
Kybernetika

Ahlem Belabbaci; Hadda Cherroun; Loek Cleophas; Djelloul Ziadi
Tree pattern matching from regular tree expressions

Kybernetika, Vol. 54 (2018), No. 2, 221–242

Persistent URL: http://dml.cz/dmlcz/147190

Terms of use:
© Institute of Information Theory and Automation AS CR, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/147190
http://dml.cz

KYBERNET IKA — VOLUME 5 4 (2 0 1 8) , NUMBER 2 , PAGES 2 2 1 – 2 4 2

TREE PATTERN MATCHING
FROM REGULAR TREE EXPRESSIONS

Ahlem Belabbaci, Hadda Cherroun, Loek Cleophas and Djelloul Ziadi

In this work we deal with tree pattern matching over ranked trees, where the pattern set to
be matched against is defined by a regular tree expression. We present a new method that uses
a tree automaton constructed inductively from a regular tree expression. First we construct
a special tree automaton for the regular tree expression of the pattern E, which is somehow
a generalization of Thompson automaton for strings. Then we run the constructed automaton
on the subject tree t. The pattern matching algorithm requires an O(|t||E|) time complexity,
where |t| is the number of nodes of t and |E| is the size of the regular tree expression E. The
novelty of this contribution besides the low time complexity is that the set of patterns can be
infinite, since we use regular tree expressions to represent patterns.

Keywords: tree automata, Thompson Tree automata, regular tree expressions, tree pattern
matching

Classification: 68Q45

1. INTRODUCTION

Tree pattern matching algorithms play an important role in many applications such as
compilers, validation of XML documents, automatic proofs, etc. This problem can be
defined as the search for all occurrences of one or more given trees (patterns) in a subject
tree.

Tree pattern matching can be considered as an extension of string pattern matching.
Several algorithms have appeared in the literature [9, 12, 20, 21, 25, 26, 29].

While most tree pattern matching literature appeared from the early 1980s onwards,
the 1975 PhD thesis of Kron was an earlier exception [22]. Kron uses so-called orthogonal
tree automata, automata that read the sequence of states assigned to the sequence of
children of a node to determine the state to be assigned to the parent node.

In 1982, Hoffmann and O’Donnell in [20] presented a more extensive study of tree
pattern matching. They proposed several algorithms solving the tree pattern matching
problem for both bottom-up and top-down approaches. First, the bottom-up method
generalizes string matching. The idea here is to find at each node in the subject tree, all
patterns or parts of patterns matching this node. Interestingly, Hoffmann and O’Donnell
do not mention bottom-up tree automata, even though their bottom-up method in

DOI: 10.14736/kyb-2018-2-0221

http://doi.org/10.14736/kyb-2018-2-0221

222 AH. BELABBACI, H. CHERROUN, L. CLEOPHAS, AND D. ZIADI

essence corresponds to tabulating such an automaton. Their top-down approach reduces
tree matching to a string-matching problem by using a string-path matching automaton.

Another solution to the tree pattern matching problem exists. The principle is
to encode the subject tree as strings, allowing the use of string pattern matching
techniques. In [25] a generalization of the Knuth-Morris-Pratt algorithm of string pattern
matching into trees is given. In the Knuth-Morris-Pratt algorithm the method used is
the precomputation of shifts [29]. A more recent work using linearization is presented in
[31], where a backward tree pattern matching technique is approached that uses ideas
from Boyer-Moore and Horspool’s string pattern matching algorithms.

Other techniques use a pushdown automaton [12, 26]. In [12] the method used is
analogous to the construction of string pattern matchers: for given patterns, a non-
deterministic pushdown automaton is created which is then determinized for efficiency
reasons.

In a different way, Itokawa et al [21], use a depth-first unary degree sequence (DFUDS),
which is a data structure associated with an ordered tree and expressing the features of a
graph structure. They then propose a pattern matching algorithm that uses the DFUDS
data structure to determine whether or not a given tree has features of a tree pattern.

All the previously discussed tree pattern matching algorithms consider the pattern as
a tree or a finite set of trees. In our work, we focus on a more generalized problem by
using patterns represented by a regular tree expression.

A basic and well-known algorithm for regular expression pattern matching for strings
is Thompson algorithm [30]. The principle of this algorithm consists of building, by
induction, an automaton from the regular expression of the pattern and in a second step
to process the subject text using the constructed automaton in order to identify the
different pattern occurrences. This algorithm has been used in many practical tools such
as the grep utility on Linux [1, 17].

In this paper we propose a tree pattern matching algorithm inspired by Thompson
pattern matching for strings. This algorithm is based on the construction of a special
tree automaton that can be viewed as a generalization of Thompson one for strings. Our
proposal might be useful in all fields that need a lookup for one or multiple patterns in a
subject tree, especially when these patterns are represented by a regular tree expression.
For example: instruction selection in automatic code generation [2, 13], genetics [11, 15],
term rewriting [19, 20], verification of network protocol and cryptography [14, 18].

A similar method constructing an automaton from a regular tree expression was
described in [28], in which the authors use rather a different sort of automata (pushdown
automata) and require a linearization of the trees involved; that is, the automata used
there do not directly process trees but instead an encoding of trees into strings (postfix
notation), a level of indirectness not required in our approach.

In the case of words, several algorithms were proposed in order to convert a regular
expression into an automaton. The most common construction is the standard or position
automaton [16, 27]. Brzozowski’s construction [6] of a deterministic finite automaton
uses derivatives of regular expressions. This approach was modified by Antimirov [3] who
defined partial derivatives to construct a non-deterministic automaton from a regular
expression E. Another construction was proposed by Thompson [30] based on induction
over the structure of a regular expression.

Tree pattern matching from regular tree expression 223

By analogy to words, some algorithms were proposed for trees. Among these works
is the one of Laugerotte et al. [24], who gave an algorithm to compute the position
tree automaton. The work of Kuske and Meinecke [23] consists of the definition of
partial derivatives for regular tree expressions and then building a non-deterministic
finite tree automaton recognizing the language denoted by such an expression. They
adapt and modify the approach of Champarnaud and Ziadi [7, 8] in the word case. Tree
derivatives were introduced by Levine in [4, 5] and extend the concept of Brzozowski’s
string derivatives.

The rest of the paper is organized as follows. In Section 2, some preliminaries are
presented. In Section 3, we give the inductive construction of the generalization of
Thompson automaton to the tree case. In Section 4 we describe our algorithm for tree
pattern matching with its complexity. Section 5 concludes the paper.

2. PRELIMINARIES

Let (Σ, ar) be a ranked alphabet, where Σ is a finite set of symbols and ar represents the
rank of Σ which is a mapping from Σ into N. The set of symbols of rank n is denoted by
Σn. The elements of rank 0 are called constants. A tree t over Σ is inductively defined as
follows: t = a, t = f(t1, . . . , tk) where a is a constant, k is any integer satisfying k ≥ 1,
f is any symbol in Σk and t1, . . . , tk are any k trees over Σ. We denote by |t| the number
of nodes of a tree t and by TΣ the set of trees over Σ. A tree language is a subset of TΣ.
For our Thompson tree automaton-based pattern matching algorithm later in this pa-
per, we want to index the nodes of the subject tree. To do so, we mark each node
as follows: Mark(f) = f1 if f is the root symbol, Mark(f) = fMark(Parent(f))pos(f)

otherwise, where pos(f) is the position of a node f among its sibling. For example,
let t = f(f(a, b), h(g(d))) be a tree. After marking t , we get the following indexed
tree: f1(f11(a111, b112), h12(g121(d1211))). Let ΣM be the set of marked symbols of Σ.
We define the mapping h from ΣM to Σ, which for a marked symbol fu1...uk

gives its
corresponding symbol in Σ, that is f .
A (Bottom Up) Finite Tree Automaton A is a tuple (Q,Σ, QT ,∆) where Q is a finite set
of states, QT ⊆ Q is the set of final states and ∆ ⊆

⋃
n≥0(Q×Σn×Qn) is the set of transi-

tion rules [10, 23]. This set is equivalent to the function ∆ from Qn×Σn to 2Q defined by
(q, f, q1, . . . , qn) ∈ ∆⇔ q ∈ ∆(q1, . . . , qn, f). The domain of this function can be extended
to (2Q)n × Σn as follows: ∆(Q1, . . . , Qn, f) =

⋃
(q1,...,qn)∈Q1×···×Qn

∆(q1, . . . , qn, f).

Finally, we denote by ∆∗ the function from TΣ to 2Q defined for any tree in TΣ

as follows: ∆∗(t) = ∆(a) if t = a with a ∈ Σ0, ∆∗(t) = ∆(f,∆∗(t1), . . . ,∆∗(tn))
∆∗(t) = ∆(∆∗(t1), . . . ,∆∗(tn), f) if t = f(t1, . . . , tn) with f ∈ Σn and t1, . . . , tn ∈ TΣ. A
tree is accepted by A if and only if ∆∗(t) ∩QT 6= ∅. The language L(A) recognized by A
is the set of trees accepted by A, that is L(A) = {t ∈ TΣ | ∆∗(t) ∩QT 6= ∅}.

The tree substitution of the constant c ∈ Σ0 by the language L ⊆ TΣ in the tree
t ∈ TΣ, denoted by t{c← L}, is the tree language L if t = c; the language {d} if t = d
where d ∈ Σ0 and (d 6= c); and finally the language f(t1{c ← L}, . . . , tn{c ← L}) if
t = f(t1, . . . , tn). Then, the c−product language L1 ·c L2 of two languages L1, L2 ⊆ TΣ is
defined as: L1 ·cL2 =

⋃
t∈L1
{t{c← L2}}. The sequence of successive iterations is defined

for L ⊆ TΣ as: L0c = {c} and L(n+1)c = Lnc ∪L ·c Lnc . The c−closure of L is defined as

224 AH. BELABBACI, H. CHERROUN, L. CLEOPHAS, AND D. ZIADI

L∗c =
⋃
n≥0 L

nc . The constant c is called the symbol of the c−closure operator.
A regular tree expression E over a ranked alphabet Σ is inductively defined by

E = 0, E ∈ Σ0, E = f(E1, · · · ,En), E = E1 + E2, E = E1 ·c E2, E = E1
∗c , where

c ∈ Σ0, n ∈ N, f ∈ Σn and E1,E2, . . . ,En are any n regular expressions over Σ. We
call E = f(E1, · · · ,En) the arity operation. We denote by |E| the size of the regular
tree expression E. Every regular tree expression E can be seen as a tree over the
ranked alphabet Σ ∪ {+, ·c, ∗c | c ∈ Σ0} where + and ·c can be seen as symbols of
rank 2 and ∗c has rank 1. The language JEK denoted by E is inductively defined by
J0K = ∅, JcK = {c}, Jf(E1,E2, · · · ,En)K = f(JE1K, . . . , JEnK), JE1 + E2K = JE1K ∪ JE2K,
JE1 ·c E2K = JE1K ·c JE2K, JE1

∗cK = JE1K∗c where n ∈ N, E1,E2, . . . ,En are any n regular
expressions, f ∈ Σn and c ∈ Σ0. A tree language is accepted by some tree automaton if
and only if it can be denoted by a regular tree expression [10, 23].

A tree pattern (for sake of simplicity we use pattern) is a tree in which variable leaves
may exist, that is leaves with a symbol which can be substituted by any other sub-tree
of the tree language. This symbol is referred to as υ. Tree pattern matching problem is
the identification of occurrences of one or more tree patterns in a subject tree. For each
tree t ∈ TΣ and each pattern p ∈ TΣ∪{υ}, a sub-tree in t matches the pattern p in a node
n means that p = t/n, where t/n is the sub-tree of t rooted by n.

The graphical representation of the tree automaton is similar to the one of strings. The
states are represented by circles with double circles for the final states, and transitions
between states by edges labeled with a symbol of the alphabet Σ0 or ε. For tree automata,
some changes are made in the representation of transitions. A transition from state q0 to
states q1, q2, ..., qn with a symbol or an ε-transition is represented by i) an edge connecting
the state q0 to a small circle unlabeled with a symbol or ε, ii) n edges connecting the
small circle to the state qi labeled by i where i : 1..n. In the case of directed automata
(top-down or bottom- up) edges are directed [9] (see for example Figure 12).

3. CONSTRUCTION OF TREE AUTOMATON FROM A REGULAR TREE
EXPRESSION

Before presenting the proposed construction, we introduce some notations and definitions.
We add a symbol ε of rank 1 to the alphabet Σ. This symbol has the same meaning as ε
in the case of strings. For example, the tree f(ε(ε(a)), b) is equal to f(a, b).

Definition 3.1. Let t be a tree, we define the function ε−closure(t) that removes ε-nodes
from t as follows:

ε−closure(a) = a for each a in Σ0

ε−closure(ε(t)) = ε−closure(t)

ε−closure(g(t1, . . . , tn)) = g(ε−closure(t1), . . . , ε−closure(tn)).

From the definition of ε−closure(t) we can deduce the following properties:

Property 3.2. Let t1, t2 ∈ TΣ . We have then

ε−closure(t1 ·c t2) = ε−closure(t1) ·c ε−closure(t2).

Tree pattern matching from regular tree expression 225

This property can be extended to sets of trees.

Property 3.3. Let s, t1, . . . , tn ∈ TΣ. We have then

ε−closure(s ·c {t1, . . . , tn}) = ε−closure(s) ·c {ε−closure(t1), . . . , ε−closure(tn)}.

Given the difference between strings and trees concerning the concatenation and
closure operations, we should take care when constructing a tree automaton. Indeed, we
have designed a special form of tree automaton that allows us to inductively construct a
tree automaton from a regular tree expression in a straightforward way. For the sake of
simplicity we will use the name Thompson tree automaton to refer to this construction.

The basic idea of our construction is to build, from a given regular tree expression E,
a finite bottom-up tree automaton which has the form illustrated by Figure 1. The main
characteristic of this automaton is that it contains one initial state for each element of
Σ0 (the frame QΣ0

). This condition makes more sense for dealing with the concatenation
operation, since as a result we have to perform concatenation in just one state.

In order to keep this form, some ε-transitions are added during the inductive con-
structions.

qEa

qEb

qEc

qE

...
...

a

b

c

1

1

1

ε

ε

ε

QΣ0

ThE

Fig. 1: General Form of Thompson Tree Automaton.

Let E be a regular tree expression. The generalized Thompson automaton ThE =
(QE ,Σ∪{ε}, {qE},∆E) over the alphabet Σ∪{ε} associated with E is defined inductively
as follows. Let ThF , ThG and ThEi , be the generalized Thompson automaton associated
respectively with the tree expressions F , G and Ei, for i = 1 . . . n, then:

The empty language E = 0 (Figure 2): QE = {qE} and ∆E = ∅

qE

Fig. 2: The Empty Language Thompson Tree Automaton.

226 AH. BELABBACI, H. CHERROUN, L. CLEOPHAS, AND D. ZIADI

The leaf tree E = a, a ∈ Σ0 (Figure 3): QE = {qE} and ∆E = {a→ qE}

qE a

Fig. 3: The Leaf Tree Thompson Automaton.

For the purpose of clarity, we refer hereafter to the set ∆X \ {a → qXa | a ∈ Σ0} by
∆>0,X , where X is a regular tree expression.

The arity function E = f(E1, . . . , En) (Figure 4):

QE =
⋃n
i=1Q

Ei ∪ {qE} ∪ {qEa | a ∈ Σ0} and

∆E =

n⋃
i=1

(∆>0,Ei) ∪ {a→ qEa | a ∈ Σ0}

∪ {f(qE1 , qE2 , . . . , qEn)→ qE} ∪ {ε(qEa)→ qEi
a | a ∈ Σ0 , i = 1 . . . n}.

The union E = F +G (Figure 5): QE = QF ∪QG ∪ {qE} ∪ {qEa | a ∈ Σ0} and

∆E = ∆>0,F ∪∆>0,G ∪ {a→ qEa | a ∈ Σ0}
∪ {ε(qEa)→ qFa | a ∈ Σ0} ∪ {ε(qEa)→ qGa | a ∈ Σ0}
∪ {ε(qF)→ qE} ∪ {ε(qG)→ qE}.

The concatenation E = F ·c G (Figure 6): QE = QF ∪ QG ∪ {qE} ∪ {qEa | a ∈ Σ0}
and

∆E =∆>0,F ∪∆>0,G ∪ {a→ qEa | a ∈ Σ0}
∪ {ε(qEa)→ qGa | a ∈ Σ0} ∪ {ε(qEa)→ qFa | a ∈ Σ0 \ {c}}
∪ {ε(qG)→ qFc } ∪ {ε(qF)→ qE}.

The closure E = F ∗c (Figure 7): QE = QF ∪ {qE} ∪ {qEa | a ∈ Σ0} and

∆E =∆>0,F ∪ {a→ qEa | a ∈ Σ0}
∪ {ε(qEc)→ qE} ∪ {ε(qF)→ qFc } ∪ {ε(qF)→ qE}
∪ {ε(qEa)→ qFa | a ∈ Σ0}.

Let q ∈ Q be a state. Let Qε−(q) = {p ∈ Q | ε(p) −→ q}.
From the construction of Thompson tree automata, we deduce the following property.

Property 3.4. For a state q ∈ Q, we have |Qε−(q)| 6 2.

Tree pattern matching from regular tree expression 227

qEa

qEb

qEc

qE1
c

q
E1
bqE1

qE1
a

q
E2
bqE2

qE2
a

qE2
c

qEn
a

qEn
bqEn

qEn
c

qE

a

b

c

f

1

2

n

1

1

1

1

1

1

1

1

1

ε

ε

ε

ε

ε

ε

ε

ε

ε

QΣ0

ThE1

ThE2

ThEn

ThE

Fig. 4: Thompson Tree Automaton For E = f(E1, E2, . . . , En).

228 AH. BELABBACI, H. CHERROUN, L. CLEOPHAS, AND D. ZIADI

qEa

qEb

qEc

qFb

qFa

qFc

qGb

qGa

qGc

qF

qG

qE

a

b

c

1

1

1

ε

ε

ε

1

1

1
ε

ε

ε

1

1

ε

ε

QΣ0

ThF

ThG

ThE

Fig. 5: Thompson Tree Automaton for E = F +G.

qEa

qEb

qEcqGb

qGa

qGc

qGqFc

qFb

qFa

qE

a

b

c

ε

1ε

1

1

1

ε

ε

ε

ε

ε

QΣ0

ThG

ThF

ThE

Fig. 6: Thompson Tree Automaton for E = F ·c G.

Tree pattern matching from regular tree expression 229

qEa

qEb

qEc

qFa

qFb

qFc

qFqE

a

b

c

1

1

1

ε

ε

ε

1ε

1

ε

1

ε

QΣ0

ThFThE

Fig. 7: Thompson Tree Automaton for E = F ∗,c.

Theorem 3.5. For a regular tree expression E, ε− closure(L(ThE)) = JEK.

Before proving this theorem, we prove the two next propositions.
Let Σ0 = {x1, x2, · · · , xn} and t, t, t̃ ∈ TΣ such that

t =

(
· · ·
((
t ·x1 ε(x1)

)
·x2 ε(x2)

)
· · ·
)
·xn ε(xn)

and

t̃ =

{
· · ·
{{
t{ε(x1)← x1}

}
ε(x2)← x2

}
· · ·
}
ε(xn)← xn.

Let A, A and Ã be tree automata such that A = (Q,Σ, qA,∆),A = (Q,Σ, qA,∆) and

Ã = (Q̃,Σ, qÃ, ∆̃), where

Q = Q ∪ {q′Aa | ∀ a ∈ Σ0 ∧ qAa ∈ Q}

qA = qA

∆ = ∆ \ {a→ qAa | a ∈ Σ0 ∧ qAa ∈ Q}

∪ {a→ q′
A
a | a ∈ Σ0 ∧ q′

A
a ∈ Q}

∪ {ε(q′Aa)→ qAa }

and

Q̃ = Q \ {q′Aa , | ∀ a ∈ Σ0 ∧ q′
A
a ∈ Q}

qÃ = qA

230 AH. BELABBACI, H. CHERROUN, L. CLEOPHAS, AND D. ZIADI

∆̃ = ∆ \ {a→ q′
A
a | a ∈ Σ0 ∧ q′

A
a ∈ Q}

\ {ε(q′Aa)→ qAa | qAa ∈ Q}
∪ {a→ qAa | a ∈ Σ0 ∧ qAa ∈ Q}.

These automata are introduced in order to improve the readability of the proofs of
Theorem 3.5. A is the automaton to which we have added ε-transitions after initial
transitions, and Ã is the one from which we have removed these ε-transitions.

Proposition 3.6. If t ∈ L(A), then t ∈ L(A).

P r o o f . We have t ∈ L(A), so ∆∗A(t) = qA. According to the construction of A, every
transition of the form a → qAa such that a ∈ Σ0 ∧ qAa ∈ Q in the path recognizing t in

A is replaced by the two transitions a→ q′
A
a and ε(q′

A
a)→ qAa with a ∈ Σ0 ∧ q′Aa ∈ Q.

Then ∆
∗
(t) = qA = qA, that is t ∈ L(A). �

Remark 3.7. Using Property 3.2, it is obvious that ε−closure(t) = ε−closure(t).

ε−closure(t) = ε.− closure

(((
(t ·x1

ε(x1)) ·x2
ε(x2)

)
· · ·
)
·xn

ε(xn)

)

=

(
· · ·
((

ε−closure(t) ·x1 ε−closure(ε(x1))
)
·x2 ε−closure(ε(x2))

)

· · ·

)
·xn

ε−closure(ε(xn))

=

(
· · ·
((
ε−closure(t) ·x1

(x1)
)
·x2

(x2)
)
· · ·
)
·xn

(xn)

= ε−closure(t).

Proposition 3.8. If t ∈ L(A), then t̃ ∈ L(Ã).

P r o o f . We have t ∈ L(A), that is ∆∗A(t) = qA. According to the construction of the

automaton Ã, in the path recognizing t in A we substitute all transitions of the form
a → q′

A
a and ε(q′

A
a) → qAa with a ∈ Σ0 ∧ q′Aa ∈ Q by the transition a → qAa for each

a ∈ Σ0 ∧ qAa ∈ Q. Then ∆̃∗(t̃) = qA = qÃ, that is t̃ ∈ L(Ã). �

Remark 3.9. Like Remark 3.7, it is clear that ε−closure(t) = ε−closure(t̃).

In order to prove Theorem 3.5, we prove the two next lemmas. This is accomplished by
induction on the structure of the tree automaton using Propositions 3.6 and 3.8. We
give the proof for the cases of a leaf tree, arity and concatenation operations. The case
of union is straightforward and the closure is similar to the concatenation.

Lemma 3.10. For each tree t ∈ JEK, there exists a tree t′ ∈ L(ThE) such that
ε−closure(t′) = t.

Tree pattern matching from regular tree expression 231

P r o o f .
Case E = a Let t ∈ JEK, t = a. From Thompson leaf tree automaton construction, we
have L(ThE) = {a}, so t′ = a. We have also ε−closure(t′) = ε−closure(a) = t.

Case E = g(E1, E2, . . . , En) where n is the rank of g. Let t ∈ JEK, so t = g(e1, e2, . . . , en),
with ti ∈ JEiK and 1 < i 6 n. According to the induction hypothesis, there exist
t′i ∈ L(ThEi) such that ε−closure(t′i) = ti with i = 1 . . . n. We assume that ti = t′i since
according to the construction of Thompson automaton generalization, t′i has the same
structure as ti. This assumption will be used in the concatenation case as well.

According to the construction of Thompson automaton for the arity, and using Propo-
sition 3.6, we have ∆

∗
(ti) = qEi for i = 1 · · ·n. Moreover, we have g(qE1 , qE2 , . . . , qEn)→

qE ∈ ∆, then ∆∗(t) = qE where t = g(t1, t2, · · · , tn), that is t ∈ L(ThE). We show that
ε−closure(t) = t. From Remark 3.7, we have ε−closure(ti) = ε−closure(ti), so

ε−closure(t) = ε−closure(g(t1, t2, · · · , tn)).

Using Property 3.2, we get

ε−closure(t) = g(ε−closure(t1), ε−closure(t2), · · · , ε−closure(tn)).

Using Remark 3.7, we have

ε−closure(t) = g(ε−closure(t1), ε−closure(t2), · · · , ε−closure(tn)).

Using the induction hypothesis, we get

ε−closure(t) = g(t1, t2, · · · , tn) = t.

Case E = F ·c G Let t ∈ JEK, t ∈ JF K ·c JGK means t ∈ {(tf)·c{t1, . . . , tk}}, such that
ti ∈ JGK, i = 1 . . . k and tf ∈ JF K. According to the induction hypothesis, there exist
t′f , t

′
1, . . . , t

′
k with t′f ∈ L(ThF) and t′i ∈ L(ThG), i = 1 . . . k, such that ε−closure(t′f) = tf

and ε−closure(t′k) = tk. Let ti = t′i, tf = t′f and t ∈ {(tf) ·c {t1, t2, · · · , tk}}. According
to the construction of Thompson automaton of concatenation and using Proposition 3.6,
we have

∆∗(ti) = qG (1)

According to the same construction and also using Proposition 3.6, the same transitions
are replaced except for a = c where c is the concatenation symbol, which is replaced by
ε(qG)→ qFc . Then, we have

∆∗(tf) = qF . (2)

From 1 and 2 we get ∆∗(t) = qE . We show that ε−closure(t) = t.

ε−closure(t) = ε−closure({(tf ·)c{t1, t2, · · · , tk}}).

Using Property 3.3, we get

ε−closure(t) = ε−closure(tf) ·c {ε−closure(t1), ε−closure(t2), · · · , ε−closure(tk)}.

232 AH. BELABBACI, H. CHERROUN, L. CLEOPHAS, AND D. ZIADI

Using Remark 3.7, we have

ε−closure(t) = ε−closure(tf) ·c {ε−closure(t1), ε−closure(t2), · · · , ε−closure(tk)}.

And finally using the induction hypothesis, we get

ε−closure(t) = tf ·c {t1, t2, · · · , tk} = t.

�

Lemma 3.11. If t ∈ L(ThE), then ε−closure(t) ∈ JEK.

P r o o f .
Case of leaf tree automaton Let t ∈ L(ThE). According to the construction of the
generalized Thompson automaton of leaf tree we have t = a. Moreover, we have
ε−closure(t) = ε−closure(a) = a and a ∈ JEK.
Case of arity automaton Let t ∈ L(ThE), t = g(t1, t2, . . . , tn). According to the induction

hypothesis and using Proposition 3.8, there exist t1, t2, . . . , tn ∈ TΣ such that t̃1 ∈
L(ThE1) and ε−closure(t̃k) ∈ JEkK, for k = 1 . . . n.

Furthermore, we have

ε−closure(t) = ε−closure(g(t1, t2, . . . , tn)).

From Definition 3.1, we have

ε−closure(t) = g(ε−closure(t1), ε−closure(t2), . . . , ε−closure(tn)).

And using Remark 3.9, we get

ε−closure(t) = g(ε−closure(t̃1), ε−closure(t̃2), . . . , ε−closure(t̃n)).

Using the induction hypothesis, we have ε−closure(t̃i) ∈ JEiK, for i = 1 . . . n where n
is the rank of g. Then,

g(ε−closure(t̃1), ε−closure(t̃2), . . . , ε−closure(t̃n)) ∈ JEK.

Case of concatenation automaton Let t ∈ L(ThE), then t ∈ {(tf)·c{t1, . . . , tk}}, such
that ti ∈ JGK, i = 1 . . . k. According to the induction hypothesis and using Proposition 3.8,
there exist t1, . . . , tk, tf ∈ TΣ such that t̃i ∈ L(ThG) with ε−closure(t̃i) ∈ JGK, i = 1 . . . k,
and t̃f ∈ L(ThF) with ε−closure(t̃f) ∈ JF K.

Moreover, we have

ε−closure(t) = ε−closure(tf ·c{t1, . . . , tk}).

Using Property 3.3, we get

ε−closure(t) = ε−closure(tf) ·c {ε−closure(t1), . . . , ε−closure(tk)}.

Tree pattern matching from regular tree expression 233

Using Remark 3.9, we have

ε−closure(t) = ε−closure(t̃f) ·c {ε−closure(t̃1), . . . , ε−closure(t̃k)}.

And finally using the induction hypothesis, we get

ε−closure(t) ∈ JF K ·c JGK ∈ JF ·c GK ∈ JEK.

�

Corollary 3.12. The number of transitions in the generalized Thompson tree automaton
for a regular tree expression E is linear in |E|.

P r o o f . As each symbol in the regular tree expression E generates a constant number
of transitions in the inductive construction of Thompson tree automaton, and since we
can consider each regular tree expression as a tree where leaves represent the symbols of
the alphabet and internal nodes represent the regular tree expression operators, so the
number of transitions generated for this automaton’s construction is O(|E|). �

Example of constructing a Thompson tree automaton

Let E be a regular tree expression such that E = (f(a, b) + g(c) ·c d)∗,d. Figures 8 – 11

show the successive construction of Thompson tree Automaton for E.

Fig. 8: Thompson Tree Automaton of f(a, b).

234 AH. BELABBACI, H. CHERROUN, L. CLEOPHAS, AND D. ZIADI

Fig. 9: Thompson Tree Automaton of g(c) ·c d.

qE8
aqE3

aqE1

q
E8
bq

E3
bqE2

qE3qE8

q
E8
dq

E7
dqE6qE5qE7

a1ε1ε

b1ε1ε

1

2
f1ε

d1ε1ε1ε1g

1

ε

Fig. 10: Thompson Tree Automaton of E8 = E3 + E7 = f(a, b) + g(c) ·c d.

Tree pattern matching from regular tree expression 235

qE8
aqE3

aqE1 qEa

qEb

qEd

q
E8
bq

E3
bqE2

qE3qE8qE

q
E8
dq

E7
dqE6qE5qE7

a1ε1ε

b1ε1ε

1

2
f1ε

d1ε1ε1ε1g

1

ε

1

1

1

ε

ε

ε

1ε

1

ε

1

ε

Fig. 11: Thompson Tree Automaton of E = E∗,d8 = (f(a, b) + g(c) ·c d)∗,d.

4. APPLICATION TO TREE PATTERN MATCHING

By analogy to words, we will use the extended Thompson automaton in tree pattern
matching. Let E be a regular tree expression and t a marked and linearized tree.

Searching occurrences of E in a subject tree t is done in two steps:

• Constructing Thompson tree automaton for E,

• Running the constructed automaton on t: each time the final state is reached, an
occurrence of the pattern E has been recognized.

The construction proposed in Section 3 allows us to perform two kinds of pattern
matching:

1. Top-down pattern matching by constructing a Thompson tree automaton for the
regular tree expression E ·υ (Σ ∪ {υ})∗,υ, where E is the regular expression of the
tree pattern and υ ∈ Σ0 represents the variable leaf.

2. Bottom-up pattern matching by using the Thompson tree automaton of the regular
tree expression E. We don’t need to add a variable leaf as we perform the pattern
matching from leaves and if a pattern exists it must be a sub-tree of the subject
tree.

Note that both the top-down and the bottom-up versions of Thompson tree automaton
are non-deterministic, but the top-down one is highly non-deterministic compared to the
bottom-up one, thus the pattern matching takes more time. (Furthermore, in general
the bottom-up automaton could be determinized while the top-down one could not be,
given the limited power of deterministic top-down tree automata). For this reason we
will develop hereafter only the bottom-up approach.

236 AH. BELABBACI, H. CHERROUN, L. CLEOPHAS, AND D. ZIADI

4.1. Tree pattern matching algorithm

We will not make the constructed automaton deterministic, in order to keep the reduced
number of states and transitions. In fact, to verify that a tree t is recognized by a tree
automaton ThE , we will simulate a determinization by activating in each step of the
traversal of the constructed automaton, states that are reachable from initial states.

Definition 4.1. For a state q ∈ Q, we define the set Qεq = {p | ε(q) −→ p ∈ ∆}.

This definition can be extended to set of states.

Definition 4.2. For a subset P ⊆ Q, we define the set QεP =
⋃
q∈P Q

ε
q.

These two definitions are implemented in Algorithm 1 (Skip Epsilon). Let P ⊆ Q be
a set of states. We define the set λ(P) = {q ∈ P | Qεq = ∅}.

Algorithm 1: Function Skip Epsilon

Input: P : Set of states.
Output: Set of reachable states from q after skipping ε-transitions.
1 R← P ;
2 X ← ∅ ;
3 While (R 6= ∅) Do
4 X ← X ∪ λ(R) ;
5 R← QεR ;}
6 EndWhile
7 Return(X);

In function Skip Epsilon (Algorithm 1), we calculate the set of reachable states from a
set of states P . In every iteration of the loop while (line 3), we add the set λ(R), which
represents the subset of states of P that don’t lead to any other state by an ε-transition,
to the output set (line 4). The set R, initialized by P , contains at each step the reachable
states after skipping one ε-transition (line 5). These instructions are repeated until there
is no more ε-transitions to be reached.

According to the inductive construction of Thompson tree automata and using
Definition 4.2, we can deduce the following property which guarantees that in a Thompson
tree automaton, no cycles of ε-transitions exist.

Property 4.3. For a subset P ⊂ Q, QεP 6= P

Corollary 4.4. The function Skip Epsilon has O(|E|) time complexity.

P r o o f . From Property 4.3 we deduce that the loop while has a finite number of
iterations. Let M be this number of iterations and Ri be the subset of states calculated
in the ith iteration. So, this loop is calculated in

∑M
i=1 |λ(Ri)|. Using Property 3.4,∑M

i=1 |λ(Ri)| 6 2|Q|. Therefore, the function Skip Epsilon has O(|Q|) time complexity.
Using Corollary 3.12, this complexity can be bounded by O(|E|). �

Tree pattern matching from regular tree expression 237

Definition 4.5. Let Qf be the set of reachable states after reading f , that is Qf = {p ∈
Q | ∃ q1, · · · , qn ∈ Q, f(q1, · · · , qn) −→ p ∈ ∆}.

Definition 4.6. Let Qif be the set of states that are the ith child of f , that is Qif =
{qi ∈ Q | f(q1, · · · , qi, · · · , qn) −→ p ∈ ∆}.

These two definitions are used in Algorithm 2 (function Move) in order to define the
set of reachable states after reading a symbol f ∈ Σn.

In the function Move (Algorithm 2) we start by computing sets Qf and Qif for
i = 1 . . . n, where n is the arity of the symbol f . Then, we select from the set Qf states
for which all children already exist in the underlying set Qif . Therefore, we get the output
set of states reachable by reading the symbol f .

Algorithm 2: Function Move

Input: P1, P2, . . . , Pn : Sets of states. f ∈ Σn.
Output: R : Set of states.
1 Compute Qf and Qif for i = 1, . . . , n ;
2 R← ∅ ;
3 Foreach (p ∈ Qf) Do
4 //Let q1, . . . , qi, . . . , qn ∈ Q such that f(q1, . . . , qi, . . . , qn) −→ p ∈ ∆
5 If (qi ∈ (Pi ∩Qif), for i = 1, . . . , n)) Then
6 R← R ∪ {p}
7 EndIf
8 EndForeach
9 Return(R);

Corollary 4.7. The function Move has O(|E|) time complexity.

P r o o f . Both the foreach loop (line 3) and the membership test (line 5) require O(r|Q|)
time complexity, where r is the maximal arity for Σ, that is an O(|Q|) time complexity.
As we want to express the complexity in terms of the input regular tree expression, we
use Corollary 3.12 to bound |Q| by |E|. So Algorithm 2 requires O(|E|) time complexity.

�

Tree pattern matching algorithm using Thompson tree automaton is presented in
Algorithm 3. This algorithm takes as input a marked subject tree t and the Thompson
tree automaton ThE of the pattern’s regular tree expression E. We run the automaton
using the functions Skip Epsilon (Algorithm 1) and Move(Algorithm 2) in order to find
occurrences of the pattern in the subject tree. Each time the final state qE is reached,
an occurrence of the pattern is found, and the symbol leading to the final state is added
to the output set.

Algorithm 3: Algorithm TPM

Input: tu1...uk
: a node of the subject tree, ThE : Thompson automaton for E.

Output: Pu1...uk
: set of states.

238 AH. BELABBACI, H. CHERROUN, L. CLEOPHAS, AND D. ZIADI

1 If (ar(t) = 0) Then
2 Pu1...uk

← Skip Epsilon(Move(h(tu1...uk
))) ;

3 Else
4 Pu1...uk

← Skip Epsilon(Move(TPM(t1), TPM(t2), . . . , TPM(tn), h(tu1...uk
)));

// n = ar(t)
5 EndIf
6 If (qE ∈ Pu1...uk

) Then
7 occ← occ ∪ {tu1...uk} ; Pu1...uk

← Pu1...uk
\ {qE} ;

8 EndIf
9 Return(Pu1...uk

);

In the TPM algorithm (Algorithm 3) we associate a set Pu1...uk
to each node tu1...uk

of the subject tree t. As the algorithm goes on these sets maintain the reachable states
during the traversal of the automaton by reading nodes of t. For each node tu1...uk

, we
call the functions Move and Skip Epsilon in order to calculate the new set Pu1...uk

taking
as input parameters the symbol tu1...uk

and the sets calculated recursively Pu1...uk
. If

the final state of the pattern’s Thompson tree automaton is included in the set Pu1...uk
,

we add the symbol tu1...uk
to the set of nodes matching the pattern occ.

Theorem 4.8. The tree pattern matching algorithm using Thompson tree automaton
requires O(|t||E|) time complexity.

P r o o f . In Algorithm 3, the recursive call of TPM allows the process of all nodes in t,
that is |t|. Using the functions Move and Skip Epsilon for each node, we get an O(|t||E|)
time complexity. �

4.2. Example of tree pattern matching using Thompson automaton

Let us consider the previous regular tree expression E = (f(a, b) + g(c) ·c d)∗,d a pattern’s
regular tree expression, and t = a111b112d1211f11g121h12f1 a marked and linearized
subject tree. Figure 12 recalls Thompson tree automaton ThE constructed for E.

In order to determine nodes that match the pattern’s regular tree expression, we
run Algorithm 3 with t and ThE as input parameters. Figure 13 shows the successive
construction of sets Pu1...uk

by using the functions Move and Skip Epsilon.

5. CONCLUSION

In this paper we have presented a new algorithm for tree pattern matching problem
where we look for one or multiple occurrences of trees from some tree language, that is
matched by the pattern represented by a regular tree expression in a target tree: the
subject tree.

We have addressed this problem in two steps. First, we have proposed a generalization
of Thompson automaton for strings to trees. The automaton used was constructed
inductively on the structure of the pattern’s regular tree expression. Then, we have
presented a tree pattern matching algorithm that runs the extended Thompson automaton
on the subject tree.

Tree pattern matching from regular tree expression 239

234 1

5

11

678

910qE

1213141516

a1ε1ε

b1ε1ε

1

2
f1ε

d1ε1ε1ε1g

1

ε

1

1

1

ε

ε

ε

1ε

1

ε

1

ε

Fig. 12: Thompson Tree Automaton of the Pattern.

Fig. 13: Example of Running TPM Algorithm Using Thompson Tree Automaton.

240 AH. BELABBACI, H. CHERROUN, L. CLEOPHAS, AND D. ZIADI

The tree pattern matching can be done in O(|t||E|) time complexity, where t is the
subject tree and E is the regular tree expression representing the pattern language.
Despite the low theoretical complexity of our tree pattern matching algorithm, it might
be necessary to get an idea about its practical one, which we estimate to be much lower
since we have bounded all subsets of states by the set of all states Q of Thompson tree
automaton. In order to do that, we aim to implement besides the tree pattern matching
algorithm and the tree automaton acceptor, a parametrized regular tree expressions
generator that generates random regular tree expressions as patterns and a random
subject tree. The latter should contain at least one occurrence of the underlying pattern.

6. ACKNOWLEDGMENT

This work is supported by a South Africa-Algeria Cooperation Project funded by the South
African National Research Foundation and the Algerian MESRS-DGRSDT under project A/AS-
2013-002. Any opinion, finding and conclusion or recommendation expressed in this material is
that of the author(s) and the NRF/MESRS-DGRSDT do not accept any liability in this regard.

The authors would like to thank Younes Guellouma for helpful comments and suggestions on
an earlier draft of this paper.

(Received October 20, 2016)

R E F E R E N C E S

[1] T. A. Assaleh and W. Ai: Survey of Global Regular Expression Print (GREP) Tools. 2004.
http://www.cosc.brocku.ca/~taa/papers/abou-assaleh csci6306a.pdf

[2] A. V. Aho and M. Ganapathi: Efficient tree pattern matching (extended abstract): An aid
to code generation. In: Proc. 12th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 1985, pp. 334–340.

[3] V. M. Antimirov: Partial derivatives of regular expressions and finite automaton construc-
tions. Theor. Comput. Sci. 155 (1996), 291–319. DOI:10.1016/0304-3975(95)00182-4

[4] L. Barry: Derivatives of tree sets with applications to grammatical inference. IEEE
Trans. Pattern Analysis and Machine Intelligence, IEEE Computer Soc. 3 (1981), 285-293.
DOI:10.1109/tpami.1981.4767101

[5] L. Barry: The use of tree derivatives and a sample support parameter for inferring tree
systems. IEEE Trans. Pattern Analysis and Machine Intelligence, IEEE Computer Soc. 4
(1982), 25–34. DOI:10.1109/tpami.1982.4767191

[6] J. A. Brzozowski: Derivatives of regular expressions. J. ACM 11 (1964), 481–494.
DOI:10.1145/321239.321249

[7] J.-M. Champarnaud and D. Ziadi: From C-continuations to new quadratic algorithms for
automaton synthesis. IJAC 11 (2001), 707–736. DOI:10.1142/s0218196701000772

[8] J.-M. Champarnaud and D. Ziadi: Canonical derivatives, partial derivatives and finite
automaton constructions. Theor. Comput. Sci. 289 (2002), 137–163. DOI:10.1016/s0304-
3975(01)00267-5

[9] L. Cleophas: Tree Algorithms: Two Taxonomies and a Toolkit. PhD Thesis, Department
of Mathematics and Computer Science, Technische Universiteit Eindhoven, 2008.

http://www.cosc.brocku.ca/~taa/papers/abou-assaleh_csci6306a.pdf
http://dx.doi.org/10.1016/0304-3975(95)00182-4
http://dx.doi.org/10.1109/tpami.1981.4767101
http://dx.doi.org/10.1109/tpami.1982.4767191
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1142/s0218196701000772
http://dx.doi.org/10.1016/s0304-3975(01)00267-5
http://dx.doi.org/10.1016/s0304-3975(01)00267-5

Tree pattern matching from regular tree expression 241

[10] H. Comon, M. Dauchet, R. Gilleron, C. Loding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi: Tree Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2008.

[11] J.-F. Dufayard, L. Duret, S. Penel, M. Gouy, F. Rechenmann, and G. Perrière: Tree
pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in
homologous gene sequence databases. Bioinformatics, Oxford Univ Press, 21 (2005),
2596–2603. DOI:10.1093/bioinformatics/bti325

[12] T. Flouri, C. S. Iliopoulos, J. Janoušek, B. Melichar, and S. P. Pissis: Tree template
matching in ranked ordered trees by pushdown automata. J. Discrete Algorithms 17 (2012),
15–23. DOI:10.1016/j.jda.2012.10.003

[13] Ch. W. Fraser, R. R. Henry, and T. A. Proebsting: BURG: Fast optimal instruction selection
and tree parsing. SIGPLAN Not, ACM 27 (1992), 68–76. DOI:10.1145/131080.131089

[14] T. Genet and F. Klay: Rewriting for cryptographic protocol verification. In: Proc. 17th
International Conference on Automated Deduction, CADE-17, Springer-Verlag, London
2000, pp. 271–290. DOI:10.1007/10721959 21

[15] R. Giegerich: A Declarative Approach to the Development of Dynamic Programming
Algorithms, Applied to RNA Folding. Report, 1998.

[16] V. M. Glushkov: The abstract theory of automata. Russian Math. Surveys 16 (1961) 1–53.
DOI:10.1070/rm1961v016n05abeh004112

[17] E. Goebelbecker: Using grep: Moving from DOS? Discover the power of this Linux utility.
Linux Journal, Belltown Media 18 (1995).

[18] J. Goubault-Larrecq: A Method for Automatic Cryptographic Protocol Verification. In:
Parallel and Distributed Processing, Springer 2000, pp. 977–984. DOI:10.1007/3-540-45591-
4 134

[19] A. Gräf: Left-to-right Tree Pattern Matching. In: Rewriting Techniques and Applications,
Springer 1991, pp. 323–334. DOI:10.1007/3-540-53904-2 107

[20] Ch. M. Hoffmann and M. J. O’Donnell: Pattern matching in trees. J. ACM 29 (1982),
68–95. DOI:10.1145/322290.322295

[21] Y. Itokawa, M. Wada, T. Ishii, and T. Uchida: Pattern Matching Algorithm Using
a Succinct Data Structure for Tree-Structured Patterns. In: Intelligent Control and
Innovative Computing, Lecture Notes in Electrical Engineering, Springer US 2012, pp. 349–
361. DOI:10.1007/978-1-4614-1695-1 27

[22] H. H. Kron: Tree Templates and Subtree Transformational Grammars. PhD Thesis,
University of California, Santa Cruz 1975.

[23] D. Kuske and I. Meinecke: Construction of tree automata from regular expressions. RAIRO
– Theor. Inf. and Appl. 45 (2011), 347–370. DOI:10.1051/ita/2011107

[24] É. Laugerotte, N. O. Sebti, and D. Ziadi: From regular tree expression to position tree
automaton. In: Language and Automata Theory and Applications – 7th International
Conference, LATA, Bilbao 2013, pp. 395–406. DOI:10.1007/978-3-642-37064-9 35

[25] H.-T. Lu and Y. Wuu: A simple tree pattern-matching algorithm. In: Proc. Workshop on
Algorithms and Theory of Computation, Citeseer 2000.

[26] M. Madhavan and P. Shankar: Optimal regular tree pattern matching using pushdown
automata. In: Foundations of Software Technology and Theoretical Computer Science,
18th Conference, Chennai 1998, pp. 122–133. DOI:10.1007/978-3-540-49382-2 11

http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1093/bioinformatics/bti325
http://dx.doi.org/10.1016/j.jda.2012.10.003
http://dx.doi.org/10.1145/131080.131089
http://dx.doi.org/10.1007/10721959_21
http://dx.doi.org/10.1070/rm1961v016n05abeh004112
http://dx.doi.org/10.1007/3-540-45591-4_134
http://dx.doi.org/10.1007/3-540-45591-4_134
http://dx.doi.org/10.1007/3-540-53904-2_107
http://dx.doi.org/10.1145/322290.322295
http://dx.doi.org/10.1007/978-1-4614-1695-1_27
http://dx.doi.org/10.1051/ita/2011107
http://dx.doi.org/10.1007/978-3-642-37064-9_35
http://dx.doi.org/10.1007/978-3-540-49382-2_11

242 AH. BELABBACI, H. CHERROUN, L. CLEOPHAS, AND D. ZIADI

[27] R. McNaughton and H. Yamada: Regular expressions and finite state graphs for automata.
Electronic Computers, IRE Trans. EC-9 (1960), 39–47. DOI:10.1109/tec.1960.5221603

[28] R. Polách, J. Janoušek, and B. Melichar: Regular tree expressions and deterministic
pushdown automata. In: Mathematical and Engineering Methods in Computer Science –
7th International Doctoral Workshop, MEMICS, Lednice 2011, pp. 70–77.

[29] E. M. Reingold, K. J. Urban, and D. Gries: K-M-P string matching revisited. Inf. Process.
Lett. 64 (1997), 217–223. DOI:10.1016/s0020-0190(97)00173-7

[30] K. Thompson: Regular expression search algorithm. Commun. ACM 11 (1968), 419–422.
DOI:10.1145/363347.363387

[31] J. Trávńıček, J. Janoušek, B. Melichar, and L. G. Cleophas: Backward linearised tree
pattern matching. In: Language and Automata Theory and Applications – 9th International
Conference, LATA, Nice 2015, pp. 599–610. DOI:10.1007/978-3-319-15579-1 47

Ahlem Belabbaci, Laboratoire d’informatique et de mathématiques – Université Amar
Telidji, Laghouat. Algérie.

e-mail: ah.belabbaci@lagh-univ.dz

Hadda Cherroun, Laboratoire d’informatique et de mathématiques – Université Amar
Telidji, Laghouat. Algérie.

e-mail: Hadda Cherroun@lagh-univ.dz

Loek Cleophas, FASTAR Research Group, Stellenbosch University, South Africa and
Foundations of Language Processing Group, Ume̊a University. Sweden.

e-mail: loek@fastar.org

Djelloul Ziadi, LITIS – Université de Rouen. France.
e-mail: djelloul.Ziadi@univ-rouen.fr

http://dx.doi.org/10.1109/tec.1960.5221603
http://dx.doi.org/10.1016/s0020-0190(97)00173-7
http://dx.doi.org/10.1145/363347.363387
http://dx.doi.org/10.1007/978-3-319-15579-1_47

		webmaster@dml.cz
	2018-05-30T17:56:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

