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Abstract. Let G be a finite group. An element g ∈ G is called a vanishing element if there
exists an irreducible complex character χ of G such that χ(g) = 0. Denote by Vo(G) the
set of orders of vanishing elements of G. Ghasemabadi, Iranmanesh, Mavadatpour (2015),
in their paper presented the following conjecture: Let G be a finite group and M a finite
nonabelian simple group such that Vo(G) = Vo(M) and |G| = |M |. Then G ∼= M . We
answer in affirmative this conjecture for M = Sz(q), where q = 22n+1 and either q − 1,
q − √

2q + 1 or q +
√
2q + 1 is a prime number, and M = F4(q), where q = 2

n and either
q4 + 1 or q4 − q2 + 1 is a prime number.
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1. Introduction

Let G be a finite group. Denote by Irr(G) the set of all irreducible complex

characters of G. An element g ∈ G is called a vanishing element, if χ(g) = 0 for

some irreducible complex character χ of G. The set of all vanishing elements of G is

denoted by Van(G), and the set of orders of all vanishing elements of G is denoted

by Vo(G). It is well-known that from the set Vo(G) we can get some information

about the structure of the group G. In [4], it is proved that if G is a finite group

such that p ∈ π(G) and G has no vanishing element whose order is divisible by p,

then G has a normal Sylow p-subgroup. Also in [13], it is shown that if G is a finite

group such that Vo(G) = Vo(A5), then G ∼= A5. But not all finite simple groups are

characterizable by the set of orders of their vanishing elements. For example, it is

easy to see that Vo(L3(5)) = Vo(Aut(L3(5))), but L3(5) 6∼= Aut(L3(5)). Therefore

in [7], the authors put forward the following conjecture:
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Conjecture. Let G be a finite group and M a finite nonabelian simple group

such that Vo(G) = Vo(M) and |G| = |M |. Then G ∼= M .

In [7], the conjecture was proved for simple groups L2(q), where q ∈ {5, 7, 8, 9, 17},
L3(4), A7, Sz(8) and Sz(32). Then in [6], it is proved that sporadic simple groups,

alternating groups, projective special linear groups L2(p) where p is an odd prime,

and finite simple Kn-groups where n ∈ {3, 4}, satisfy this conjecture. This has
motivated us to prove this conjecture for some other simple groups as follows:

Main theorem. If G is a finite group such that Vo(G) = Vo(M) and |G| = |M |,
whereM is Sz(q) for q = 22n+1 and either q−1, q−√

2q+1 or q+
√
2q+1 is prime,

or M is F4(q) for q = 2n and either q4 + 1 or q4 − q2 + 1 is prime, then G ∼= M .

Although the problem is group theoretic, the language of graph theory can some-

times improve the understanding of the results. Let X be a finite set of positive

integers. The prime graph Π(X) is a graph whose vertices are the prime divisors

of elements of X , and two distinct vertices p and q are adjacent if there exists an

element of X divisible by pq. For a finite group G, we denote by ω(G) the set of ele-

ment orders of G, and by π(G) the set of prime divisors of |G|. The graph Π(ω(G))

is denoted by GK(G) and is called the Gruenberg-Kegel graph of G. We denote by

t(G) the number of connected components of GK(G), and by πi(G), i = 1, . . . , t(G),

the vertex set of the ith connected component of GK(G). If 2 ∈ π(G), we always

assume that 2 ∈ π1(G).

The prime graph Π(Vo(G)) is denoted by Γ(G) and is called the vanishing prime

graph of G. Obviously, the vanishing prime graph of G is a subgraph of Gruenberg-

Kegel graph of G.

Throughout this paper, we denote by π(n) the set of prime divisors of integer n.

All further notation can be found in [2], for instance.

2. Main results

A 2-Frobenius group is a group G which has a normal series 1 E H E K E G,

where K and G/H are Frobenius groups with kernels H and K/H , respectively. It

is a well-known result that 2-Frobenius groups are solvable.

A group G is said to be a nearly 2-Frobenius group if there exist normal sub-

groups F and L of G such that F is nilpotent, F = F1×F2 for normal subgroups F1

and F2 of G, G/F is a Frobenius group with kernel L/F , G/F1 is a Frobenius group

with kernel L/F1, and G/F2 is a 2-Frobenius group.

Theorem 2.1 ([12]). Let G be a finite group such that t(G) > 2. Then one of

the following conditions holds:

122



(1) G is either a Frobenius or a 2-Frobenius group.

(2) G has a normal series 1 E H E K E G such that π(H) ∪ π(G/K) ⊆ π1(G),

H is nilpotent, K/H is a nonabelian simple group, and G/H 6 Aut(K/H).

Theorem 2.2 ([1]). Let G be a Frobenius group of even order with Frobenius

kernel K and Frobenius complement H . Then t(G) = 2, and the prime graph

components of G are π(H) and π(K).

Lemma 2.3 ([4], [5]). (1) If G is a finite nonabelian simple group except A7, then

GK(G) = Γ(G).

(2) If G is a solvable group, then Γ(G) has at most 2 connected components.

Moreover, if Γ(G) is disconnected, then G is either a Frobenius group, or a nearly

2-Frobenius group.

Theorem 2.4 ([4], Theorem B). Let G be a finite nonsolvable group. If Γ(G)

is disconnected, then G has a unique nonabelian composition factor S, and t(S) is

greater than or equal to the number of connected components of Γ(G), unless G is

isomorphic to A7.

Lemma 2.5 ([4], Corollary 2.6). Let G be a group and K a nilpotent normal

subgroup of G. If K ∩Van(G) 6= ∅, then there exists g ∈ K ∩Van(G) whose order is

divisible by every prime in π(K).

The following lemma is an easy consequence of [9], Corollary 22.26.

Lemma 2.6. If χ ∈ Irr(G) vanishes on a p-element for some prime p, then

p | χ(1).
Let p be a prime number. A character χ ∈ Irr(G) is said to be of p-defect zero if p

is not a divisor of |G|/χ(1). It is well-known that if χ ∈ Irr(G) is of p-defect zero,

then for every element g ∈ G such that p | o(g), we have χ(g) = 0 ([8], Theorem 8.17).

In the following, we bring some well-known number theoretic theorems.

Lemma 2.7 ([3], Remark 1). The equation pm−qn = 1, where p and q are primes

and m,n > 1, has only one solution, namely 32 − 23 = 1.

Lemma 2.8 ([14], Zsigmondy theorem). Let p be a prime and n a positive integer.

Then one of the following assertions holds:

(1) there is a primitive prime p′ for pn − 1, that is, p′ | pn − 1 but p′ ∤ pm − 1, for

every 1 6 m < n,

(2) p = 2, n = 1 or 6,

(3) p is a Mersenne prime and n = 2.
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Lemma 2.9 ([10], Lemma 8). Assume q > 1 is a natural number, s =
n∏

i=1

(qi− 1),

p is a prime, p | s. We denote the power of p in the standard factorization of s by sp.
e = min{d : p | qd − 1}, qe = 1 + prk, p ∤ k. If p > 2 or r > 2, then sp < qnp/(p−1).

Let p be a prime number and (a, p) = 1. Let k > 1 be the smallest positive

integer such that ak ≡ 1 (mod n). Then k is called the order of a with respect to n

and we denote it by ordn(a). Obviously, by Euler-Fermat’s theorem it follows that

ordn(a) | ϕ(n). Also, if at ≡ 1 (mod n), then ordn(a) | t.

Theorem 2.10. Let G be a finite group such that Vo(G) = Vo(F4(q)) and |G| =
|F4(q)|, where q = 2n and either q4 + 1 or q4 − q2 + 1 is prime. Then G ∼= F4(q).

P r o o f. By the assumption Vo(G) = Vo(F4(q)), it is obvious that Γ(G) =

Γ(F4(q)). By Lemma 2.3, we know that Γ(F4(q)) = GK(F4(q)) has 3 connected

components including an isolated vertex p, where p ∈ {q4 + 1, q4 − q2 + 1}. Also,
note that |G| = |F4(q)| = q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1). Since p ∈ Vo(F4(q))

and Vo(G) = Vo(F4(q)), so p ∈ Vo(G). Thus there exist an element g ∈ G and an

irreducible character χ ∈ Irr(G) such that o(g) = p and χ(g) = 0. So p | χ(1) and
since |G|p = p we conclude that p ∤ |G|/χ(1). Therefore χ is of p-defect zero, and
hence for every element h ∈ G such that p | o(h) we have χ(h) = 0. So, by the

fact that p is an isolated vertex in Γ(G), we conclude that p is an isolated vertex in

GK(G). Hence t(G) > 2.

Since Γ(G) has three connected components, Lemma 2.3 implies that G is not

a solvable group, and consequently G is not a 2-Frobenius group. We also claim

that G is not a Frobenius group. Suppose that G is a Frobenius group with kernel K

and complement H . So |G| = |H ||K| and |H | | |K| − 1. Theorem 2.2 implies that

GK(G) has two connected components π(H) and π(K), and since |H | < |K|, it
follows that |H | = p and |K| = |G|/p. In both cases p = q4 + 1 and p = q4 − q2 + 1,

one can get a contradiction by the fact that |H | | |K| − 1. Therefore G is not

a Frobenius group. So by Theorem 2.1, G has a normal series 1 E H E K E G,

such that π(H) ∪ π(G/K) ⊆ π1(G), H is nilpotent, K/H is a nonabelian simple

group, and G/H 6 Aut(K/H). By Theorem 2.4 we have t(K/H) > 3. In both cases

p = q4 + 1 and p = q4 − q2 + 1, we use the classification of finite nonabelian simple

groups with more than two Gruenberg-Kegel graph connected components to prove

that K/H is isomorphic to F4(q).

Case 1. First suppose that p = q4 + 1 = 24n + 1. So π(n) ⊆ {2}. Otherwise
n = 2ab where a and b are integers and b > 1 is odd, and hence

q4 + 1 = 22
a+2b + 1 = (22

a+2

+ 1)(1− 22
a+2

+ . . .+ 22
a+2(b−1)),

which contradicts the assumption q4 + 1 is prime.
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⊲ K/H is not a sporadic simple group.

It is easy to show that K/H is not isomorphic to a sporadic simple group. For

example, if K/H ∼= Fi′24, then p = q4 + 1 = 17 and consequently q = 2. But

|Fi′24| ∤ |F4(2)|, a contradiction. In other cases, we can get a contradiction similarly.
⊲ K/H is not an alternating group.

Let K/H ∼= Ap′ , where p′ and p′ − 2 are primes. If p′ = p = 24n + 1, then

p′− 2 = 24n− 1 is a prime number, which is impossible. If p′− 2 = p = 24n+1, then

p′ = 24n + 3 = q4 + 3 is a divisor of |G| = q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1). Since

(p′, q(q4 + 1)) = 1, it follows that p′ = q4 + 3 is a divisor of q12 − 1. One can easily

get that q4 + 3 = 7, which is impossible.

⊲ K/H is not a simple group of Lie type, except F4(q).

If K/H is isomorphic to 2A5(2), E7(2), E7(3), A2(4), or
2E6(2), then we easily

get a contradiction similar to sporadic simple groups.

Let K/H ∼= A1(q
′), where q′ = 2m > 2. Therefore q′ − 1 = p or q′ + 1 = p. If

q′ − 1 = p = 24n + 1, then 2m − 24n = 2, a contradiction. So q′ + 1 = p = 24n + 1,

and hence m = 4n, and |K/H | = q′(q′2 − 1) = q4(q8 − 1). On the other hand,

G/K 6 Out(K/H), which implies that |G/K| | 4n, so |G/K| is a 2-power since
π(n) ⊆ {2}. Therefore 2(q12 − 1)(q6 − 1)(q2 − 1) | |H |. By considering Γ(G), we

conclude that there exist g ∈ G and χ ∈ Irr(G) such that π(o(g)) ⊆ π(q4 − q2 + 1)

and χ(g) = 0. Since π(o(g)) ⊆ π(q4− q2+1), (q4− q2+1, 2(q8−1)) = 1 and H E G,

we conclude that g ∈ H . Therefore H is a nilpotent normal subgroup of G such

that H ∩Van(G) 6= ∅. Now Lemma 2.5 implies that there exists a vanishing element
whose order is divisible by all prime divisors of |H |. So all prime divisors of |H | are
adjacent in Γ(G), which is a contradiction by Table 9 of [11].

Let K/H ∼= A1(q
′), where 3 < q′ = p′m ≡ ε (mod 4) for ε = ±1. Hence q′ =

24n + 1 = p or (q′ + ε)/2 = 24n + 1 = p. First let (q′ + ε)/2 = 24n + 1 = p. If

ε = 1, then q′ − 24n+1 = 1. Now Lemma 2.7 implies that q′ = p′ = 24n+1 + 1,

which is impossible since 3 | 24n+1 + 1 and 24n+1 + 1 6= 3. Let ε = −1. So

q′ = 24n+1 + 3 = 2q4 + 3 is a divisor of |G| = q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1).

Since q′ = p′m and (p′, q(q4+1)) = 1, we conclude that p′ | q12−1. On the other hand,

p′ is a divisor of 8q12+27, and consequently p′ | 35. But q′ ≡ −1 (mod 4), so p′ = 7.

Therefore 7m = 24n+1 + 3, which is impossible because 7m − 24n+1 ≡ 2 (mod 3).

Now let q′ = 24n + 1 = p. So q′ = p′ = q4 + 1, and hence |K/H | = p′(p′2 − 1)/2 =

q4(q4 + 1)(q4 + 2)/2. So (q4 + 2)/2 is a divisor of (q12 − 1)(q6 − 1)(q4 − 1)(q2 − 1).

Obviously π((q4 + 2)/2) ⊆ π(q12 − 1). Let r ∈ π((q4 + 2)/2). So r divides q12 − 1

and q12+8. Therefore r = 3, and 24n−1+1 = 3t for some integer t. Now Lemma 2.7

implies that n = 1. Therefore |G| = 224 ·36 ·52 ·72 ·13 ·17 and |K/H | = 24 ·32 ·17 and
|G/K| | 2. Hence {2, 3, 5, 7, 13} ⊆ π(H), and since H is nilpotent, the Gruenberg-

Kegel graph of G has two complete connected components with vertex set {17} and
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{2, 3, 5, 7, 13}. But 13 is an isolated vertex in Γ(G) = GK(F4(2)), which implies that

there exist a 13-element g ∈ G and χ ∈ Irr(G) such that χ(g) = 0. So 13 | χ(1) and
consequently 13 ∤ |G|/χ(1). Therefore we conclude that for every h ∈ G such that

13 | o(h) we have χ(h) = 0. Now by the fact that 13 is an isolated vertex of Γ(G),

but 13 is connected to some other vertices in GK(G), we get a contradiction.

Let K/H ∼= E8(q
′). Therefore p = q4 + 1 is an element of the set

{q′8 ± q′7 ∓ q′5 − q′4 ∓ q′3 ± q′ + 1, q′8 − q′6 + q′4 − q′2 + 1, q′8 − q′4 + 1}.

So

p = q4 +1 < (q′8 + q′7 + q′6 + q′5 + q′4 + q′3 + q′2 + q′ +1)(q′ − 1) = q′9 − 1 < q′9 +1,

which implies that q4 < q′9. But q′120 | |E8(q
′)|, and |E8(q

′)| is a divisor of
q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1). So q′120 < q52 = q4·13 < q′117, which is im-

possible.

Let K/H ∼= Sz(q′), where q′ = 22m+1 > 2. If 22m+1 − 1 = p = 24n + 1, then

22m+1 − 24n = 2, a contradiction. If 22m+1 ± 2m+1 + 1 = 24n + 1, then 2m+1 ×
(2m ± 1) = 24n, which is impossible.

Let K/H ∼= 2F4(q
′), where q′ = 22m+1 > 2. Then 22(2m+1) ± 23m+2 + 22m+1 ±

2m+1 + 1 = 24n + 1, which implies that 2m+1(23m+1 ± 22m+1 + 2m ± 1) = 24n,

a contradiction.

Let K/H ∼= 2G2(q
′) for q′ = 32m+1 > 3. Therefore 32m+1 ± 3m+1 + 1 = 24n + 1,

and consequently 3m+1(3m± 1) = 24n, which is impossible. If K/H ∼= G2(q
′), where

q′ ≡ 0 (mod 3), one can get a contradiction similarly.

Let K/H be isomorphic to 2Dp′(3), where p′ = 2m +1. Then either (3p
′

+1)/4 =

24n + 1, or (3p
′
−1 + 1)/2 = 24n + 1. If (3p

′

+ 1)/4 = 24n + 1, then 3p
′ − 3 = 24n+2,

a contradiction. If (3p
′
−1+1)/2 = 24n+1, then 3p

′
−1−24n+1 = 1, which is impossible

by Lemma 2.7.

Therefore K/H ∼= F4(q
′), where q′ = 2m and m is an integer. Obviously m 6 n.

Since p ∈ π(K/H), it follows that p = q4 + 1 is a divisor of q′24(q′12 − 1)(q′8 − 1)×
(q′6 − 1)(q′2 − 1). Note that p is a primitive prime divisor of 28n − 1. If m < n, it

follows that p ∈ π(q′12 − 1). So 212m ≡ 1 (mod p), and hence 8n | 12m. Since n is
a power of 2, we conclude that 2n | m, a contradiction. Som = n, andK/H ∼= F4(q).

Case 2. Now suppose that p = q4 − q2 + 1.

⊲ K/H is not a sporadic simple group.

If K/H ∼= Sz, then p = q4 − q2 + 1 = 11 or 13. The only possibility is q = 2.

But |Sz| ∤ |F4(2)|, a contradiction. For other sporadic simple groups, one can get
a contradiction similarly.
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⊲ K/H is not an alternating group.

Let K/H ∼= Ap′ , where p′ and p′ − 2 are primes. If p′ = q4 − q2 + 1, then

p′ − 2 = q4 − q2 − 1 is a prime divisor of |G| = q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1).

Since (q4 − q2 − 1, q24(q4 + 1)) = 1, it follows that q4 − q2 − 1 is a prime divisor of

q12 − 1, which is impossible. If p′ − 2 = q4 − q2 + 1, then p′ = q4 − q2 + 3 is a prime

divisor of |G|, which is a similar contradiction.
⊲ K/H is not a simple group of Lie type, except F4(q).

If K/H is isomorphic to 2A5(2), E7(2), E7(3), A2(4), or
2E6(2), then we easily get

a contradiction similarly to sporadic simple groups.

Let K/H ∼= A1(q
′), where q′ = 2m > 2. Therefore q′ − 1 = p or q′ + 1 = p.

If q′ − 1 = q4 − q2 + 1, then 2m − 24n + 22n = 2, which is impossible because

4 | 2m − 24n + 22n. If q′ + 1 = q4 − q2 + 1, then 2m = 22n(22n − 1), which is again

impossible.

Let K/H ∼= A1(q
′), where 3 < q′ = p′m ≡ ε (mod 4) for ε = ±1. Hence q′ = p

or (q′ + ε)/2 = p. First, let q′ = p = q4 − q2 + 1. So |K/H | = q2(q2 − 1)×
(q4 − q2+1)(q4− q2+2)/2 and |G/K| | 2. Obviously 2(q4+1) | |H |. By considering
Γ(G), there exist g ∈ G and χ ∈ Irr(G) such that π(o(g)) ⊆ π(q4 + 1) and χ(g) = 0.

Since (q4 + 1, |G/H |) = 1 and H E G, we conclude that g ∈ H . So H is a nilpotent

normal subgroup of G such that H ∩ Van(G) 6= ∅. Now by Lemma 2.5 there exists
a vanishing element whose order is divisible by all prime divisors of |H |. So all prime
divisors of |H | are adjacent in Γ(G), which is a contradiction. Now let (q′ + ε)/2 =

p = q4 − q2 + 1. If ε = −1, then q′ = 2q4 − 2q2 + 3 ≡ 0 (mod 3). So p′ = 3

and 2q4 − 2q2 + 3 = 3m. Therefore 2q2(q2 − 1)/3 = 3m−1 − 1. If m is even, then

|3m−1 − 1|2 = 2, a contradiction. So, m is odd and 2q2(q2 − 1)/3 = (3(m−1)/2 − 1)×
(3(m−1)/2 + 1). Since (3(m−1)/2 − 1, 3(m−1)/2 + 1) = 2, we have q2 | 3(m−1)/2 − δ

and 3(m−1)/2 + δ | 2(q2 − 1)/3 for δ = ±1. If q2 | 3(m−1)/2 + 1 and 3(m−1)/2 − 1 |
2(q2 − 1)/3, then there exists a positive integer k such that 3(m−1)/2 + 1 = q2k and

2(q2 − 1)/3 = (3(m−1)/2 − 1)k. If k > 1, then

3(m−1)/2 + 1 = q2k > 2q2 > 4(q2 − 1)/3 = 2(3(m−1)/2 − 1)k > 2(3(m−1)/2 − 1),

a contradiction. So k = 1, hence 3(m−1)/2+1 = q2 and 3(m−1)/2− 1 = 2(q2− 1)/3 =

2(3(m−1)/2)/3, which implies that m = 3 and q = 2. So q4 + 1 is prime, which

satisfies Case 1. In the case q2 | 3(m−1)/2 − 1 and 3(m−1)/2 + 1 | 2(q2 − 1)/3, we get

a contradiction similarly. If ε = 1, then one can get a contradiction similarly.

Let K/H ∼= Sz(q′), where q′ = 22m+1 > 2. If 22m+1 − 1 = p = 24n − 22n +1, then

22m+1 − 24n + 22n = 2, a contradiction. If 22m+1 ± 2m+1 + 1 = 24n − 22n + 1, then

2m+1(2m ± 1) = 22n(22n − 1). The only possibility is m = n = 1, so q4 + 1 is also

prime and satisfies Case 1.
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Let K/H ∼= 2F4(q
′), where q′ = 22m+1 > 2. Then 22(2m+1) ± 23m+2 + 22m+1 ±

2m+1 + 1 = 24n − 22n + 1, which implies that 2m+1(23m+1 ± 22m+1 + 2m ± 1) =

22n(22n−1), so m+1 = 2n and 23m+1±22m+1+2m±1 = 2m+1−1, a contradiction.

Let K/H ∼= 2G2(q
′) for q′ = 3m. Therefore 32m ± 3m + 1 = 24n − 22n + 1, and

consequently 3m(3m ± 1) = 22n(22n − 1). So 22n | 3m ± 1 and 3m | 22n − 1. Since

22n 6 3m±1 and 3m 6 22n−1, we conclude that 3m = 22n−1. So by Lemma 2.7, we

have m = n = 1, and hence q4 + 1 is prime and satisfies Case 1. If K/H ∼= 2G2(q
′),

where q′ = 32m+1 > 3, one can get a contradiction similarly.

LetK/H be isomorphic to 2Dp′(3), where p′ = 2m+1. Then either (3p
′

+1)/4 = p,

or (3p
′
−1 + 1)/2 = p. If (3p

′
−1 + 1)/2 = p = q4 − q2 + 1, then (3p

′
−1 + 1)/2 is

a primitive prime divisor of q12 − 1. So 12 divides (3p
′
−1 +1)/2− 1 = (3p

′
−1 − 1)/2,

a contradiction. If (3p
′

+1)/4 = p = q4−q2+1, then 3p
′
−1−1 = 4q2(q2−1)/3, and one

can get a contradiction by easy calculation similar to A1(q
′), where 3 < q′ = p′m ≡ ε

(mod 4) for ε = ±1.

Let K/H ∼= E8(q
′), where q′ = p′m for some prime p′. Therefore p is an element

of the set

{q′8 ± q′7 ∓ q′5 − q′4 ∓ q′3 ± q′ + 1, q′8 − q′6 + q′4 − q′2 + 1, q′8 − q′4 + 1}.

So

q3 + 1 < p = q2(q2 − 1) + 1 < (q′8 + q′7 + q′6 + q′5 + q′4 + q′3 + q′2 + q′ + 1)(q′ − 1)

= q′9 − 1 < q′9 + 1,

which implies that q3 < q′9. Let S ∈ Sylp′(G). So q′120 | |S|. If p′ 6= 2, then since

p′ | |G| we have p′ | (q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1). So p′ |
6∏

i=1

(q2i − 1). Now

by Lemma 2.9, q′120 6 |S| 6 q12p
′/(p′

−1) 6 q18 < q′54, which is a contradiction. If

p′ = 2, then |S| = q24. Therefore q′120 6 q24 = (q3)8 < q′72, which is impossible.

Therefore K/H ∼= F4(q
′), where q′ = 2m and m is an integer. Obviously m 6 n.

Since p ∈ π(K/H), it follows that p = q4 − q2 + 1 is a divisor of q′24(q′12 − 1)×
(q′8 − 1)(q′6 − 1)(q′2 − 1). Note that p is a primitive prime divisor of 212n − 1. So if

m < n, then p ∤ |G|, a contradiction. Therefore m = n, and K/H ∼= F4(q).

So in both cases K/H ∼= F4(q) and by the fact that |G| = |F4(q)|, it is obvious
that H = 1 and G = K, hence G ∼= F4(q) and the result is proved. �

Theorem 2.11. If G is a finite group such that Vo(G) = Vo(Sz(q)) and |G| =
|Sz(q)|, where q = 22n+1 > 2 and either q − 1, q −√

2q + 1 or q +
√
2q + 1 is prime,

then G ∼= Sz(q).
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P r o o f. Since Vo(G) = Vo(Sz(q)), we have Γ(G) = Γ(Sz(q)). By Lemma 2.3,

we know that Γ(G) = GK(Sz(q)) has four connected components including two

isolated vertices 2 and p, where p ∈ {q − 1, q − √
2q + 1, q +

√
2q + 1}. Also we

have |G| = |Sz(q)| = q2(q − 1)(q2 + 1). Since p ∈ Vo(Sz(q)) = Vo(G), there exist

an element g ∈ G and an irreducible character χ ∈ Irr(G) such that o(g) = p and

χ(g) = 0. So by Lemma 2.6, p | χ(1). Therefore p ∤ |G|/χ(1), which implies that χ
is of p-defect zero. So for every element h ∈ G such that p | o(h), we conclude that
χ(h) = 0. Consequently, p is also an isolated vertex of GK(G), and hence t(G) > 2.

Since Γ(G) has more than 2 connected components, Lemma 2.3 implies that G is

not solvable. So G is not a 2-Frobenius group. Now let G be a Frobenius group with

Frobenius kernel K and Frobenius complement H . So GK(G) has two connected

components with vertex sets π(K) and π(H). Also, |G| = |H ||K|, and |H | | |K| − 1.

Therefore |H | < |K|. Since |G| = q2(q − 1)(q2 + 1) and p is an isolated vertex of

GK(G), we conclude that |H | = p and |K| = |G|/p. So, p is a divisor of |G|/p − 1,

which is a contradiction for every p ∈ {q − 1, q −√
2q + 1, q +

√
2q + 1}.

So G is neither a Frobenius group, nor a 2-Frobenius group. Hence Theorem 2.1

implies that G has a normal series 1 E H E K E G, such that H is a nilpotent

group, K/H is a nonabelian simple group, and π(H) ∪ π(G/K) ⊆ π1(G). Since

|K/H | | |G|, we have 3 ∤ |K/H |. So, K/H ∼= Sz(q′), where q′ = 22m+1 > 2, and

m 6 n is an integer. We claim that m = n.

First, let p = q − 1 = 22n+1 − 1. So p is a primitive prime divisor of 22n+1 − 1,

by Lemma 2.8. Since p | |K/H | and m < n, we conclude that p | 22(2m+1) + 1.

Hence, 24(2m+1) ≡ 1 (mod p), and so ordp(2) = 2n+1 divides 4(2m+1). Therefore,

2n+ 1 | 2m+ 1, which implies that n 6 m, and consequently n = m.

Now let p = q+
√
2q+1 = 22n+1+2n+1+1. So p ∈ {22m+1−1, 22m+1−2m+1+1,

22m+1+2m+1+1}. If p = 22m+1−1, then p is a primitive prime divisor of 22m+1−1.

Since p | 24(2n+1) − 1, we have 2m + 1 | 4(2n + 1) and so 2m + 1 | 2n + 1, hence

p | 22n+1 − 1, a contradiction. If 22m+1 − 2m+1 + 1 = p = 22n+1 + 2n+1 + 1, then

2m+1(2m−1) = 2n+1(2n+1), which is impossible. So 22m+1+2m+1+1 = p = 22n+1+

2n+1+1, and consequentlym = n, as required. If p = q−√
2q+1 = 22n+1−2n+1+1,

then we can similarly get that m = n.

Therefore m = n and K/H ∼= Sz(q), and by the fact that |G| = |Sz(q)|, we have
H = 1, G = K, and G ∼= Sz(q) as required. �
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