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1. Introduction

The Riemann integral is perhaps the most widely known integral. It is the first

integral learned in elementary calculus. However, this integral has several limitations
and the class of Riemann-integrable functions is quite limited. One of the attempts

to solve some of the limitations of the Riemann integral was done by Henri Lebesgue
(1875–1941). He formulated the Lebesgue integral which turns out to be the cor-

rect one for almost all uses and is the one used almost exclusively by professional
mathematicians, see [13]. However, the Lebesgue integral is technically involved es-

pecially for non-mathematicians and requires an extensive study of measure theory.
The Henstock integral, which was studied independently by Henstock and Kurzweil

in the 1950s and later known as the Henstock-Kurzweil integral, is one of the no-
table integrals that were introduced which in some sense is more general than the

Lebesgue integral. Since then, Henstock-Kurzweil integration has been deeply stud-
ied and investigated by numerous authors (see [8], [10], [11], [12], [13], [14]). The
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Henstock-Kurzweil integral is a Riemann-type definition of integral which is more

explicit and minimizes the technicalities in the classical approach of the Lebesgue
integral. This approach to integration is known as the generalized Riemann approach
or Henstock approach.

In stochastic calculus, it is impossible to define stochastic integrals using the Rie-

mann approach since the integrators have paths of unbounded variation and inte-
grands are highly oscillatory, see [22]. The most common integrator is the Brownian

motion. For the same reason, it is not even possible to define the stochastic integral
as a Riemann-Stieltjes integral (see [16]). In the classical approach to stochastic

integration, the stochastic integral of an adapted stochastic process is obtained from
the mean square limit of stochastic integrals for simple processes. This approach is

similar to defining the Lebesgue integral of a measurable function. Hence, to give a
more explicit definition and reduce the technicalities in the classical way of defining

the stochastic integral, Henstock approach to stochastic integration had already been
studied in several papers (see [2], [15], [18], [22], [23]).

The concept of stochastic integral has been extended to infinite-dimensional

spaces, mainly Hilbert and Banach spaces (see [4], [6], [19]). The stochastic integral
in Hilbert spaces is presented in a manner similar to the real-valued case. The

integrand is an operator-valued stochastic process and the integrator is a Q-Wiener
process, a Hilbert space-valued Wiener process which is dependent on a symmetric

nonnegative definite trace class operator Q. However, there seems to be no unify-
ing treatment of stochastic integration in a general Banach space. In [21], Riedle

introduced a stochastic integral with respect to cylindrical Wiener processes and
asserts that this definition is a straightforward extension of the real-valued situation

which results in simple conditions on the integrand. The strength in defining this
stochastic integral is that there is no need to put any geometric constraints on the

Banach space being considered.

One of the highlights in stochastic calculus after defining the stochastic integral

is the formulation of Itô’s formula. This formula is named after the Japanese ma-
thematician Kiyosi Itô and is considered as the stochastic counterpart of the classical

chain rule of differentiation. In 1973, Black and Scholes used Itô formula to find the
price of an option. Different versions and extensions of Itô’s formula in Hilbert spaces

can be found in literature (see [3], [4], [6], [19], [24]).

In this paper, we define the Itô-Henstock integral of an operator-valued stochastic
process with respect to a Hilbert space-valued Q-Wiener process. We also formulate

a version of Itô’s formula. We do not claim here that the Itô-Henstock integral is
equivalent to the classical stochastic integral in Hilbert spaces (see [4]). However,

this will serve as a starting point in giving an alternative definition of stochastic
integrals in infinite-dimensional spaces using Henstock approach.
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2. Preliminaries

Throughout this paper, let (Ω,F ,P) be a probability space equipped with a se-
quence {Ft : 0 6 t 6 T } of σ-subfields of F such that Ft ⊆ F and Ft1 ⊆ Ft2 for

t1 < t2, called a filtration. A probability space together with {Ft : 0 6 t 6 T }, or
simply {Ft}, is called a filtered probability space and is denoted by (Ω,F , {Ft},P).
Let H be a separable Banach space and B(H) be the Borel σ-field of H , i.e., the

smallest σ-field containing all closed (or open) subsets of H . A mapping h : Ω → H

such that {ω ∈ Ω: h(ω) ∈ A} ∈ F for everyA ∈ B(H) is called ameasurable mapping
or a random variable. In this case, h is said to be F -measurable. Given a random
variable h : Ω → H , consider L(h) defined by L(h)(A) = P({ω ∈ Ω: h(ω) ∈ A}) for
all A ∈ B(H). The probability measure L(h) on (H,B(H)) is called the probability

distribution or the law of h (see [4], page 18).
A stochastic process, or simply a process, on [0, T ] is a mapping f : [0, T ]×Ω→ H

such that f(t, ·) : Ω → H is a random variable for every t ∈ [0, T ]. More often, we
ignore the dependence of f on ω and write ft for f(t, ω). The process f is usually

denoted by {ft}06t6T . A process f : [0, T ]× Ω → H is said to be adapted to {Ft}
if ft is Ft-measurable for all t ∈ [0, T ]. When no confusion arises, we may refer to a

process adapted to {Ft} as simply an adapted process.
Let (U, ‖·‖U) and (V, ‖·‖U ) be separable Hilbert spaces with respective inner pro-

ducts 〈·, ·〉U and 〈·, ·〉V . Denote by L(U, V ) the space of all bounded linear operators
Q : U → V equipped with the norm ‖Q‖L(U,V ) = sup

u∈U,‖u‖U=1

‖Q(u)‖V . For conve-

nience, we shall write Qu for Q(u) and L(U) for L(U,U). Denote by L2(Ω, V ) the

space of all square-integrable random variables g : Ω → V equipped with the norm

‖g‖L2(Ω,V ) =

 ∫

Ω

‖g(ω)‖2V dP(ω).

The adjoint or dual Q∗ of an operator Q ∈ L(U) is the unique map Q∗ ∈ L(U) such

that 〈Q∗u, u′〉U = 〈u,Qu′〉U for all u, u′ ∈ U . An operator Q ∈ L(U) is said to be
self-adjoint or symmetric if for all u, u′ ∈ U , 〈Qu, u′〉U = 〈u,Qu′〉U and is said to be
nonnegative definite if for every u ∈ U , 〈Qu, u〉U > 0. If Q ∈ L(U) is nonnegative
definite, by the square-root lemma (see [20], page 196) there exists a unique operator

S ∈ L(U) such that S is nonnegative definite and S2 = Q. The operator S is denoted
by Q1/2.

Let {ej}∞j=1, or simply {ej}, be an orthonormal basis in U . If Q ∈ L(U) is
nonnegative definite, then we define the trace of Q by

trQ =

∞∑

j=1

〈Qej , ej〉U .
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It is shown in [20], page 206, that trQ is well-defined and independent of the choice

of orthonormal basis. An operator Q : U → U is said to be trace-class if tr[Q] :=

tr(QQ∗)1/2 < ∞. Denote by L1(U) the class of all trace-class operators on U . It is
known from [20], page 209, that L1(U) equipped with the norm ‖Q‖1 = tr[Q] is a

Banach space. If Q ∈ L(U) is a symmetric nonnegative definite trace-class operator,
then there exists an orthonormal basis {ej} ⊂ U and a sequence of positive real

numbers {λj} such that
Qej = λjej ∀ j ∈ N

and λj → 0 as j → ∞, see [20], page 203. We shall call the sequence of pairs {λj , ej}
an eigensequence defined by Q.

Let Q : U → U be either a symmetric nonnegative definite trace-class operator or

Q = 1U , where 1U is the identity operator on U . If Q is a trace-class operator, let
{λj , ej} be an eigensequence defined by Q. Then the subspace UQ := Q1/2U of U

equipped with the inner product

〈u, v〉UQ
=

∞∑

j=1

1

λj
〈u, ej〉U 〈v, ej〉U

is a separable Hilbert space with {
√
λjej} as its orthonormal basis (see [4], page 90,

and [6], page 23).

Let {fj} be an orthonormal basis in UQ. An operator S ∈ L(UQ, V ) is said to be

Hilbert-Schmidt if
∞∑

j=1

‖Sfj‖2V =

∞∑

j=1

〈Sfj , Sfj〉V < ∞.

Denote by L2(UQ, V ) the class of all Hilbert-Schmidt operators from UQ to V . It
is known from [19], page 112, that L2(UQ, V ) is a separable Hilbert space equipped

with the norm

‖S‖L2(UQ,V ) =

Ã

∞∑

j=1

‖Sfj‖2V .

The Hilbert-Schmidt operator S ∈ L2(UQ, V ) and the norm ‖S‖L2(UQ,V ) are inde-
pendent of the choice of the orthonormal basis (see [4], page 418 and [19], page 111).

It is shown in [6], page 25, that L(U, V ) is properly contained in L2(UQ, V ).

A real-valued random variable X : Ω → R is called normal or Gaussian, with

mean m and variance σ2, if its density function is given by

f(x) =
1

σ
√
2π

exp
(
− (x−m)2

2σ2

)
, x ∈ R.
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In this case, the probability distribution of X is called a Gaussian distribution and

we write L(X) ∼ N (m,σ2).

Let X be a real-valued random variable defined on a probability space (Ω,F ,P).

The expected value of X , denoted by E[X ], is defined as the Lebesgue integral

E[X ] :=

∫

Ω

X(ω) dP.

Let U be a separable Hilbert space and Q : U → U be a symmetric nonnegative
definite trace-class operator. Assume that X̃ : U → L2(Ω,R) satisfies the following

conditions:

(i) X̃ is linear on U ;

(ii) for every u ∈ U , X̃(u) is a real-valued Gaussian random variable with mean
zero;

(iii) for all u, u′ ∈ U , E[X̃(u)X̃(u′)] = 〈Qu, u′〉U .
By Kolmogorov’s two series theorem, see [25], page 46, there exists a random variable
X : Ω → U such that

(2.1) X̃(u)(ω) = 〈X(ω), u〉U P-almost surely (abbrev. as P-a.s.).

We call X a U -valued Gaussian random variable with covariance Q. We remark that

if Q is not assumed to be a symmetric nonnegative definite trace-class operator, then
by the Strong law of large numbers, see [7], page 489, it is not always true that there

exists a random variable X : Ω → U satisfying (2.1). A U -valued process {Yt}06t6T

defined on a probability space (Ω,F ,P) is called Gaussian if for any n ∈ N and

0 6 t1, t2, . . . , tn 6 T , (Yt1 , Yt2 , . . . , Ytn) is a U
n-valued Gaussian random variable.

Let B = {Bt}06t6T be an adapted real-valued process. Then B is called a Brow-
nian motion or real-valued Wiener process if the following properties are satisfied:

(i) B(0, ω) = 0 for all ω ∈ Ω;

(ii) for 0 6 s < t 6 T , the increment Bt − Bs is Gaussian with L(Bt − Bs) ∼
N (0, t− s);

(iii) for 0 6 s < t 6 T , Bt −Bs is independent of Fs;

(iv) B(·, ω) : [0, T ] → R is continuous for almost all ω ∈ Ω.

The next defintion extends the concept of a Brownian motion to a Hilbert space-

valued Wiener process.

Definition 2.1 ([6]). Let U be a separable Hilbert space, Q : U → U be a
symmetric nonnegative definite trace-class operator, {λj , ej} be an eigensequence
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defined by Q, and {Bj} be a sequence of independent Brownian motions defined on
a filtered probability space (Ω,F , {Ft},P). The process

(2.2) W̃t :=

∞∑

j=1

√
λjBj(t)ej

is called a Q-Wiener process in U .

We note that the series (2.2) converges in L2(Ω, U). For each u ∈ U , denote

W̃t(u) :=

∞∑

j=1

√
λjBj(t)〈ej , u〉U ,

with the series converging in L2(Ω,R). Similarly, it is not always true that there
exists a U -valued process W such that

(2.3) W̃t(u)(ω) = 〈Wt(ω), u〉U P-a.s.

However, given a symmetric nonnegative definite trace-class operator Q, a U -valued

process satisfying (2.3) can be defined. We call the process W a U -valued Q-Wiener
process. When no confusion arises, we may write Wt(u)(ω) instead of 〈W (t, ω), u〉U .
It should be noted that Wt(ej)/

√
λj , j = 1, 2, . . . , is a sequence of real-valued

Brownian motions defined on a filtered probability space (Ω,F , {Ft},P) (see [4],
page 87).
The next theorem enumerates some of the properties of a U -valued Q-Wiener

process.

Theorem 2.2 ([6]). A U -valued Q-Wiener processW = {Wt}06t6T has the follo-

wing properties:

(i) For each ω ∈ Ω, W (0, ω) = 0U , where 0U is the additive identity in U .

(ii) W has P-a.s. continuous trajectories, i.e.,

W (·, ω) : [0, T ] → U is continuous for almost all ω ∈ Ω.

(iii) W is a Gaussian process with covariance operator Q, i.e., for any u, u′ ∈ U and

0 6 s, t 6 T ,

E[Wt(u)Ws(u
′)] = (t ∧ s)〈Qu, u′〉U .

(iv) W has independent increments, i.e., for 0 6 t1 < t2 < . . . < tn 6 T , n ∈ N,

U -valued random variables

Wt1 , Wt2 −Wt1 , Wt3 −Wt2 , . . . , Wtn −Wtn−1

are independent.
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(v) For an arbitrary u ∈ U , the law

L((Wt −Ws)(u)) ∼ N (0, (t− s)〈Qu, u〉U )

holds.

Next, we define a Q-Wiener process with respect to a filtration.

A filtration {Ft} on a probability space (Ω,F ,P) is called normal if

(i) F0 contains all elements A ∈ F such that P(A) = 0, and

(ii) Ft = Ft+ :=
⋂
s>t

Fs for all t ∈ [0, T ].

A Q-Wiener process Wt, t ∈ [0, T ] is called a Q-Wiener process with respect to a

filtration if

(i) Wt is adapted to {Ft}, t ∈ [0, T ] and

(ii) Wt −Ws is independent of Fs for all 0 6 s 6 t 6 T .

It is shown in [19], page 16, that any U -valued Q-Wiener process W (t), t ∈ [0, T ],
is a Q-Wiener process with respect to a normal filtration. From now onwards, a
filtered probability space (Ω,F , {Ft},P) shall mean a probability space equipped
with a normal filtration.

3. Itô-Henstock integral

In [2], Chew et al. introduced the Itô-Henstock integral of a real-valued process
with respect to a Brownian motion. We shall use the same definition of belated

partial division employed by the authors in [2] to define the Itô-Henstock integral of
an L(U, V )-valued stochastic process with respect to a U -valued Q-Wiener process.

Definition 3.1 ([2]). Let δ be a positive function on [0, T ]. A finite collection D

of interval-point pairs {((ξi, vi], ξi)}ni=1 is a δ-fine belated partial division of [0, T ] if

(i) (ξi, vi], i = 1, 2, . . . , n, are disjoint left-open subintervals of [0, T ]; and
(ii) each (ξi, vi] is δ-fine belated, that is, (ξi, vi] ⊂ [ξi, ξi + δ(ξi)).

The term partial is used in Definition 3.1 since the finite collection of disjoint left-
open subintervals of [0, T ] may not cover the entire interval [0, T ]. Using the Vitali

covering lemma, the following concept can be defined.

Definition 3.2 ([2]). Given η > 0, a given δ-fine belated partial division D =

{((ξ, v], ξ)} is said to be a (δ, η)-fine belated partial division of [0, T ] if it fails to cover
[0, T ] by at most length η, that is,

∣∣∣T − (D)
∑

(v − ξ)
∣∣∣ 6 η.
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This type of partial division is the basis to which we define the Itô-Henstock

integral.
Throughout the following discussions, assume that U and V are separable Hilberts

spaces, Q : U → U is a symmetric nonnegative definite trace-class operator, {λj , ej}
is an eigensequence defined by Q, and W is a U -valued Q-Wiener process.

Definition 3.3. Let f : [0, T ]×Ω→ L(U, V ) be an adapted process on a filtered
probability space (Ω,F , {Ft},P). Then f is said to be Itô-Henstock integrable, or

IH-integrable, on [0, T ] with respect to W if there exists A ∈ L2(Ω, V ) such that
for every ε > 0, there is a positive function δ on [0, T ] and a positive number η > 0

such that for any (δ, η)-fine belated partial division D = {((ξi, vi], ξi)}ni=1 of [0, T ],
we have

E[‖S(f,D, δ, η)−A‖2V ] < ε,

where

S(f,D, δ, η) := (D)
∑

fξ(Wv −Wξ) :=

n∑

i=1

fξi(Wvi −Wξi).

In this case, f is IH-integrable to A on [0, T ] and A is called the IH-integral of f
which will be denoted by (IH)

∫ T

0
ft dWt or (IH)

∫ T

0
f dW .

Before giving an example of an IH-integrable process, we need to present
Lemma 3.5 and Lemma 3.6 first. To prove these two lemmas, we shall use the

following proposition.

Proposition 3.4 ([19]). Let (E1, E1) and (E2, E2) be two measurable spaces and
Ψ: E1×E2 → R be a bounded measurable function. Let X1 and X2 be two random

variables on a probability space (Ω,F ,P) with values in (E1, E1) and (E2, E2), re-
spectively, and let G ⊂ F be a fixed σ-field. Assume that X1 is G-measurable and X2

is independent of G. Then

E[Ψ(X1, X2)|G] = Ψ̂(X1),

where Ψ̂(x1) = E[Ψ(x1, X2)], x1 ∈ E1.

When we speak of a subinterval of [0, T ], we shall mean that the subinterval is
either a closed interval [ξ, v] or half-open interval (ξ, v].

Lemma 3.5. Let f : [0, T ] × Ω → L(U, V ) be an adapted process on a filtered

probability space (Ω,F , {Ft},P) and {[ξi, vi]}ni=1 be a finite collection of disjoint

subintervals of [0, T ]. Then

E

[∑

i<j

〈fξi(Wvi −Wξi), fξj (Wvj −Wξj )〉V
]
= 0.
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P r o o f. It is enough to show that

E[〈fξi(Wvi −Wξi), fξj (Wvj −Wξj )〉V ] = 0 for i < j.

By Proposition 3.4,

E[〈f∗
ξjfξi(Wvi −Wξi),Wvj −Wξj 〉U |Fξj ](ω)

= E[〈f∗
ξj (ω)fξi(ω)(Wvi (ω)−Wξi(ω)),Wvj −Wξj 〉U ]

hence

E[〈f∗
ξj (ω)fξi(ω)(Wvi(ω)−Wξi(ω)),Wvj −Wξj 〉U ] = 0,

since E[〈Wt −Ws, u〉U ] = 0 for all u ∈ U . Thus,

E[〈fξi(Wvi −Wξi), fξj (Wvj −Wξj )〉V ]
= E[E[〈f∗

ξjfξi(Wvi −Wξi),Wvj −Wξj 〉U |Fξj ]] = 0.

This completes the proof. �

Lemma 3.6. Let f : [0, T ] × Ω → L(U, V ) be an adapted process on a filtered

probability space (Ω,F , {Ft},P) and {[ξi, vi]}ni=1 be a finite collection of disjoint

subintervals of [0, T ]. Then

E

[∥∥∥∥
n∑

i=1

fξi(Wvi −Wξi)

∥∥∥∥
2

V

]
=

n∑

i=1

E[‖fξi(Wvi −Wξi)‖2V ]

=

n∑

i=1

(vi − ξi)E[‖fξi‖2L2(UQ,V )].

P r o o f. By Lemma 3.5,

E

[∥∥∥∥
n∑

i=1

fξi(Wvi −Wξi)

∥∥∥∥
2

V

]
= E

[ n∑

i=1

〈fξi(Wvi −Wξi), fξi(Wvi −Wξi )〉V

+ 2
∑

i<j

〈fξi(Wvi −Wξi), fξj (Wvj −Wξj )〉V
]

=
n∑

i=1

E[‖fξi(Wvi −Wξi)‖2V ].

Let Sm =
m∑
l=1

〈fξi(Wvi −Wξi), bl〉2V , where {bl} is an orthonormal basis in V . Note

that

Sm →
∞∑

l=1

〈fξi(Wvi −Wξi), bl〉2V := S as m → ∞
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and Sm(ω) 6 Sm+1(ω) for all m ∈ N. By the monotone convergence theorem, we

have ∫

Ω

S(ω) dP = lim
m→∞

∫

Ω

Sm(ω) dP,

so that

E

[ ∞∑

l=1

〈fξi(Wvi −Wξi), bl〉2V
]
= lim

m→∞
E

[ m∑

l=1

〈fξi(Wvi −Wξi ), bl〉2V
]

=
∞∑

l=1

E[〈fξi(Wvi −Wξi), bl〉2V ]

=

∞∑

l=1

E[E[〈fξi(Wvi −Wξi), bl〉2V |Fξi ]]

=
∞∑

l=1

E[E[〈Wvi −Wξi , f
∗
ξibl〉2U |Fξi ]].

Using Proposition 3.4,

E[〈Wvi −Wξi , f
∗
ξibl〉2U |Fξi ](ω) = E[〈Wvi −Wξi , fξi(ω)

∗bl〉2U ].

Since E[〈Wt −Ws, u〉2U ] = (t− s)〈Qu, u〉 for all u ∈ U ,

E[〈Wvi −Wξi , fξi(ω)
∗bl〉2U ] = (vi − ξi)〈Qfξi(ω)

∗bl, fξi(ω)
∗bl〉U .

It follows that

(3.1) E

[ ∞∑

l=1

〈fξi(Wvi −Wξi ), bl〉2U
]
=

∞∑

l=1

(vi − ξi)E[〈Qf∗
ξibl, f

∗
ξibl〉U ].

Let {λj , ej} be an eigensequence defined by Q. Then

(3.2) E[〈Qf∗
ξibl, f

∗
ξibl〉U ] = E

[ ∞∑

j=1

λj〈f∗
ξibl, ej〉2U

]
= E

[ ∞∑

j=1

〈fξi(
√
λjej), bl〉2U

]
.

Thus, using (3.1) and (3.2), we have

E

[ n∑

i=1

〈fξi(Wvi −Wξi ), fξi(Wvi −Wξi)〉V
]
=

n∑

i=1

∞∑

l=1

(vi − ξi)E

[ ∞∑

j=1

〈fξi(
√
λjej), bl〉2V

]

=

n∑

i=1

(vi − ξi)E

[ ∞∑

j=1

‖fξi(
√
λjej)‖2V

]

=

n∑

i=1

(vi − ξi)E[‖fξi‖2L2(UQ,V )],

which completes the proof. �
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E x am p l e 3.7. Let g : Ω → L(U, V ) be a random variable bounded in L2(UQ, V ),

that is, there exists M > 0 such that ‖g(ω)‖L2(UQ,V ) 6 M for all ω ∈ Ω, and let
θ̂ : Ω → L(U, V ) be a random variable such that for all ω ∈ Ω, θ̂(ω) is the zero opera-
tor in L(U, V ), that is, θ̂(ω) : U → V defined by θ̂(ω)(k) = 0V for all k ∈ U , where 0V
is the additive identity of V . Let s ∈ [0, T ] be fixed. Let f : [0, T ]× Ω → L(U, V )

be an adapted process on a filtered probability space (Ω,F , {Ft},P) such that for
t ∈ [0, T ],

ft =

{
g if t = s,

θ̂ if t 6= s.

Then f is IH-integrable to the zero random variable θ ∈ L2(Ω, V ) on [0, T ], i.e.,

(IH)

∫ T

0

ft dWt = θ,

where θ : Ω → V is defined by θ(ω) = 0V for all ω ∈ Ω.

P r o o f. Given ε > 0, choose δ(ξ) = 1
2εM

−2 > 0 for all ξ ∈ [0, T ]. Let D =

{((ξi, vi], ξi)}ni=1 be any δ-fine belated partial division of [0, T ]. If s 6= ξi for all i,

then we are done. Suppose that s = ξi for some i. Then by Lemma 3.6,

E

[∥∥∥∥
n∑

i=1

fξi(Wvi −Wξi)− θ

∥∥∥∥
2

V

]
=

n∑

i=1

(vi − ξi)E[‖fξi‖2L2(UQ,V )]

= (vi − s)E[‖g‖2L2(UQ,V )] <
ε

2M2
M2 < ε.

The above inequality holds for any δ-fine belated partial division of [0, T ]. Hence,

it also holds for any (δ, η)-fine belated partial division of [0, T ]. Thus, f is IH-
integrable to θ on [0, T ]. �

The following statements show that the Itô-Henstock integral posseses the stan-

dard properties of an integral. The proofs are analogous to the proofs in [12].

(1) The Itô-Henstock integral is uniquely determined, in the sense that if A1 and A2

are two Itô-Henstock integrals of f in Definition 3.3, then ‖A1−A2‖L2(Ω,V ) = 0.

(2) Let α ∈ R. If f and g are IH-integrable on [0, T ], then
(i) f + g is IH-integrable on [0, T ], and

(IH)

∫ T

0

(f + g) dW = (IH)

∫ T

0

f dW + (IH)

∫ T

0

g dW ;

(ii) αf is IH-integrable on [0, T ], and

(IH)

∫ T

0

(αf) dW = α(IH)

∫ T

0

f dW.
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(3) If f : [0, T ]× Ω → L(U, V ) is IH-integrable on [0, c] and [c, T ] where c ∈ (0, T ),

then f is IH-integrable on [0, T ] and

(IH)

∫ T

0

f dW = (IH)

∫ c

0

f dW + (IH)

∫ T

c

f dW.

(4) If f : [0, T ]×Ω→ L(U, V ) is IH-integrable on [0, T ], then f is also IH-integrable
on every subinterval [c, d] of [0, T ].

(5) A process f : [0, T ]×Ω → L(U, V ) is IH-integrable on [0, T ] if and only if there
exist A ∈ L2(Ω, V ), a decreasing sequence {δn} of positive functions defined on
[0, T ], and a decreasing sequence of positive numbers {ηn} such that for any
(δn, ηn)-fine belated partial division Dn of [0, T ], we have

lim
n→∞

E[‖S(f,Dn, δn, ηn)−A‖2V ] = 0.

In this case,

A = (IH)

∫ T

0

ft dWt.

(6) Cauchy criterion. A process f : [0, T ]× Ω → L(U, V ) is IH-integrable on [0, T ]

if and only if for every ε > 0, there exist a positive function δ on [0, T ] and a

positive number η such that for any two (δ, η)-fine belated partial divisions D
and D′ of [0, T ], we have

E[‖S(f,D, δ, η)− S(f,D′, δ, η)‖2V ] < ε.

(7) Henstock lemma. Let f be IH-integrable on [0, T ] and F (u, v) := (IH)
∫ v

u
ft dWt

for any (u, v] ⊆ [0, T ]. Then for every ε > 0, there exist a positive function δ

on [0, T ] and a positive number η such that for any (δ, η)-fine belated partial
division D of [0, T ], we have

E

[∥∥∥∥(D)
∑

{fξ(Wv −Wξ)− F (ξ, v)}
∥∥∥∥
2

V

]
< ε.
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4. Itô’s formula

In this section, we present a version of Itô’s formula (for Q-Wiener process) which
involves the Itô-Henstock integral. We begin defining the first and second Fréchet

derivatives, regulated mapping, primitive, and bilinear mapping. Refer to [1] and [5]
for more details.

Definition 4.1. Let K and H be Banach spaces, O be an open subset of K,
and x0 be a particular point in K. A continuous linear operator g : K → H is called

the Fréchet derivative of a mapping f : O → H at x0 if

(4.1) lim
x→ 0K

‖f(x0 + x)− f(x0)− g(x)‖H
‖x‖K

= 0.

The Fréchet derivative of f at x0 is usually denoted by f ′(x0) or Df(x0). A map-

ping f is called Fréchet differentiable on O if f ′(x0) exists at every x0 ∈ O.

The following definitions describe a regulated mapping on a closed interval and

its primitive.

Definition 4.2. Let [a, b] be a closed interval of R and let H be a Banach space.
We say that a mapping f : [a, b] → H is a step function if there exists an increasing

finite sequence {xi}ni=0 of points in [a, b], where x0 = a, xn = b, and f is constant in
each of the open intervals (xi, xi+1), 0 6 i 6 n− 1.

Definition 4.3. Let f : [a, b] → H be a mapping and x ∈ [a, b). We say that f
has a limit on the right or right limit if

f(x+) := lim
y∈[a,b], y>x

y→x

f(y)

exists. Similarly, given x ∈ (a, b], we say that f has a limit on the left or left limit if

f(x−) := lim
y∈[a,b], y<x

y→x

f(y)

exists.

Definition 4.4. A mapping f : [a, b] → H is said to be regulated if for all

t ∈ [a, b], both the right and left limits f(t+) and f(t−) exist.

It was established in [5] that a mapping f : [a, b] → H is regulated if and only

if f is a limit of a uniformly convergent sequence of step functions. Moreover, a
continuous mapping is also regulated.
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Definition 4.5. Let H be a Banach space and let f : [a, b] → H be a mapping.

We say that a continuous mapping g : [a, b] → H is a primitive of f in [a, b] if there
exists a denumerable set D ⊂ [a, b] such that for all t ∈ [a, b] \ D, g is Fréchet
differentiable at t and g′(t) = f(t).

We remark that a primitive is not unique and if g1 and g2 are two primitives of f

in [a, b], then g1 − g2 is constant in [a, b] (see [5], page 165).

Theorem 4.6 ([5]). Any regulated function f : [a, b] → H has a primitive in [a, b].

Definition 4.7. Let f : [a, b] → H be a regulated function and let g be a prim-

itive of f . The integral of f between α and β is defined by

∫ β

α

f(t) dt := g(β)− g(α).

The definition of
∫ β

α f(t) dt is independent of the choice of the primitive (see [5],
page 166).

Definition 4.8. If f : K → H is Fréchet differentiable on an open set O ⊆ K

and the first Fréchet derivative f ′ at x0 ∈ O is Fréchet differentiable at x0, then the

Fréchet derivative of f ′ at x0 is called the second Fréchet derivative of f at x0 and is
denoted by f ′′(x0) or D2f(x0). A mapping f is said to be twice Fréchet differentiable

on O if f ′′(x0) exists at every x0 ∈ O.

Observe that if the second Fréchet derivative f ′′(x0) exists, then f ′′(x0) ∈
L(K,L(K,H)). If f ′′ exists at every point in O, then

f ′′ : O ⊆ K → L(K,L(K,H)).

Definition 4.9. A mapping f : K ×K → H is said to be a bilinear mapping if

it is linear in each of the two variables, that is, for any α, β ∈ R,

f(αx1 + βx′
1, x2) = αf(x1, x2) + βf(x′

1, x2)

and
f(x1, αx2 + βx′

2) = αf(x1, x2) + βf(x1, x
′
2).

A bilinear mapping f : K × K → H is said to be bounded or continuous if there

exists M > 0 such that

‖f(x1, x2)‖H 6 M‖x1‖K‖x2‖K

for all (x1, x2) ∈ K × K. The vector space of all continuous bilinear mappings
f : K ×K → H is denoted by L(K ×K,H).
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It is known (see [17], page 64) that L(K ×K,H) is a normed space with

‖f‖L(K×K,H) = inf{M : ‖f(x1, x2)‖H 6 M‖x1‖K‖x2‖K , (x1, x2) ∈ K ×K}.

Moreover, L(K,L(K,H)) = L(K × K,H) (see [17], page 65). Hence the second

Fréchet derivative f ′′(x0), if it exists, is an element of L(K ×K,H).

Theorem 4.10 ([5]). If f is twice Fréchet differentiable at x0, then the bilinear

mapping f ′′(x0) is symmetric, that is,

f ′′(x0)(x1, x2) = f ′′(x0)(x2, x1)

for all x1, x2 ∈ K.

Next, we define a Hilbert-Schmidt bilinear mapping.

Lemma 4.11 ([1]). Let K and H be separable Hilbert spaces and f : K×K → H

be a bilinear mapping. If the series

∞∑

j,l=1

‖f(ej, el)‖2H =

∞∑

j,l=1

〈f(ej , el), f(ej , el)〉H < ∞

for the orthonormal basis {ej}, then
∞∑

j,l=1

‖f(ej, el)‖2H =

∞∑

j,l,m=1

〈f(ej , el), bm〉2H =

∞∑

j=1

‖g(ej)‖2L2(K,H),

no matter what orthonormal bases {ej} ⊆ K and {bm} ⊆ H are chosen, where

g ∈ L2(K,L2(K,H)) is defined by

(g(x1))(x2) = f(x1, x2) ∀x1, x2 ∈ K.

Definition 4.12. A bilinear mapping f : K × K → H is said to be Hilbert-
Schmidt if

Ã

∞∑

j,l,m=1

〈f(ej , el), bm〉2H < ∞

for arbitrary orthonormal bases {ej} and {bm} of K and H , respectively. The space
of all Hilbert-Schmidt bilinear mappings is denoted by L2(K × K,H), which is a

normed space (see [1], page 294) with norm

‖f‖L2(K×K,H) =

Ã

∞∑

j,l,m=1

〈f(ej , el), bm〉2H .
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It is also known (see [1], page 294) that L2(K,L2(K,H)) = L2(K ×K,H).

Theorem 4.13 (Taylor’s formula [5]). Let K and H be Banach spaces, O be an

open subset of K, and f : O → H be twice continuously Fréchet differentiable. If

the segment joining x and x+ h is in O, then we have

f(x+ h) = f(x) + f ′(x)(h) +

∫ 1

0

(1 − t)f ′′(x+ th)(h, h) dt.

We note that in a normed space E, the segment joining two points a and b is

defined as the set of points a+ t(b− a) with 0 6 t 6 1.

We next define the Riemann integral of a bounded Banach-valued function
on [0, T ]. Note that the given closed interval [0, T ] in the following definition

can be replaced with any closed interval [a, b].

Definition 4.14. Consider a bounded function f : [0, T ] → H , where H is a
Banach space. Let P : 0 = a1 < b1 = a2 < b2 = . . . < bn = T be a partition of [0, T ].

Take a set of points T = {ti}ni=1, ti ∈ [ai, bi). The Riemann sum of the function f

is defined by

S(f, P, T ) =

n∑

i=1

f(ti)(bi − ai).

Call d(P ) = max
16i6n

(bi − ai) the diameter of the partition P . As in the usual real-

valued case, we will say that f is Riemann integrable if the sums S(f, P, T ) tend to
some limit when d(P ) → 0. The limit is called the Riemann integral of the function f

and is denoted by (R)
∫ T

0 f(t) dt or (R)
∫ T

0 f dt.

In Definition 4.14, the limit is taken in the sense that, for every ε > 0, there exists
a positive number δ such that for any partition P with d(P ) < δ,

∥∥∥∥S(f, P, T )− (R)

∫ T

0

f(t) dt

∥∥∥∥
H

< ε.

The Riemann integral is equivalent to the Henstock-Kurzweil integral provided

that the positive function δ on [0, T ] is a constant function. It also adopts the
standard properties of an integral in the real-valued case. The reader may refer

to [9] for the proof and discussions of the other properties.

We shall now derive a version of Itô’s formula for the Itô-Henstock integral.
Throughout the discussion, assume that U and V are separable Hilbert spaces and

{λj , ej} is an eigensequence defined by a symmetric nonnegative definite trace class
operator Q in Definition 2.1. We also introduce the following concept.
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Definition 4.15. A function f : [0, T ] → R is said to be AC∗[0, T ] if for every

ε > 0, there exists a δ > 0 such that for any finite collection D = {[ξ, v]} of disjoint
subintervals of [0, T ] with

(D)
∑

(v − ξ) < δ,

we have

(D)
∑

|f(ξ)|(v − ξ) < ε.

Next, we consider several lemmas involving limits of sums over full or partial
divisions.

Lemma 4.16. Let f : [0, T ]×Ω → L(U, V ) be an IH-integrable process and sup-
pose that E[‖ft‖2L2(UQ,V )] is AC

∗[0, T ]. Given ε > 0, there exist a positive function δ

on [0, T ] and a positive number η such that if D = {((ξ, v], ξ)} is a (δ, η)-fine belated
partial division of [0, T ], then

E

[∥∥∥∥S(f,D ∪Dc, δ, η)− (IH)

∫ T

0

ft dWt

∥∥∥∥
2

V

]
< ε,

where {(ξ, v] : ((ξ, v], ξ) ∈ Dc} is the collection of all subintervals of [0, T ] which are
not included in the set {(ξ, v] : ((ξ, v], ξ) ∈ D}, and

S(f,D ∪Dc, δ, η) := (D ∪Dc)
∑

fξ(Wv −Wξ).

P r o o f. Let ε > 0 be given. Then there exist a positive function δ on [0, T ]

and a positive number η1 such that for any (δ, η1)-fine belated partial division D1 =

{((ξ, v], ξ)} of [0, T ], we have

E

[∥∥∥∥S(f,D1, δ, η1)− (IH)

∫ T

0

ft dWt

∥∥∥∥
2

V

]
<

ε

4
.

Since E[‖ft‖2L2(UQ,V )] is AC
∗[0, T ], then for the given ε, there exists η2 > 0 such

that for any collection of disjoint subintervals D2 = {((ξ, v], ξ)} of [0, T ] with
(D2)

c
∑

(v − ξ) < η2, we have

(D2)
c
∑

E[‖fξ‖2L2(UQ,V )](v − ξ) <
ε

4
.

Let η = min{η1, η2}. Then for any (δ, η)-fine belated partial divisionD = {((ξ, v], ξ)}
of [0, T ], we have

E

[∥∥∥∥S(f,D, δ, η)− (IH)

∫ T

0

ft dWt

∥∥∥∥
2

V

]
<

ε

4
.
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Moreover, it follows that

Dc
∑

(v − ξ) 6 η 6 η2,

hence by Lemma 3.6,

E

[∥∥∥∥(Dc)
∑

fξ(Wv −Wξ)

∥∥∥∥
2

V

]
= (Dc)

∑
E[‖fξ‖2L2(UQ,V )](v − ξ) <

ε

4
.

Thus, we have

E

[∥∥∥∥S(f,D ∪Dc, δ, η)− (IH)

∫ T

0

ft dWt

∥∥∥∥
2

V

]

6 2E

[∥∥∥∥S(f,D, δ, η)− (IH)

∫ T

0

ft dWt

∥∥∥∥
2

V

]
+ 2E

[∥∥∥∥(Dc)
∑

fξ(Wv −Wξ)

∥∥∥∥
2

V

]
< ε.

This completes the proof of the lemma. �

Lemma 4.17. Let f : [0, T ]×Ω → L(U ×U, V ) be an adapted process such that

ft(ω) is symmetric, E[‖ft‖2L2(UQ×UQ,V )] is bounded on [0, T ] andMt :=
∞∑
j=1

λjft(ej , ej)

is Riemann integrable on [0, T ]. Then for any partition P = {[ξi, vi]}ni=1 of [0, T ]

E

[∥∥∥∥(P )
∑

fξ(Wv −Wξ,Wv −Wξ)− (R)

∫ T

0

Mt dt

∥∥∥∥
2

V

]
→ 0

as d(P ) := max
16i6n

(vi − ξi) → 0.

P r o o f. Let (Wv−Wξ)
(2) := (Wv−Wξ,Wv−Wξ). SinceMt is Riemann integrable

on [0, T ],

E

[∥∥∥∥(P )
∑

Mξ(v − ξ)− (R)

∫ T

0

Mt dt

∥∥∥∥
2

V

]
→ 0 as d(P ) → 0.

Hence, it is enough to show that

E

[∥∥∥∥(P )
∑

{fξ(Wv −Wξ)
(2) −Mξ(v − ξ)}

∥∥∥∥
2

V

]
→ 0 as d(P ) → 0.
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Observe that

E

[∥∥∥∥(P )
∑

{fξ(Wv −Wξ)
(2) −Mξ(v − ξ)}

∥∥∥∥
2

V

]

=

n∑

i=1

(E[〈fξi(Wvi −Wξi)
(2), fξi(Wvi −Wξi )

(2)〉V ]

− 2E[〈fξi(Wvi −Wξi)
(2),Mξi(vi − ξi)〉V ] + E[〈Mξi(vi − ξi),Mξi(vi − ξi)〉V ])

+ 2
∑

i<p

(E[〈fξi(Wvi −Wξi)
(2), fξp(Wvp −Wξp)

(2)〉V ]

− E[〈fξi(Wvi −Wξi)
(2),Mξp(vp − ξp)〉V ]− E[〈Mξi(vi − ξi), fξp(Wvp −Wξp)

(2)〉V ]
+ E[〈Mξi(vi − ξi),Mξp(vp − ξp)〉V ]).

Then consider the following claims.
Claim 1 :

E[〈fξi(Wvi −Wξi)
(2), fξi(Wvi −Wξi)

(2)〉V ]
= 2(vi − ξi)

2
E[‖fξi‖2L2(UQ×UQ,V )] + (vi − ξi)

2
E[〈Mξi ,Mξi〉V ].

E[〈fξi(Wvi −Wξi)
(2), fξi(Wvi −Wξi)

(2)〉V ]

=

∞∑

j=1

E[〈fξi(ej , ej), fξi(eq, eq)〉V E[〈Wvi −Wξi , ej〉4U |Fξi ]]

+
∑

j=j′,l=l′

j 6=l

E[〈fξi(ej , el), fξi(ej , el)〉V E[〈Wvi −Wξi , ej〉2U 〈Wvi −Wξi , el〉2U |Fξi ]]

+
∑

j=l′,l=j′

j 6=l

E[〈fξi(ej , el), fξi(el, ej)〉V E[〈Wvi −Wξi , ej〉2U 〈Wvi −Wξi , el〉2U |Fξi ]]

+
∑

j=l,j′=l′

j 6=j′

E[〈fξi(ej , ej), fξi(ej′ , ej′)〉V E[〈Wvi −Wξi , ej〉2U 〈Wvi −Wξi , ej′〉2U |Fξi ]].

Since 〈Wt, ej〉U/
√
λj is a Brownian motion,

E

[( 〈Wv −Wξ, ej〉U√
λj

)4]
= 3(v − ξ)2 and E

[( 〈Wv −Wξ, ej〉U√
λj

)2]
= v − ξ.

Hence,

E[〈fξi(Wvi −Wξi)
(2), fξi(Wvi −Wξi)

(2)〉V ]
= 2(vi − ξi)

2
E[‖fξi‖2L2(UQ×UQ,V )] + (vi − ξi)

2
E[〈Mξi ,Mξi〉V ].

This proves the first claim.
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Similarly, the following claims hold:

Claim 2 : For i < p,

E[〈fξi(Wvi −Wξi)
(2), fξp(Wvp −Wξp)

(2)〉V ] = E[〈fξi(Wvi −Wξi)
(2),Mξp(vp − ξp)〉V ].

Claim 3 : E[〈fξi(Wvi −Wξi)
(2),Mξi(vi − ξi)〉V ] = (vi − ξi)

2
E[〈Mξi ,Mξi〉V ].

Claim 4 : For i < p,

E[〈Mξi(vi − ξi), fξp(Wvp −Wξp)
(2)〉V ] = E[〈Mξi(vi − ξi),Mξp(vp − ξp)〉V ].

Using the four claims, we have

E

[∥∥∥∥(P )
∑

{fξ(Wv −Wξ)
(2) −Mξ(v − ξ)}

∥∥∥∥
2

V

]
6 2d(P )TE[‖fξi‖2L2(UQ×UQ,V )].

Since E[‖fξi‖2L2(UQ×UQ,V )] is bounded,

E

[∥∥∥∥(P )
∑

{fξ(Wv −Wξ)
(2) −Mξ(v − ξ)}

∥∥∥∥
2

V

]
→ 0

as d(P ) → 0. �

Let E1 and E2 be normed spaces. A function f : E1 → E2 is said to be uniformly

continuous if for every ε > 0, there exists δ > 0 such that for all x, y ∈ E1 with
‖x− y‖E1

< δ, we have ‖f(x)− f(y)‖E2
< ε.

Lemma 4.18. Let f : U → L(U × U, V ) be a uniformly continuous function.

Then for every ε > 0, there exists a δ > 0 such that for any partition P = {[ξ, v]} of
[0, T ] with d(P ) < δ,

‖S(f, P, δ)‖L2(Ω,V ) < ε,

where

S(f, P, δ) := (P )
∑{∫ 1

0

(1 − t)(f(Ŵ )− f(Wξ))(Wv −Wξ)
(2) dt

}
,

Ŵ := Wξ + t(Wv −Wξ) and t ∈ [0, 1].

P r o o f. Let ε > 0 be given. For any [ξ, v] ∈ [0, T ],

E[‖Wv −Wξ‖4U ] =
∞∑

j=1

E[〈Wv −Wξ, ej〉4U ] +
∑

j 6=l

E[〈Wv −Wξ, ej〉2U 〈Wv −Wξ, el〉2U ]

=

∞∑

j=1

3λ2
j(v − ξ)2 +

∑

j 6=l

λjλl(v − ξ)2 = (v − ξ)2
(
2

∞∑

j=1

λ2
j + p2 trQ

)
.
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Since trQ < ∞, let M be a positive real number such that 2
∞∑
j=1

λ2
j + (trQ)2 6 M .

Since f is uniformly continuous on U , there exists η > 0 such that if ‖u− u′‖U < η,
we have

‖f(u)− f(u′)‖L(U×U,V ) <
2ε

T
√
M

.

For this η, there exists δ > 0 such that whenever |v − ξ| < δ, ξ, v ∈ [0, T ], we have

‖Wv − Wξ‖U < η. But this implies that ‖Ŵ − Wξ‖U = t‖Wv − Wξ‖U < η for
t ∈ [0, 1]. It follows that

‖f(Ŵ )− f(Wξ)‖L(U×U,V ) <
2ε

T
√
M

.

Let P = {[ξ, v]} of [0, T ] be a partition of [0, T ] with d(P ) < δ. Then

‖S(f, P, δ)‖L2(Ω,V )

6 (P )
∑∫ 1

0

(1− t)‖(f(Ŵ )− f(Wξ))(Wv −Wξ)
(2)‖L2(Ω,V ) dt

6 (P )
∑∫ 1

0

(1− t)
√
E[‖f(Ŵ )− f(Wξ)‖2L(U×U,V )‖(Wv −Wξ)‖4U ] dt

6
1

2
(P )

∑ ( 2ε

T
√
M

)2
(v − ξ)2M 6

1

2

2ε

T
(P )

∑
(v − ξ) 6

1

2

2ε

T
T = ε.

This completes the proof. �

The following lemmas are respective consequences of the previous lemmas.

Lemma 4.19. Let f : [0, T ] × Ω → L(U, V ) be an IH-integrable process and
suppose that E[‖ft‖2L2(UQ,V )] is AC

∗[0, T ]. Then there exist a sequence of positive

functions {δn} on [0, T ] and a sequence of positive numbers {ηn} such that

lim
n→∞

S(f,Dn ∪Dc
n, δn, ηn) = (IH)

∫ T

0

ft dWt in probability,

where Dn is any (δn, ηn)-fine belated partial division of [0, T ].

Lemma 4.20. Let f : [0, T ] × Ω → L(U × U, V ) be an adapted process such

that such that ft(ω) is symmetric, E[‖ft‖2L2(UQ×UQ,V )] is bounded on [0, T ] and

Mt :=
∞∑
j=1

λjft(ej , ej) is Riemann integrable on [0, T ]. Then there exists a sequence
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of positive numbers {δn} such that for any partition Pn = {[ξ, v]} of [0, T ] with
d(Pn) < δn,

lim
n→∞

Ŝ(f, Pn, δn) = (R)

∫ T

0

Mt dt in probability,

where

Ŝ(f, Pn, δn) := (Pn)
∑

fξ(Wv −Wξ,Wv −Wξ).

Lemma 4.21. Let f : U → L(U × U, V ) be a uniformly continuous function.

Then there exists a sequence of positive numbers {δn} such that for any partition
Pn = {[ξ, v]} of [0, T ] with d(Pn) < δn,

lim
n→∞

S(f, Pn, δn) = 0 in probability,

where

S(f, P, δ) := (P )
∑{∫ 1

0

(1 − t)(f(Ŵ )− f(Wξ))(Wv −Wξ)
(2) dt

}
,

Ŵ := Wξ + t(Wv −Wξ) and t ∈ [0, 1].

We now state Itô’s formula and give its proof using the above-mentioned lemmas.

Theorem 4.22 (Itô’s formula). Let f : U → V be a function such that the first

Fréchet derivative of f is continuous on U and the second Fréchet derivative of f is

uniformly continuous on U . Suppose that

(i) f ′(Wt) is IH-integrable on [0, T ];

(ii) E[‖f ′(Wt)‖2L2(UQ,V )] is AC
∗[0, T ];

(iii) E[‖f ′′(Wt)‖2L2(UQ×UQ,V )] is bounded on [0, T ];

(iv) Mt =
∞∑
j=1

λjf
′′(Wt)(ej , ej) is Riemann integrable on [0, T ].

Then

f(WT )− f(W0) = (IH)

∫ T

0

f ′(Wt) dWt +
1

2
(R)

∫ T

0

Mt dt

for almost all ω ∈ Ω.
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P r o o f. By Taylor’s formula (Theorem 4.13), for any v > ξ,

f(Wv)− f(Wξ) = f ′(Wξ)(Wv −Wξ) +

∫ 1

0

(1− t)f ′′(Ŵ )(Wv −Wξ)
(2) dt

= f ′(Wξ)(Wv −Wξ) +

∫ 1

0

(1− t)f ′′(Ŵ )(Wv −Wξ)
(2) dt

+
1

2
f ′′(Wξ)(Wv −Wξ)

(2) − 1

2
f ′′(Wξ)(Wv −Wξ)

(2)

= f ′(Wξ)(Wv −Wξ) +
1

2
f ′′(Wξ)(Wv −Wξ)

(2)

+

∫ 1

0

(1− t)(f ′′(Ŵ )− f ′′(Wξ))(Wv −Wξ)
(2) dt,

where Ŵ := Wξ + t(Wv −Wξ) and t ∈ [0, 1]. By Lemma 4.19, there exist a sequence

of positive functions {δ′n} on [0, T ] and a sequence of positive numbers {η′n} such
that for any (δ′n, η

′
n)-fine belated partial division D′

n of [0, T ]

(D′
n ∪D′

n
c
)
∑

f ′(Wξ)(Wv −Wξ) → (IH)

∫ T

0

f ′(Wt) dWt

in probability. By Lemma 4.20, there exists a sequence of positive numbers {δ∗n}
such that for any partition Pn = {[ξ, v]} of [0, T ] with d(Pn) < δ∗n,

(Pn)
∑

f ′′(Wξ)(Wv −Wξ,Wv −Wξ) → (R)

∫ T

0

Mt dt

in probability. Moreover, by Lemma 4.21, there exists a sequence of positive numbers
{δ̂n} such that for any partition P̂n = {[ξ, v]} of [0, T ] with d(P̂n) < δ̂n,

(P̂n)
∑{∫ 1

0

(1− t)(f ′′(Ŵ )− f ′′(Wξ))(Wv −Wξ)
(2) dt

}
→ 0

in probability. Choose δn(ξ) = min{δ′n(ξ), δ∗n, δ̂n} for all ξ ∈ [0, T ] and ηn =

min{η′n, δ∗n, δ̂n}. Then any (δn, ηn)-fine belated partial division of [0, T ] is also a

(δ′n, η
′
n)-fine belated partial division of [0, T ]. Let Dn = {(ξ, (ξ, v])} be a (δn, ηn)-

fine belated partial division of [0, T ]. Then (Dn ∪ Dc
n) is a partition of [0, T ] with
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d(Dn ∪Dc
n) < δ∗n, d(Dn ∪Dc

n) < δ̂n. Hence,

(Dn ∪Dc
n)

∑
f ′(Wξ)(Wv −Wξ) → (IH)

∫ T

0

f ′(Wt) dWt,

(Dn ∪Dc
n)

∑
f ′′(Wξ)(Wv −Wξ,Wv −Wξ) → (R)

∫ T

0

Mt dt,

and

(Dn ∪Dc
n)

∑{∫ 1

0

(1 − t)(f ′′(Ŵ )− f ′′(Wξ))(Wv −Wξ)
(2) dt

}
→ 0

in probability. Moreover,

(Dn ∪Dc
n)

∑
{f(Wv)− f(Wξ)} → f(WT )− f(W0).

Thus, the assertion holds for some subsequence. �

5. Conclusion and recommendations

In this paper, we use the generalized Riemann approach to define the integral of an
operator-valued stochastic process with respect to a Hilbert space-valued Q-Wiener

process. This newly defined integral, called Itô-Henstock integral, is more direct
and minimizes the technicalities in the classical approach to stochastic integration

in Hilbert spaces. We also establish the standard properties of the Itô-Henstock
integral and formulate a version of Itô’s formula. A worthwhile direction for further

investigation is to verify the equivalence of the Itô-Henstock integral and the classical
stochastic integral in Hilbert spaces defined in [4]. Another way of extending Itô’s

formula established in this paper is by considering functions of the form f(t,Xt),
where Xt is an Itô process.

A c k n ow l e d gm e n t. The authors would like to thank the referee for his helpful
comments for the improvement of this paper.
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