇)

]
,(33)

HΦ + Ψ̇ = 1
2F (−ḞΦ) ,(34)

Φ−Ψ = 0 ,(35)

3(ḢΦ +HΦ̇ + Ψ̈) + 6H(HΦ + Ψ̇) + 3ḢΦ + ∆Φ
a2

= 1
2F
[
− 3Ḟ Φ̇− 3Ḟ (HΦ + Ψ̇)− (3HḞ + 6F̈ )Φ

]
,(36)

0 = Ḟ (3HΦ + 3Ψ̇ + Φ̇) + 2F̈Φ + 3HḞΦ ,(37)

0 = 3(ḢΦ +HΦ̇ + Ψ̈) + 12H(HΦ + Ψ̇) + ∆Φ
a2 + 3ḢΦ− 2∆Ψ

a2 ,(38)

From (34) and (35) we get

(39) Ψ = Φ = ϕ

a
√
F
,
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where the introduced function ϕ depends only on spatial coordinates. Substituting
(39) into (33), we obtain

(40) 1
a3
√
F

∆ϕ+ 3Ḟ 2ϕ

4aF 2
√
F

= 1
2F κ

2δρ .

As we mentioned above, neglecting relativistic matter in the late universe we have
δρ ∼ 1

a3 , ([5]). This approximation is getting better and better performed in the
limit a→∞. We assume that this limit corresponds to the final stage of universe
evolution. The similar limit with respect to the scalar curvature is R→ R∞, where
the value R∞ is just finite. Then from (40) we immediately come to the condition

(41) F = const. + o(1) ,

where o(1) is decreasing function of a. This condition holds at the considered late
stage. One can naively suppose that in the late universe Ḟ ≈ 1

a + o( 1
a ). However

this is wrong. Obviously, without loss of generality, we can suppose that const. = 1.
From the condition (41) we get

(42) F = 1 + o(1)⇒ f = −2Λ +R+ o(R−R∞) ,

where Λ is the cosmological constant. Therefore the limit of the large scalaron mass
takes place for models which possess the asymptotic form of (42). For example,
R∞ may correspond to the de Sitter point RdS in future. All three popular models,
Starobinsky, Hu-Sawicky and MJWQ, [15], [9], [12], have such stable de-Sitter
points in the future (approximately at the redshift z = −1), ([11], [10]). The
condition of stability is 0 < RF

′

F < 1. Since F ≈ 1, this condition reads 0 < R < 1
F ′

,
which is fulfilled for the de Sitter points in the above-mentioned models. The reason
of it consists in the smallness of F ′ .

We now return to the remaining equations (36)–(38) to show that they are
satisfied within the considered accuracy. First, we study (36) which after the
substitution of (39) and (40) and some simple algebra takes the form

(43) ϕḢ

a
− ϕ

2aF (HḞ − F̈ ) = 0 .

To estimate Ḟ and F̈ , we take into account that in the limit R → R∞, F ≈ 1,
H ≈ const. ⇒ Ḣ ≈ 0, and F

′(R∞) is some finite positive value. Then,

Ḟ = F
′
Ṙ ≈ F

′
(R∞)Ṙ ≈ Ṫ ≈ d(1/a3)/dt ≈ H(1/a3) ≈ 1/a3

and F̈ ≈ ȧ/a4 ≈ 1
a3 . Therefore, the LHS of equation (43) is of order o(1/a3) and

we can put it zero within the accuracy of our approach. Similarly, equations (37)
and (38) are satisfied within the considered accuracy. It can be also seen that the
second term on the left hand side of equation (40) is of order O(1/a7) and should
be eliminated. Thus, in the case of the large enough scalaron mass we reproduce
the linear cosmology from the nonlinear one, as it should be.
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5. Quasi-static approximation

Now we do not want to assume a priori that the scalaron mass is large, i.e.
F
′ can have arbitrary values. Hence, we will preserve the δF terms in equations

(17)–(22). Moreover, we should keep the time derivatives in these equations. Such
a system is very complicated for direct integration. However, we can investigate
it in the quasistatic approximation. According to this approximation, the spatial
derivatives give the main contribution to equations (17)–(22), [16]. Therefore, first,
we should solve "astrophysical" equations (24)–(28), and then check whether the
found solutions satisfy (up to the adopted accuracy) the full system of equations.
In the other words, in the quasi-static approximation it is naturally supposed
that the gravitational potentials (the functions Φ, Ψ) are produced mainly by
the spatial distribution of astrophysical/cosmological bodies. As we have seen,
equations (24)–(28) result in (29)–(31). Now, we should keep in mind that we have
the cosmological background. Moreover, we consider the late universe which is not
far from the de Sitter point RdS in future. This means that δρ = ρ− ρ̄ in (30), all
background quantities are calculated roughly speaking at RdS and the scalaron
mass squared (15) reads now

(44) M2 = a2

3

( F
F ′
−RdS

)
.

Let us consider now equation (31) with the mass squared (44). Taking into account
that now δρc = ρc − ρ̄c, we can rewrite this equation as follows:

(45) ∆δ̃R−M2δ̃R+ a2

3F ′
κ2

a3

∑
i

miδ(~r − ~ri) = 0 ,

where

δ̃R = δR+ κ2

(F − F ′RdS)a3κ
2ρc .

Then, the general solution for a full system is the sum over all gravitating
masses. As a boundary conditions, we require for each gravitating mass the behavior
δR ∼ 1

r at small distances r and R̃→ 0 for r →∞. Taking all these remarks into
consideration, we obtain for the full system

(46) δR = κ2

12πaF ′
∑
i

mi exp(−Mi|~r − ~ri|)
|~r − ~ri|

− κ2ρ̄c
(F − F ′RdS)a3 .

It is worth noting that averaging over the whole co-moving spatial volume V gives
the zero value δR. This result is reasonable because the rest mass density fluctuation
δρ, representing the source of the metric and the scalar curvature fluctuations Φ, Ψ
and δρ, has a zero average value δρ = 0. Consequently, all enumerated quantities
should also have zero average values: Φ̄ = Ψ̄ = 0 and δR = 0, in agreement with
(46).
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From equation (29) we get the scalar perturbation functions Φ and Ψ in the
following form:

Ψ = F
′

2F

[ κ2

12πF ′
∑
i

mi exp(−M |~r − ~ri|)
|~r − ~ri|

− κ2

(F − F ′RdS)a3 ρ̄c

]
+ ϕ

a
,(47)

Φ = −F
′

2F

[ κ2

12πF ′
∑
i

mi exp(−M |~r − ~ri|)
|~r − ~ri|

− κ2

(F − F ′RdS)a3 ρ̄c

]
+ ϕ

a
,(48)

where ϕ satisfies equation (30) with δρ in the form (15) (i.e., ρ̄c 6= 0). Obviously
when F

′ → 0, M →∞, and we have exp(−M |~r − ~ri|)/|~r − ~ri| → 4πδ(~r − ~ri)/M2,
so the expression in the square brackets in (47) and (48) is equal to κ2δρc/[(F −
F
′
RdS)a3]. Therefore, in the considered limit F ′ → 0 we reproduce the scalar

perturbations Φ, Ψ from the previous large scalaron mass case, as it certainly
should be.
Thus neglecting for a moment the influence of the cosmological background, but
not neglecting the scalaron’s contribution, we have found the scalar perturbations.
They represent the mix of the standard potential ϕ

a (see the linear case [5]) and
the additional Yukawa term which follows from the nonlinearity.
Now we should check that these solutions satisfy the full system (17)–(22). To do
it, we substitute (46), (47) and (48) into this system of equations. Obviously the
spatial derivatives disappear. Keeping in mind this fact the system (17)–(22) is
reduced to the following equations:

3H(HΦ + Ψ̇) =− 1
2F

[(
3H2 + 3Ḣ + ∆

a2

)
δF − 3H ˙δF + 3HḞΦ

+ 3Ḟ (HΦ + Ψ̇)
]
,(49)

HΦ + Ψ̇ = 1
2F ( ˙δF −HδF − ḞΦ) ,(50)

3(ḢΦ +HΦ̇ + Ψ̈) + 6H(HΦ + Ψ̇) + 3ḢΦ + ∆Φ
a2

= 1
2F

[
3 ¨δF + 3H ˙δF − 6H2δF − ∆δF

a2

− 3Ḟ Φ̇− 3Ḟ (HΦ + Ψ̇)− (3HḞ + 6F̈ )Φ
]
,(51)

¨δF + 3H ˙δF − ∆δF
a2 = Ḟ (3HΦ + 3Ψ̇ + Φ̇) + 2F̈Φ + 3HḞΦ ,(52)

δF = F ′δR ,(53)

F
′

F
RdSδR =− 2

[
3(ḢΦ +HΦ̇ + Ψ̈) + 12H(HΦ + Ψ̇)

+ ∆Φ
a2 + 3ḢΦ− 2∆Ψ

a2

]
.(54)
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Here the term F
′

F RdSδR in the left hand side of (54) disappear due to the
redefinition of the scalaron mass squared (44).
It can be easily seen that all terms in (46), (47) and (48) depend on time, and
therefore may contribute to equations (49)–(54). As we wrote above, according
to our nonrelativistic approach, we neglect the terms of the order o(1/a3). On
the other hand, exponential functions decrease faster than any power function.
Moreover, we can write the exponential term in (46) as follows:

(55) κ2

12πF ′
∑
i

mi exp(−
√

1
3 ( F
F ′
−RdS)|rph − rph,i|)

|rph − rph,i|
,

where we introduced the physical distance rph = ar. It is well known that astrophy-
sical tests impose strong restrictions on the non-linearity [1, 13] (the local gravity
tests impose even stronger constraints, [1, 13, 6]). According to these constraints,
(55) should be small at the astrophysical scales. Consequently, on the cosmological
scales it will be even much smaller. So we will not take into account the exponential
terms in the above equations. However, in (46), (47) and (48), we have also 1

a3 and
1
a terms which we should examine. Before performing this, it should be recalled that
we consider the late universe which is rather close to the de Sittter point. Therefore,
as we already noted in the previous subsection, F ≈ 1, H ≈ const. → Ḣ ≈ 0,
RdS = 12H2 and F ′(RdS) is some finite positive value. Additionally, Ḟ , F̈ , Ḟ ′ ≈ 1

a3 .
Hence, all terms of the form of Ḟ , F̈ , Ḟ ′ × Φ,Ψ, Φ̇, Ψ̇ are of the order o(1/a3) and
should be dropped. In other words, the functions F and F

′ can be considered as
time independent.
First, let us consider the terms Ψ = Φ = ϕ/a in equations (47) and (48) and
substitute them into equations (49) - (54). Such 1/a term is absent in δR. So we
should put δR = 0, δF = 0. Obviously, this is the linear theory case. It can be
easily seen that all equations are satisfied.
Now, we study the terms ∼ 1/a3, i.e.,

δR = − κ2

(F − F ′RdS)
ρ̄c
a3 Ψ = − κ2F

′

2F (F − F ′RdS)
ρ̄c
a3 Φ

= κ2F
′

2F (F − F ′RdS)
ρ̄c
a3 .(56)

Let us examine, for example equation (49). Keeping in mind that δF = F
′
δR, one

can easily get

(57) 12H2
c

κ2F
′

2F (F − F ′RdS)
ρ̄c
a3 = 12H2

c

κ2F
′

2F (F − F ′RdS)
ρ̄c
a3 + o(1/a3) .

Therefore, the terms ∼ 1
a3 exactly cancel each other, and this equation is satisfied

up to the adopted accuracy o(1/a3). One can easily show that the remaining
equations are fulfilled with the same accuracy.

Thus we have proved that the scalar perturbation functions Φ and Ψ in the form
(47) and (48) satisfy the system of equations (49)–(54) with the required accuracy.



SCALAR PERTURBATIONS IN F(R) COSMOLOGIES IN THE LATE UNIVERSE 323

Both of these functions contain the nonlinearity function F and the scale factor a.
Therefore both the effects of nonlinearity and the dynamics of the cosmological
background are taken into account. The function Φ corresponds to the gravitational
potential of the system of inhomogeneities. Hence we can study the dynamical
behavior of the inhomogeneities including into consideration their gravitational
attraction and cosmological expansion, and also taking into account the effects of
nonlinearity. For example, the non-relativistic Lagrange function for a test body of
the mass m in the gravitational field described by the metric (16) has the form
([5]):

L ≈ −mΦ + ma2~v2

2 , ~v2 = ẋ2 + ẏ2 + ż2 .

We can use this Lagrange function for analytical and numerical study of mutual
motion of galaxies. In the case of the linear theory, such investigation was performed,
e.g., in [2].

6. Conclusion

We have been studying scalar perturbations of f(R)-theories in the cell of uni-
formity 150–370 Mpc. We have used three approximations: astrophysical approach,
cosmological approach and quasistatic approximation. We obtained the scalar
potentials Φ and Ψ in all three cases. Such potentials can be used to numerical
simulation of movement of dwarf galaxies in these potentials.
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