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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 6 , P A G E S 1 0 8 6 – 1 0 9 9

SECOND ORDER OPTIMALITY
IN MARKOV DECISION CHAINS

Karel Sladký

The article is devoted to Markov reward chains in discrete-time setting with finite state
spaces. Unfortunately, the usual optimization criteria examined in the literature on Markov
decision chains, such as a total discounted, total reward up to reaching some specific state
(called the first passage models) or mean (average) reward optimality, may be quite insufficient
to characterize the problem from the point of a decision maker. To this end it seems that it may
be preferable if not necessary to select more sophisticated criteria that also reflect variability-
risk features of the problem. Perhaps the best known approaches stem from the classical work
of Markowitz on mean variance selection rules, i. e. we optimize the weighted sum of average
or total reward and its variance. The article presents explicit formulae for calculating the
variances for transient and discounted models (where the value of the discount factor depends
on the current state and action taken) for finite and infinite time horizon. The same result
is presented for the long run average nondiscounted models where finding stationary policies
minimizing the average variance in the class of policies with a given long run average reward is
discussed.

Keywords: Markov decision chains, second order optimality, optimality conditions for
transient, discounted and average models, policy iterations, value iterations

Classification: 90C40, 93E20

1. INTRODUCTION

The usual optimization criteria examined in the literature on stochastic dynamic pro-
gramming, such as a total discounted or mean (average) reward structures, may be quite
insufficient to characterize the problem from the point of a decision maker. Perhaps the
best known approaches stem from the classical work of Markowitz (cf. [5]) on mean
variance selection rules, i. e. we optimize the weighted sum of average or total reward
and its variance.

To this end it may be preferable if not necessary to select more sophisticated criteria
that also reflect variability-risk features of the problem. Most notably, the variance of
the cumulative rewards can be indicative and seems of interest. For a detailed discussion
of such approaches see the review paper by White [15].
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To the best of our knowledge higher moments and variance of cumulative rewards in
Markov reward chains have been systematically studied mostly for discrete time models.
Research in this direction has been initiated in Mandl [4], Jaquette [3], and Sobel [12].

Particularly, in these references for controlled discrete-time Markov reward chains,
the variance (or second moment) of total expected discounted or average rewards has
been considered to select the ‘best’ policy within the class of discounted (or average)
optimal policies to find a lower variance (or lower second moment) of the cumulative
reward. Alternatively, also criteria reflecting the variability or risk features for policies
not restricted to the class of optimal policies can be analyzed using this approach.

In the present paper we focus attention on discrete-time Markov decision chains
with finite state space. We present explicit formulas for the expected total reward and
variance for finite horizon models along with their asymptotic behavior for transient and
discounted models. As concerns undiscounted models we present explicit formulas for
the mean (average) total reward and the corresponding variance. It is indicated how
policy and value iteration method can be employed for finding (not necessary optimal)
policies minimizing the variance.

The paper is structured as follows. Section 2 presents notations and preliminaries,
recursive formulas for finding first and second moment along the corresponding variance
are discussed in section 3. Asymptotic properties of total reward of transient (first
passage models) and discounted models are studied in section 4. Explicit formulas
enable to calculate the difference in the variances for discounted and transient models
with the same total rewards. Our approach primarily based on transient models can be
easily extended to discounted models where the discount factor depends on the current
state and decision taken. Asymptotic behaviour of undiscounted models is studied in
section 5. Attention is focused on mean reward and variances in unichain and multichain
models. Policy and value iteration method for finding optimal decision are discussed in
section 6. Conclusions are made in section 7.

2. NOTATIONS AND PRELIMINARIES

We consider Markov decision chain X = {Xn, n = 0, 1, . . .} with finite state space
I = {1, 2, . . . , N}, and finite set Ai = {1, 2, . . . ,Ki} of possible decisions (actions) in
state i ∈ I. Supposing that in state i ∈ I action a ∈ Ai is selected, then state j is
reached in the next transition with a given probability pij(a) and one-stage transition
reward rij will be accrued to such transition.

A (Markovian) policy controlling the decision process is given by a sequence of deci-
sions at every time point. In particular, policy controlling the chain, π = (f0, f1, . . .),
is identified by a sequence of decision vectors {fn, n = 0, 1, . . .} where fn ∈ F ≡
A1 × . . .×AN for every n = 0, 1, 2, . . ., and fni ∈ Ai is the decision (or action) taken at
the nth transition if the chain X is in state i. Policy which takes at all times the same
decision rule, i. e. π ∼ (f), is called stationary; P (f) is transition probability matrix
with elements pij(fi). Obviously, r(1)i (fi) =

∑
j∈Ii pij(fi)rij is the expected one-stage

reward obtained in state i ∈ I and r(1)(f) denotes the corresponding N -dimensional
column vector of one-stage rewards. Then [P (f)]n · r(1)(f) is the (column) vector of
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rewards accrued after n transitions, its ith entry denotes expectation of the reward if
the process X starts in state i.

Recall that (the Cesaro limit of P (f)) P ∗(f) := lim
n→∞

1
n

n−1∑
k=0

P k(f) (with elements

p∗ij(f)) always exists. Moreover, if P (f) is aperiodic then even P ∗(f) = lim
k→∞

P k(f) and

the convergence is geometrical. Then g(1)(f) = P ∗(f) r(1)(f) is the (column) vector of
average rewards, its ith entry g(1)

i (f) denotes the average reward if the process starts in
state i. In particular, if P (f) is unichain (i. e. P (f) contains a single class of recurrent
states) the rows of P ∗(f), denoted p∗(f), are identical. Then p∗ij(f) = p∗j (f), i. e.
limiting distribution is independent of the starting state and g(1)(f) is a constant vector
with elements ḡ(1)(f). It is well-known (cf. e. g. [6, 7]) that also Z(f) (fundamental
matrix of P (f)), and H(f) (the deviation matrix) exist, where Z(f) := [I − P (f) +
P ∗(f)]−1, H(f) := Z(f) (I − P ∗(f)).

Transition probability matrix P̃ (f) is called transient if the spectral radius of P̃ (f)
is less than unity, i. e. it at least some row sums of P̃ (f) are less than one. Then
limn→∞[P̃ (f)]n = 0, P̃ ∗(f) = 0, g(1)(f) = P̃ ∗(f) r(1)(f) = 0 and Z̃(f) = H̃(f) =
[I − P̃ (f)]−1. Observe that if P (f) is stochastic and α ∈ (0, 1) then P̃ (f) := αP (f) is
transient, however, if P̃ (f) is transient it may happen that some row sums may be even
greater than unity. Moreover, for the so-called first passage problem, i. e. if we consider
total reward up to the first reaching of a specific state (resp. the set of specific states),
the resulting transition matrix is transient if the specific state (resp. the set of specific
states) can be reached from any other state.

Let ξn(π) =
∑n−1
k=0 rXk,Xk+1 be the stream of rewards received in the n next transitions

of the considered Markov chain X if policy π = (fn) is followed. Supposing that X0 = i,
on taking expectation we get for the first and second moments of ξn(π)
v
(1)
i (π, n) := E π

i (ξn(π)) = E π
i

∑n−1
k=0 rXk,Xk+1 ,

v
(2)
i (π, n) := E π

i (ξn(π))2 = E π
i (
∑n−1
k=0 rXk,Xk+1)2.

It is well known from the literature (cf. e. g. [4, 6, 7, 14]) that for the time horizon
tending to infinity policies maximizing or minimizing the values v(1)

i (π, n) for transient
models, resp. policies maximizing or minimizing for discounted models the values
v
α(1)
i (π, n) = E π

i

∑n−1
k=0 α

krXk,Xk+1 , can be found in the class of stationary policies, i. e.
there exist f∗, f̂ ∈ F such that for all i ∈ I and any policy π = (fn)

v
(1)
i (f∗) := lim

n→∞
v
(1)
i (f∗, n) ≥ lim sup

n→∞
v
(1)
i (π, n),

v
(1)
i (f̂) := lim

n→∞
v
(1)
i (f̂ , n) ≤ lim inf

n→∞
v
(1)
i (π, n).

3. FINITE TIME HORIZON

If policy π ∼ (f) is stationary, the process X is time homogeneous and for m < n we
write for the generated random reward ξn = ξm + ξn−m (here we delete the symbol π
and tacitly assume that P(Xm = j) and ξn−m starts in state j). Similarly we conclude
that
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[ξn]2 = [ξm]2 + [ξn−m]2 + 2 · ξm · ξn−m. Then for n > m we can conclude that

E π
i [ξn] = E π

i [ξm] + E π
i

{∑
j∈I

P(Xm = j) · E π
j [ξn−m]

}
(1)

E π
i [ξn]2 = E π

i [ξm]2 + E π
i

{∑
j∈I

P(Xm = j) · E π
j [ξn−m]2

}
+2 · E π

i [ξm]
∑
j∈I

P(Xm = j) · E π
j [ξn−m]. (2)

In particular, from (1), (2) we conclude for m = 1

v
(1)
i (f, n+ 1) = r

(1)
i (fi) +

∑
j∈I

pij(fi) · v
(1)
j (f, n) (3)

v
(2)
i (f, n+ 1) = r

(2)
i (fi) + 2 ·

∑
j∈I

pij(fi) · rij · v
(1)
j (f, n)

+
∑
j∈I

pij(fi) v
(2)
j (f, n) (4)

where r
(1)
i (fi) :=

∑
j∈I pij(fi) rij , r

(2)
i (fi) :=

∑
j∈I pij(fi)[rij ]2.

Remark 3.1. If the transition reward rij = ri, i. e. r
(1)
i = ri, r

(2)
i (fi) = [ri]2 (cf. [16])

for all i, j ∈ I then the first two terms on the RHS of (4) in virtue of (3) can be replaced
by ri[ri + 2

∑
j∈I pij(fi)v

(1)
j (f, n)] = ri[2v

(1)
i (f, n+ 1)− ri]; hence (4) takes on the form

v
(2)
i (f, n+ 1) = r

(1)
i (fi) · [2v(1)

i (f, n+ 1)− r
(1)
i (fi)] +

∑
j∈I

pij(fi) v
(2)
j (f, n). (5)

Since the variance σ(2)
i (f, n) = v

(2)
i (f, n)− [v(1)

i (f, n)]2 from (3),(4) we get

σ
(2)
i (f, n+ 1) = r

(2)
i (fi) +

∑
j∈I

pij(fi) · σ
(2)
j (f, n) + 2

∑
j∈I

pij(fi) · rij · v
(1)
j (f, n)

−[v(1)
i (f, n+ 1)]2 +

∑
j∈I

pij(fi)[v
(1)
j (f, n)]2 (6)

=
∑
j∈I

pij(fi)[rij + v
(1)
j (f, n)]2 − [v(1)

i (f, n+ 1)]2

+
∑
j∈I

pij(fi) · σ
(2)
j (f, n). (7)

Using matrix notations (cf. [11]) equations (3),(4),(6) can be written as:

v(1)(f, n+ 1) = r(1)(f) + P (f) · v(1)(f, n) (8)

v(2)(f, n+ 1) = r(2)(f) + 2 · P (f) ◦R · v(1)(f, n) + P (f) · v(2)(f, n) (9)

σ(2)(f, n+ 1) = r(2)(f) + P (f) · σ(2)(f, n) + 2 · P (f) ◦R · v(1)(f, n)
−[v(1)(f, n+ 1)]2 + P (f) · [v(1)(f, n)]2 (10)
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where
R = [rij ] is an N ×N -matrix, and r(2)(f) = [ r(2)i (fi)], v(2)(f, n) = [v(2)

i (f, n)],
v(1)(f, n) = [(v(1)

i (f, n)], σ(2)(f, n) = [σ(2)
i (f, n)] are column vectors.

The symbol ◦ is used for Hadamard (entrywise) product of matrices. Observe that
r(1)(f) = (P (f) ◦R) · e, r(2)(f) = [P (f) ◦ (R ◦R)] · e.

4. INFINITE TIME HORIZON: TOTAL REWARD

4.1. Transient (first passage) models

In this section we focus attention on transient models, i. e. we assume that the transition
probability matrix P̃ (f) with elements p̃ij(fi) is substochastic and ρ(f), the spectral
radius of P̃ (f), is less than unity. Observe that if

∑
j∈I p̃ij(fi) = αi < 1 then on reaching

state i the processX stops with probability 1−αi.Moreover, if P̃ (f) = αP (f) the process
X stops in every state with probability 1−α. Then P̃ ∗(f) = limn→∞[P̃ (f)]n = 0 and for
the fundamental and deviation matrices we get Z̃(f) = H̃(f) = [I− P̃ (f)]−1. Moreover,
on iterating (8) we easily conclude that there exists v(1)(f) := lim

n→∞
v(1)(f, n) such that

v(1)(f) = r(1)(f) + P̃ (f) · v(1)(f)⇐⇒ v(1)(f) = [I − P̃ (f)]−1r(1)(f). (11)

Similarly, from (4),(9) (since the term 2·P (f)◦R·v(1)(f, n) is bounded and lim
n→∞

v(1)(f, n) =

v(1)(f)) on letting n → ∞ we can also verify existence v(2)(f) = lim
n→∞

v(2)(f, n) such
that

v(2)(f) = r(2)(f) + 2 · P̃ (f) ◦R · v(1)(f) + P̃ (f) v(2)(f) (12)

hence
v(2)(f) = [I − P̃ (f)]−1

{
r(2)(f) + 2 · P̃ (f) ◦R · v(1)(f)

}
. (13)

Employing (12),(13) arrive at the formula for total variance σ(2)(f).

Theorem 4.1.

σ(2)(f) = [I − P̃ (f)]−1 · { r(2)(f) + 2 · P̃ (f) ◦R · v(1)(f)} − [v(1)(f)]2. (14)

P r o o f . On letting n→∞ from (6), (7) we get for σ(2)
i (f) := lim

n→∞
σ

(2)
i (f, n)

σ
(2)
i (f) = r

(2)
i (fi) +

∑
j∈I

p̃ij(fi) · σ(2)
j (f) + 2

∑
j∈I

p̃ij(fi) · rij · v(1)
j (f)

−[v(1)
i (f)]2 +

∑
j∈I

p̃ij(fi)[v
(1)
j (f)]2 (15)

=
∑
j∈I

p̃ij(fi)[rij + v
(1)
j (f)]2 − [v(1)

i (f)]2 +
∑
j∈I

p̃ij(fi) · σ(2)
j (f). (16)

Hence in matrix notation (15) reads

σ(2)(f) = r(2)(f)+P̃ (f)·σ(2)(f)+2·P̃ (f)◦R·v(1)(f)−[v(1)(f)]2+P̃ (f)·[v(1)(f)]2. (17)
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(14) follows from (17) after little algebra. �

If the discount factor depends on the current state and action taken, let

A(f) = diag [α1(f1), · · · , αN (fN )]

be a diagonal matrix whose ith element is the value of the discount factor if in state i
action fi is selected. Then P̃ (f) := A(f)P (f) and (14) reads

σ(2)(f) = [I −A(f)P (f)]−1 · { r(2)(f) + 2 ·A(f)P (f) ◦R · v(1)(f)} − [v(1)(f)]2 (18)

where r(2)(f) = [P (f) ◦ (R ◦R)] · e.

4.2. Discounted models

From (3),(4) we conclude that

v
α(1)
i (f, n+ 1) = r

(1)
i (fi) + αi(fi)

∑
j∈I

pij(fi) · v
α(1)
j (f, n) (19)

v
α(2)
i (f, n+ 1) = r

(2)
i (fi) + 2 · αi(fi) ·

∑
j∈I

pij(fi) · rij · v
α(1)
j (f, n)

+ [αi(fi)]2 ·
∑
j∈I

pij(fi) v
α(2)
j (f, n) (20)

and from (19),(20), for the variance σα(2)
i (f, n) := v

α(2)
i (f, n)− [vα(1)

i (f, n)]2 we get

σ
α(2)
i (f, n+ 1) = r

(2)
i (fi) + [αi(fi)]2

∑
j∈I

pij(fi) · σ
α(2)
j (f, n)− [vα(1)

i (f, n+ 1)]2

+ 2αi(fi)
∑
j∈I

pij(fi) rij · v
α(1)
j (f, n) + [αi(fi)]2

∑
j∈I

pij(fi)[v
α(1)
j (f, n)]2 (21)

=
∑
j∈I

pij(fi)[rij + αi(fi) · vα(1)
j (f, n)]2 − [vα(1)

i (f, n+ 1)]2

+ [αi(fi)]2
∑
j∈I

pij(fi) · σ
α(2)
j (f, n). (22)

Using matrix notations equations (21), (22) can be written as:

vα(1)(f, n+1) = r(1)(f) +A(f)P (f) · vα(1)(f, n) (23)

vα(2)(f, n+1) = r(2)(f)+ 2A(f)P (f) ◦R · vα(1)(f, n)+ [A(f)]2P (f) · vα(2)(f, n)(24)

recall that R = [rij ] is an N×N -matrix, and ◦ is used for Hadamard (entrywise) product
of matrices (observe that [A(f)]2 = A(f) ·A(f) = A(f) ◦A(f) since A(f) is diagonal).

On iterating (23) we conclude that vα(1)(f) := lim
n→∞

vα(1)(f, n) exists and

vα(1)(f) = r(1)(f) +A(f)P (f) · vα(1)(f)⇐⇒ vα(1)(f) = [I −A(f)P (f)]−1r(1)(f). (25)
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Similarly to the transient case on letting n→∞ for discounted models also vα(2)(f) =
lim
n→∞

vα(2)(f, n) exists and by (24)

vα(2)(f) = r(2)(f) + 2 ·A(f) · P (f) ◦R · vα(1)(f) + [A(f)]2 · P (f) vα(2)(f), (26)

so

vα(2)(f) = {[I − [A(f)]2 · P (f)}−1 [ r(2)(f) + 2 ·A(f) · P (f) ◦R · vα(1)(f)]. (27)

Now we are in a position to present explicit formula for the limiting discounted variance.

Theorem 4.2.

σα(2)(f) = {I − [A(f)]2 · P (f)}−1 · { r(2)(f) + 2 ·A(f) · P (f) ◦R · vα(1)(f)}
− [vα(1)(f)]2 (28)

where r(2)(f) = [P (f) ◦ (R ◦R)] · e.

P r o o f . On letting n→∞ from (21), (22) we get for σα(2)
i (f) := lim

n→∞
σ
α(2)
i (f, n)

σ
α(2)
i (f) = r

(2)
i (fi) + [α(fi)]2

∑
j∈I

pij(fi) · σ
α(2)
j (f)

+2 · α(fi)
∑
j∈I

pij(fi) · rij · v
α(1)
j (f)− [vα(1)

i (f)]2

+[αi(fi)]2
∑
j∈I

pij(fi)[v
α(1)
j (f)]2 (29)

=
∑
j∈I

pij(fi)[rij + αi(fi) · vα(1)
j (f)]2 − [vα(1)

i (f)]2

+[αi(fi)]2
∑
j∈I

pij(fi) · σ
α(2)
j (f). (30)

Hence in matrix notation

σα(2)(f) = r(2)(f) + [A(f)]2 · P (f) · σα(2)(f) + 2 ·A(f) · P (f) ◦R · vα(1)(f)
− [vα(1)(f)]2 + [A(f)]2 · P (f) · [vα(1)(f)]2 (31)

(28) follows immediately from (31) after some algebra. �

Remark 4.3. In particular, if the discount factor is independent of the current state
and action taken, (28) takes the form

σα(2)(f) = [I − α2 · P (f)]−1 · { r(2)(f) + 2 · α · P (f) ◦R · vα(1)(f)} − [vα(1)(f)]2. (32)
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(32) is similar to the formula for the variance of discounted rewards obtained by Sobel
[12] by different methods (see also [11]). The formula also follows directly by subtracting
[vα(1)(f)]2 from

vα(2)(f) = [I − α2 · P (f)]−1
{
r(2)(f) + 2α · P (f) ◦R · vα(1)(f)

}
(33)

(i. e. special case of (27) iff α(fi) = α for all i ∈ I.)

Comparing (14) and (32) both formulas differ only in the first term on the right hand-
side. Since the expectation of α-discounted model is the same as for the transient model
with probability α of stopping, the corresponding variance are different (see [1, 8, 11]).

Remark 4.4. If the transition reward rij = ri, i. e. r
(1)
i = ri, r

(2)
i (fi) = [ri]2 for all

i, j ∈ I (see Remark 3.1 and Eq. (5)) then (12) takes on the form

v(2)(f) = r(1) ◦ [2v(1)(f)− r(1)] + P̃ (f) v(2)(f) (34)

and similarly (14) can be written as

σ(2)(f) = [I − P̃ (f)]−1 · {r(1) ◦ [2v(1)(f)− r(1)]} − [v(1)(f)]2. (35)

(35) is similar to the formula for the variance of transient model reported in [16].

5. INFINITE-TIME HORIZON: AVERAGE CASE

5.1. Unichain model

We make the following

Assumption 1. There exists state i0 ∈ I that is accessible from any state i ∈ I for
every f ∈ F .

Obviously, if Assumption 1 holds then for every f ∈ F the transition probability
matrix P (f) is unichain (i. e. P (f) have no two disjoint closed sets). In particular,
transition probability matrix P (f) and the state space I can be decomposed as

P (f) =
[
PTT(f) PTR(f)

0 PRR(f)

]
, I = IT(f) ∪ IR(f),

where IT(f) resp. IR(f), contains all transient (resp. recurrent) states of matrix P (f).
As well known from the literature (see e. g. [6]), if Assumption 1 holds, then the

growth rate of v(1)(f, n) is linear and independent of the starting state. In particular,
there exists constant vector g(1)(f) = P ∗(f)r(1)(f) (with elements ḡ(1)(f)) along with
vector w(1)(f) (unique up to additive constant) such that

w(1)(f) + g(1)(f) = r(1)(f) + P (f)w(1)(f). (36)

In particular, it is possible to select w(1)(f) such that P ∗(f)w(1)(f) = 0. Then w(1)(f) =
H(f)r(1)(f) = Z(f)r(1)(f)− P ∗(f)r(1)(f). On iterating (36) we can conclude that

v(1)(f, n) = g(1)(f) · n+ w(1)(f)− [P (f)]nw(1)(f). (37)
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To simplify the limiting behavior we make also

Assumption 2. The matrix P (f) is aperiodic, i. e. limn→∞[P (f)]n = P ∗(f).

If Assumption 2 holds and P ∗(f)w(1)(f) = 0 then for n tending to infinity v(1)(f, n)−
ng(1)(f) − w(1)(f) tends to the null vector and the convergence is geometrical. In
particular, by (37) we can conclude that for ε(n) = P (f)nw(1)(f)

v(1)(f, n) = g(1)(f) · n+ w(1)(f) + ε(n). (38)

In what follows the symbol ε(n) is reserved for any column vector of appropriate dimen-
sion with elements elements ε̄(n) that converge geometrically to the null vector.

Now we focus attention on asymptotic behaviour of recursive formula (6) if the un-
derlying Markov process is unichained and the time horizon tends to infinity. To this
end, we need some facts on the asymptotic properties of total expected reward.

In particular, we can conclude that by (3),(36),(37)

v
(1)
i (f, n+ 1) + v

(1)
j (f, n) = r

(1)
i (f) +

∑
k∈I

pik(f) · v(1)
k (f, n) + v

(1)
j (f, n)

= r
(1)
i (f) + 2nḡ(1)(f) +

∑
k∈I

pik(f)w(1)
k (f) + w

(1)
j (f) + ε̄(n)

= (2n+ 1)ḡ(1)(f) + w
(1)
i (f) + w

(1)
j (f) + ε̄(n) (39)

v
(1)
i (f, n+ 1)− v(1)

j (f, n) = r
(1)
i (f) +

∑
k∈I

pik(f) · v(1)
k (f, n)− v(1)

j (f, n)

= r
(1)
i (f) +

∑
k∈I

pik(f)w(1)
k (f)− w(1)

j (f) + ε̄(n)

= ḡ(1)(f) + w
(1)
i (f)− w(1)

j (f) + ε̄(n). (40)

From (38),(39),(40) we get∑
j∈I

pij(f) [v(1)
i (f, n+ 1) + v

(1)
j (f, n)][v(1)

i (f, n+ 1)− v(1)
j (f, n)]

=
∑
j∈I

pij(f)[2nḡ(1)(f) + ḡ(1)(f) + w
(1)
i (f) + w

(1)
j (f)]

×[ḡ(1)(f) + w
(1)
i (f)− w(1)

j (f)] + ε̄(n)

= 2nḡ(1)(f)
∑
j∈I

pij(f)[ḡ(1)(f) + w
(1)
i (f)− w(1)

j (f)]

+
∑
j∈I

pij(f)
{

[ḡ(1)(f) + w
(1)
i (f)]2 − [w(1)

j (f)]2
}

+ ε̄(n)

= 2nḡ(1)(f) · r(1)i (f)

+
∑
j∈I

pij(f)
{

[ḡ(1)(f) + w
(1)
i (f)]2 − [w(1)

j (f)]2
}

+ ε̄(n). (41)
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Similarly by (38) for the third term on the RHS of (6) (and also for the third term on
the RHS of (10)), we have∑

j∈I
pij(f) · rij · v(1)

j (f, n) =
∑
j∈I

pij(f) · rij · [n · ḡ(1)(f) + w
(1)
j (f) + ε̄(n)]

= n · ḡ(1)(f) · r(1)i (fi) +
∑
j∈I

pij(f) · rij · w(1)
j (f) + ε̄(n). (42)

Substitution from (41), (42) into (6) yields after some algebra

σ
(2)
i (f, n+ 1) =

∑
j∈I

pij(f) · σ(2)
j (f, n) + r

(2)
i (fi) + 2 ·

∑
j∈I

pij(f) · rij · w(1)
j (f)

+
∑
j∈I

pij(f)[w(1)
j (f)]2 − [ḡ(1)(f) + w

(1)
i (f)]2 + ε̄(n)

=
∑
j∈I

pij(f) · {σ(2)
j (f, n) + [rij + w

(1)
j (f)]2}

−[ḡ(1)(f) + w
(1)
i (f)]2 + ε̄(n). (43)

Hence, in matrix form we have:

σ(2)(f, n+ 1) = P (f)σ(2)(f) + s(f) + ε(n), (44)

where elements si(f) of the (column) vector s(f) are equal to

si(f) =
∑
j∈I

pij(f)[rij + w
(1)
j (f)]2 − [ḡ(1)(f) + w

(1)
i (f)]2 (45)

=
∑
j∈I

pij(f)[rij + w
(1)
j (f)− ḡ(1)(f)]2 − [w(1)

i (f)]2. (46)

Observe that (46) follows immediately from (45) since by (36)

−2
∑
j∈I pij(f)[rij + w

(1)
j (f)]ḡ(1)(f)− [ḡ(1)(f)]2 = −2w(1)

i (f)ḡ(1)(f)− [ḡ(1)(f)]2.

Employing (37) and the analogy between (7) and (44) we arrive at

Theorem 5.1.
G(f) := lim

n→∞

1
n
σ(2)(f) = P ∗(f)s(f) (47)

is the average variance corresponding to policy π ∼ (f).

For details see [9, 10, 13].

5.2. Multichain model

First observe that under suitable labelling the states (or suitable changes rows and
corresponding columns) state space I can be partitioned as

I = I0(f) ∪ I1(f) ∪ I2(f) ∪ . . . Is(f)
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where I0(f) contains all transient states having access at least to two recurrent classes
and for ` = 1, . . . , s each class I`(f) contains single recurrent class along with transient
states having access only to this recurrent class.

Similarly, the transition probability matrix P (f) can be decomposed in the following
block triangular form

P (f) =


P00(f) P01(f) P02(f) . . . P0s(f)

0 P11(f) 0 . . . 0
0 0 P22(f) . . . 0
...

...
. . .

...
...

0 0 . . . 0 Pss(f)

 . (48)

Observe that for ` = 1, . . . , s each class P``(f) can be treated as unichained Markov
chain. Hence, if the process starts in state i ∈ I` then the average variance G`(f) =
P ∗``(f) · s`(f); elements of the row vector s`(f), say si(f) are selected for i ∈ I`(f).

6. FINDING SECOND ORDER OPTIMAL POLICIES

For finding second order optimal policies, at first it is necessary to construct the set of
all transient optimal discounted optimal policies, resp. the set of all average optimal
policies (cf. e. g. [4, 6, 7]). Since optimal policies can be found in the class of stationary
policies, i. e. there exist f∗, f̄∗ ∈ F such that

v(1)(f∗) ≥ v(1)(π) resp. vα(1)(f̄∗) ≥ vα(1)(π) for every policy π = (fn) (49)

where

v(1)(f∗) = r(1)(f∗) + P̃ (f∗) · v(1)(f∗) ≥ r(1)(f) + P̃ (f) · v(1)(f) (50)
v(1)(f∗) = r(1)(f∗) +A(f∗)P (f∗) · v(1)(f∗) ≥ r(1)(f) +A(f)P (f) · v(1)(f∗).(51)

Let F∗ ⊂ F be the set of all transient optimal or discounted optimal stationary policies.
Stationary optimal policies minimizing total or discounted variance can be constructed
by standard policy or value iteration procedures in the class of policies from F∗.

Similarly, considering average reward of undiscounted models, there exists f̂ ∈ F
such that for all f ∈ F

w(1)(f̂) + g(1)(f̂) = r(1)(f̂) + P (f̂)w(1)(f̂) ≥ r(1)(f) + P (f)w(1)(f̂). (52)

Let F̂ ⊂ F be the set of all average optimal stationary policies. Stationary optimal
policies minimizing average variance can be constructed on applying standard policy or
value iteration procedures in the class of policies from F̂ . Of course, it is necessary to
consider one-stage rewards s(f), see (44), (45), instead of r(1)(f).

Up to now we looked for policies with minimal variance in the class of policies with
maximal total reward, resp. maximal average reward. However, considering stationary
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policy (even randomized) not maximizing total reward, resp. average reward, say fd ∈
Fd, policy and value iteration can be used for finding policies guaranteeing total reward
v(1)(fd), resp. average reward g(1)(fd) with minimal possible variances. To this end,
we can use standard algorithmic procedures where v(1)(f∗) is replaced by v(1)(fd), resp.
g(1)(f̂) is replaced by g(1)(fd) and F∗ by Fd, resp. F̂ by Fd.

For the sake of completeness we present in detail policy and value iteration algorithms
for finding optimal policies with minimal variances in transient models.

Algorithm 6.1. (Policy iterations for finding optimal policy with minimal variances.)
Construct a sequence of decisions f∗(k) ∈ F∗, along with a sequence of transient matrices
P̃ (f∗(k)), k = 0, 1, . . . such that

Step 0. Select matrix P̃ (f∗(0)) with f∗(0) ∈ F∗.

Step 1. For the matrix P̃ (f∗(k)) calculate the vector of second moments of total rewards
v(2)(f∗(k)) such that (cf. (12),(13))

v(2)(f∗(k)) = r(2)(f∗(k))+2 · P̃ (f∗(k))◦R ·v(1)(f∗)+ P̃ (f∗(k))◦R ·v(2)(f∗(k)). (53)

Step 2. Construct (if possible) matrix P̃ (f∗(k+1)) with f∗(k+1) ∈ F∗, such that

r(2)(f∗(k+1)) + P̃ (f∗(k+1)) · v(1)(f∗) ≤ v(2)(f∗(k)). (54)

To this end for each action set A∗i select fi ∈ A∗i such that

r(2)(f
∗(k+1)) + 2 · P̃ (f∗(k+1)) ◦R · v(1)(f∗) = min

f∈F∗
[r(2)(f) + 2 · P̃ (f) ◦R · v(1)(f∗)]

(observe that the vectorial minimum exists).

Step 3. If v(2)(f∗(k+1)) = v(2)(f∗(k)) then go to Step 4, else go to Step 1.

Step 4. Set P̃ (f̄∗) := P̃ (f∗(k+1)), find also all decisions f ∈ F∗ ⊂ F such that

f ∈ F∗ ⇒ v(2)(f̄∗) = r(2)(f∗) + 2 · P̃ (f∗) ◦R · v(1)(f∗) + P̃ (f∗) · v(2)(f̄∗), (55)

then stop.

Policy f̄∗ is the policy minimizing total variances in the class of all policies maximizing
total expected reward.

Algorithm 6.2. (Value iterations for finding optimal policies with minimal variances.)
Construct (recursively) the sequence of (column) vectors {v(2)(n), n = 0, 1, . . .} (where
v(2)(0) := 0, f∗ ∈ F∗)

v(2)(n+ 1) = min
f∈F∗

[r(2)(f) + 2 · P̃ (f) ◦R · v(1)(f∗) + P̃ (f) · v(2)(n)],

= [r(2)(f (n)) + 2 · P̃ (f (n)) ◦R · v(1)(f∗) + P̃ (f (n)) · v(2)(n)] (56)

(observe that the vectorial minimum in (56) exists).
If for a given ε > 0 the norm of ‖v(2)(n+ 1)− v(2)(n)‖ < ε for policy f (n) ∈ F then stop
and set f∗ := f (n).
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Policy f̄∗ is the policy minimizing total variance in the class of all policies maximizing
total expected reward (up to a given possible error equal to ε.)

7. CONCLUSIONS

The paper extends formulas for total reward of discounted and first passage models, as
well as for long run average reward of undiscounted models, in Markov decision chains
under specific forms of one-step rewards and non-constant values of discount factor. In
particular, using the recursive formula for total reward for finite time horizon the results
of [1, 11, 12, 16] are amplified and extended to transient and discounted models with
time-varying discount factor. The results on undiscounted models reported in section
5 are based on [11] where only uncontrolled unichain models were studied. For finding
policies with maximum total or average rewards policy and value iterations method can
be used. Similarly, as indicated in section 6, also in the class of optimal policies methods
of policy and value iterations can be used to find policies minimizing total variance of
optimal values.
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ed.), University of West Bohemia, Plzeň 2015, pp. 731–736.
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