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1. Introduction, definitions and results

Let f be a noncostant meromorphic function in the open complex plane C and

a = a(z) be a polynomial. We denote by E(a; f) the set of zeros of f − a, counted

with multiplicities, and E(a; f) the set of all distinct zeros of f −a. Let N(r, a; f) be

the counting function of zeros of f − a in {z : |z| 6 r}. If A ⊂ C, then the counting

function NA(r, a; f) of zeros of f − a in {z : |z| 6 r} ∩ A is defined as

NA(r, a; f) =

∫ r

0

nA(t, a; f)− nA(0, a; f)

t
dt+ nA(0, a; f) log r,

where nA(t, a; f) is the number of zeros of f − a, counted with multiplicities, in

{z : |z| 6 r} ∩ A. For standard definitions and notations we refer the reader to [1]

and [6].

There are some results related to value sharing and polynomial sharing. In the

beginning, Jank, Mues and Volkmann [2] considered the situation that an entire
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function shares a nonzero value with its derivatives and they proved the following

theorem.

Theorem A ([2]). Let f be a nonconstant entire function and a be a nonzero

finite value. If E(a; f) = E(a; f (1)) ⊂ E(a; f (2)), then f ≡ f (1).

The following example shows that in Theorem A the second derivative cannot be

replaced by any higher order derivatives.

E x am p l e 1.1 ([7]). Let k (> 3) be an integer and ω (6= 1) be a (k − 1)th root

of unity. We put f = eωz + ω − 1. Then f , f (1) and f (k) share the value ω CM, but

f 6≡ f (1).

On the basis of this example, Zhong [7] improved Theorem A by considering higher

order derivatives in the following way.

Theorem B ([7]). Let f be a nonconstant entire function and a be a nonzero

finite number. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (n)) ∩ E(a; f (n+1)) for n

(> 1), then f ≡ f (n).

In 1999 Li [5] considered linear differential polynomials and proved the following

result.

Theorem C ([5]). Let f be a nonconstant entire function and L = a1f
(1) +

a2f
(2)+ . . .+anf

(n), where a1, a2, . . . , an (6= 0) are constants, and a (6= 0) be a finite

number. If E(a; f) = E(a; f (1)) ⊂ E(a;L) ∩E(a;L(1)), then f ≡ f (1) ≡ L.

Lahiri and Kaish [3] improved Theorem B by considering a shared polynomial.

They proved the following theorem.

Theorem D ([3]). Let f be a nonconstant entire function and a = a(z) (6≡ 0)

be a polynomial with deg(a) 6= deg(f). Suppose that A = E(a; f)∆E(a; f (1)) and

B = E(a; f (1))\{E(a; f (n))∩E(a; f (n+1))}, where∆ denotes the symmetric difference

of sets and n (> 1) is an integer. If

(1) NA(r, a; f) +NA(r, a; f
(1)) = O{logT (r, f)},

(2) NB(r, a; f
(1)) = S(r, f), and

(3) each common zero of f − a and f (1) − a has the same multiplicity,

then f = λez, where λ (6= 0) is a constant.

In Theorem D, Lahiri and Kaish considered an entire function which shares a

polynomial with its derivatives. In our paper we improve Theorem D by considering

an entire function which shares a polynomial with its linear differential polynomials.
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The main result of the paper is the following theorem.

Theorem 1.1. Let f be a nonconstant entire function and L = a2f
(2) +

a3f
(3) + . . . + anf

(n), where a2, a3, . . . , an (6= 0) are constants, and n (> 2) be

an integer. Also let a(z) (6= 0) be a polynomial with deg(a) 6= deg(f). Suppose that

A = E(a; f)∆E(a; f (1)) and B = E(a; f (1)) \ {E(a;L) ∩E(a;L(1))}. If

(1) NA(r, a; f) +NA(r, a; f
(1)) = O{logT (r, f)},

(2) NB(r, a; f
(1)) = S(r, f), and

(3) each common zero of f − a and f (1) − a has the same multiplicity,

then f = L = λez, where λ (6= 0) is a constant.

In the theorem we assume that the degree of a transcendental entire function is

infinity.

Putting A = B = Φ, we get the following corollary.

Corollary 1.1. Let f be a nonconstant entire function and a = a(z) (6≡ 0) be a

polynomial with deg(a) 6= deg(f). Also let L = a2f
(2) + a3f

(3)+ . . .+ anf
(n), where

a2, a3, . . . , an (6= 0) are constants and n (> 2) is an integer. If E(a; f) = E(a; f (1))

and E(a; f (1)) ⊂ {E(a;L) ∩ E(a;L(1))}, then f = L = λez, where λ (6= 0) is a

constant.

In Theorem C, Li considered the linear differential polynomial as L = a1f
(1) +

a2f
(2) + . . .+ anf

(n), where a1, a2, . . . , an (> 0) are constants. Here we consider the

linear differential polynomial L with the first coefficient a1 = 0. That is, we consider

L = a2f
(2) + a3f

(3) + . . . + anf
(n). In Corollary 1.1 if we consider a = a(z) as a

nonzero finite constant, then we get a particular case of Theorem C when L will

be considered with the first coefficient zero. Therefore Corollary 1.1 shows that our

result is an improvement of a particular case of Theorem C when L is considered

with the first coefficient a1 = 0.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1 ([3]). Let f be transcendental entire function of finite order and

a = a(z) (6≡ 0) be a polynomial and A = E(a; f)∆E(a; f (1)). If

(1) NA(r, a; f) +NA(r, a; f
(1)) = O{logT (r, f)},

(2) each common zero of f − a and f (1) − a has the same multiplicity,

then m(r, a; f) = m(r, (f − a)−1) = S(r, f).
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Lemma 2.2. Let f be a transcendental entire function and a(z) (6≡ 0) be a

polynomial. Also let L = a2f
(2)+a3f

(3)+. . .+anf
(n) and b(z) = a2a

(2)+a3a
(3)+. . .+

ana
(n), where a2, a3, . . . , an (> 0) are constants and n (> 2) is an integer. Suppose

h = ((a− a(1))(L − b)− (a− b)(f (1) − a(1)))(f − a)−1 and A = E(a; f) \ E(a; f (1)),

B = E(a; f (1)) \ {E(a;L) ∩ E(a;L(1))}. If

(1) NA(r, a; f) +NB(r, a; f
(1)) = S(r, f),

(2) each common zero of f − a and f (1) − a has the same multiplicity,

(3) h is transcendental entire or meromorphic,

then m(r, a; f (1)) = m(r, (f (1) − a)−1) = S(r, f).

P r o o f. Since a−a(1) = (f (1)−a(1))− (f (1)−a), if z0 is a common zero of f −a

and f (1) − a with multiplicity q (> 2), then z0 is a zero of a− a(1) with multiplicity

q − 1. So

N(2(r, a; f) 6 2N(r, 0; a− a(1)) +NA(r, a; f) = S(r, f),

where N(2(r, a; f) is the counting function of multiple zeros of f − a.

Hence, by the hypothesis we see that

N(r, h) 6 NA(r, a; f) +NB(r, a; f
(1)) +N(2(r, a; f) + S(r, f) = S(r, f).

Since m(r, h) = S(r, f), we have T (r, h) = S(r, f).

Now by a simple calculation we get

f = a+
1

h
((a− a(1))(L − b)− (a− b)(f (1) − a(1)))

= a+
1

h
((a− a(1))(L − a)− (a− b)(f (1) − a)).

Differentiating we obtain

f (1) = a(1) +
( 1

h

)(1)

((a− a(1))(L − a)− (a− b)(f (1) − a))

+
1

h
((a− a(1))(L(1) − a(1)) + (a(1) − a(2))(L − a)

− (a(1) − b(1))(f (1) − a)− (a− b)(f (2) − a(1))).

This implies

(f (1) − a)
(

1 +
( 1

h

)(1)

(a− b) +
1

h
(a(1) − b(1))

)

= a(1) − a+
(( 1

h

)(1)

(a− a(1)) +
1

h
(a(1) − a(2))

)

(L− a)

+
1

h
(a− a(1))(L(1) − a(1))−

a− b

h
(f (2) − a(1))
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=
(a− a(1)

h

)(1)

(L− c) +
a− a(1)

h
(L(1) − c(1))

−
a− b

h
(f (2) − a(1)) + a(1) − a+

( (c− a)(a− a(1))

h

)(1)

,

where c(z) = a2a
(1) + a3a

(2) + . . .+ ana
(n−1).

Therefore

(

1 +
(a− b

h

)(1))

(f (1) − a)

= a(1) − a+
((c− a)(a− a(1))

h

)(1)

+
(a− a(1)

h

)(1)

(L− c)

+
a− a(1)

h
(L(1) − c(1))−

a− b

h
(f (2) − a(1)).

This implies

1

f (1) − a
=

µ

ν
−

1

ν

(a− a(1)

h

)(1) L− c

f (1) − a
−

a− a(1)

hν

L(1) − c(1)

f (1) − a
(2.1)

+
a− b

hν

f (2) − a(1)

f (1) − a
,

where µ = 1 + ((a− b)h−1)(1) and ν = a(1) − a+ ((c− a)(a− a(1))h−1)(1).

We now verify that µ 6≡ 0 and ν 6≡ 0. If µ ≡ 0, then 1 + ((a − b)h−1)(1) ≡ 0.

Integrating we get h = (a−b)(c1−z)−1, where c1 is a constant. This is a contradiction

as h is transcendental. Therefore µ 6≡ 0.

If ν ≡ 0, then ((c − a)(a − a(1))h−1)(1) ≡ a − a(1). Integrating we get (c − a) ×

(a − a(1))h−1 = P (z), i.e. h = (c− a)(a− a(1))/P (z), where P (z) is a polynomial.

This is a contradiction because h is transcendental. Therefore ν 6≡ 0.

Again T (r, µ) + T (r, ν) = S(r, f). Therefore from (2.1) we get m(r, a; f (1)) =

m(r, (f (1) − a)−1) = S(r, f). This proves the lemma. �

Lemma 2.3 ([4], page 58). Each solution of the differential equation

anf
(n) + an−1f

(n−1) + . . .+ a0f = 0,

where a0 (6≡ 0), a1, . . . , an (6≡ 0) are polynomials, is an entire function of finite order.

Lemma 2.4 ([4], page 47). Let f be a nonconstant meromorphic function and

a1, a2, a3 be three distinct meromorphic functions satisfying T (r, aν) = S(r, f) for

ν = 1, 2, 3. Then

T (r, f) 6 N(r, 0; f − a1) +N(r, 0; f − a2) +N(r, 0; f − a3) + S(r, f).
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Lemma 2.5 ([6], page 92). Let f1, f2, . . . , fn be meromorphic functions which

are nonconstant except possibly for fn, where n > 3. If fn 6≡ 0 and
n
∑

j=1

fj ≡ 1 and
n
∑

j=1

N(r, 0; fj) + (n − 1)
n
∑

j=1

N(r,∞; fj) < {µ + o(1)}T (r, fk) for k = 1, 2, . . . , n − 1,

then fn ≡ 1.

3. Proof of the theorem

First, we verify that f cannot be a polynomial. We suppose that f is a polynomial.

Then T (r, f) = O(log r) and NA(r, a; f) + NA(r, a; f
(1)) = O(log T (r, f)) = S(r, f)

imply A = Φ. Also NB(r, a; f
(1)) = S(r, f) implies B = Φ. Therefore E(a; f) =

E(a; f (1)) and E(a; f (1)) ⊂ E(a, L) ∩ E(a;L(1)).

Let deg(f) = m and deg(a) = p. Ifm > p+1, then deg(f−a) = m, deg(f (1)−a) 6

m − 1. Since each common zero of f − a and f (1) − a has the same multiplicity, it

contradicts the fact that E(a; f) = E(a; f (1)).

Next let m 6 p − 1. Then deg(f − a) = p, deg(f (1) − a) = p. Again E(a; f) =

E(a; f (1)), we can write f (1) − a ≡ (f − a)k, where k (> 0) is a constant.

If k 6= 1, then kf − f (1) ≡ (k − 1)a, which is impossible as deg((k − 1)a) = p >

m = deg(kf − f (1)).

If k = 1, then f = f (1), which is again a contradiction. Therefore f is a transcen-

dental entire function.

Since a − a(1) = (f (1) − a(1)) − (f (1) − a), a common zero of f − a and f (1) − a

of multiplicity q (> 2) is a zero of a− a(1) with multiplicity q − 1 (> 1). Therefore

N(2(r, a; f
(1)|f = a) 6 2N(r, 0; a−a(1)) = S(r, f), whereN(2(r, a; f

(1)|f = a) denotes

the counting function (counted with multiplicities) of those multiple zeros of f (1)−a,

which are also zeros of f − a.

Now

N(2(r, a; f
(1)) 6 NA(r, a; f

(1)) +NB(r, a; f
(1))(3.1)

+N(2(r, a; f
(1)|f = a) + S(r, f) = S(r, f).

First we suppose that L(1) 6≡ f (1). Then using (3.1) we get by the hypothesis

N(r, a; f (1)) 6 NB(r, a; f
(1)) +N

(

r,
a− b(1)

a− a(1)
;
L(1) − b(1)

f (1) − a(1)

)

+ S(r, f)(3.2)

6 T
(

r,
L(1) − b(1)

f (1) − a(1)

)

+ S(r, f) = N
(

r,
L(1) − b(1)

f (1) − a(1)

)

+ S(r, f)

6 N(r, a(1); f (1)) + S(r, f),

where b(z) = a2a
(2)(z) + a3a

(3)(z) + . . .+ ana
(n)(z).
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Again

m(r, a; f) 6 m
(

r,
f (1) − a(1)

f − a
;

1

f (1) − a(1)

)

6 m(r, a(1); f (1)) + S(r, f)

= T (r, f (1))−N(r, a(1); f (1)) + S(r, f)

= m(r, f (1))−N(r, a(1); f (1)) + S(r, f)

6 m(r, f)−N(r, a(1); f (1)) + S(r, f)

= T (r, f)−N(r, a(1); f (1)) + S(r, f),

i.e. N(r, a(1); f (1)) 6 N(r, a; f) + S(r, f).

Therefore from (3.2) we get

(3.3) N(r, a; f (1)) 6 N(r, a; f) + S(r, f).

Again

N(r, a; f) 6 NA(r, a; f) +N(r, a; f (1)|f = a) 6 N(r, a; f (1)) + S(r, f).(3.4)

Therefore from (3.3) and (3.4) we get

(3.5) N(r, a; f (1)) = N(r, a; f) + S(r, f).

Let h = ((a− a(1))(L− b)− (a− b)(f (1)− a(1)))(f − a)−1 be transcendental. Then

T (r, f) = m(r, f) 6 m
(

r,
1

h
((a− a(1))L− (a− b)f (1))

)

+ S(r, f)

6 m(r, f (1)) +m
(

r, (a− a(1))
L

f (1)
− (a− b)

)

+ S(r, f)

6 m(r, f (1)) + S(r, f) = T (r, f (1)) + S(r, f)

= m(r, f (1)) + S(r, f) 6 m(r, f) + S(r, f)

= T (r, f) + S(r, f).

Therefore

(3.6) T (r, f (1)) = T (r, f) + S(r, f).

Again by Lemma 2.2 we get m(r, a; f (1)) = S(r, f). Then from (3.5) and (3.6) we

get m(r, a; f) = S(r, f). Therefore

(3.7) m(r, a; f) +m(r, a; f (1)) = S(r, f).
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Next we suppose that h is rational. Then by Lemma 2.3 we see that f is of finite

order and by Lemma 2.1 we get m(r, a; f) = S(r, f). Since

T (r, f (1)) = m(r, f (1)) 6 m(r, f) + S(r, f) = T (r, f) + S(r, f)

and from (3.5) we get m(r, a; f (1)) 6 m(r, a; f) + S(r, f) = S(r, f). Hence in this

case also we obtain (3.7).

Let ξ = (f (1) − a)(f − a)−1 and η = (L − a)(f (1) − a)−1. Then by (3.7) we get

m(r, ξ)+m(r, η) = S(r, f). Also N(r, ξ) 6 NA(r, a; f)+NB(r, a; f
(1))+N(2(r, a; f)+

S(r, f) = S(r, f) because N(2(r, a; f) 6 NA(r, a; f) + 2N(r, 0; a − a(1)) + S(r, f) =

S(r, f).

Using (3.2) we get

N(r, η) 6 NA(r, a; f
(1)) +NB(r, a; f

(1)) +N(2(r, a; f
(1)) + S(r, f) = S(r, f).

Therefore

(3.8) T (r, ξ) + T (r, η) = S(r, f).

Let z1 be a simple zero of f − a such that z1 /∈ A ∪ B and a(z1) − a(1)(z1) 6= 0.

Then by Taylor’s expansion in some neighbourhood of z1 we get

f(z)− a(z) = (a(z1)− a(1)(z1))(z − z1) +O(z − z1)
2,

f (1)(z)− a(z) = (f (2)(z1)− a(1)(z1))(z − z1) +O(z − z1)
2,

and

L(z)− a(z) = (a(z1)− a(1)(z1))(z − z1) +O(z − z1)
2.

Therefore in some neighbourhood of z1 we get

(3.9) ξ(z) =
f (2)(z1)− a(1)(z1)

a(z1)− a(1)(z1)
+O(z − z1),

and

(3.10) η(z) =
a(z1)− a(1)(z1)

f (2)(z1)− a(1)(z1)
+O(z − z1).

We put χ = η−ξ−1. Then from (3.8) we get T (r, χ) 6 T (r, η)+T (r, ξ)+S(r, f) =

S(r, f).
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Also in some neighbourhood of z1 we have by (3.9) and (3.10),

χ(z) = η(z)−
1

ξ(z)

=
a(z1)− a(1)(z1)

f (2)(z1)− a(1)(z1)
+O(z − z1)−

(f (2)(z1)− a(1)(z1)

a(z1)− a(1)(z1)
+O(z − z1)

)

−1

=
a(z1)− a(1)(z1)

f (2)(z1)− a(1)(z1)
+O(z − z1)−

( a(z1)− a(1)(z1)

f (2)(z1)− a(1)(z1)
+O(z − z1)

)

= O(z − z1).

If χ 6≡ 0, then

N(r, a; f) 6 NA(r, a; f) +NB(r, a; f
(1)) +N(2(r, a; f) +N(r, 0; a− a(1)) +N(r, 0;χ)

= S(r, f),

and so by (3.7) we get T (r, f) = S(r, f), a contradiction.

Therefore χ ≡ 0 and so

(3.11) L ≡ f.

Differentiating (3.11) we get L(1) ≡ f (1), which contradicts our hypothesis that

L(1) 6≡ f (1). Therefore, indeed we have L(1) ≡ f (1).

Next we suppose that L(1) 6≡ L. Then by the hypothesis and (3.1) we get

(3.12) N(r, a; f (1)) 6 NB(r, a; f
(1)) +N

(

r,
a− b(1)

a− b
;
L(1) − b(1)

L− b

)

+S(r, f)

6 T
(

r,
L(1) − b(1)

L− b

)

+ S(r, f) = N
(

r,
L(1) − b(1)

L− b

)

+ S(r, f)

= N(r, b;L) + S(r, f).

Again

m(r, a; f) = m
(

r,
L− b

f − a

1

L− b

)

6 m(r, b;L) + S(r, f)

= T (r, L)−N(r, b;L) + S(r, f) = m(r, L)−N(r, b;L) + S(r, f)

6 m
(

r,
L

f

)

+m(r, f)−N(r, b;L) + S(r, f)

= m(r, f)−N(r, b;L) + S(r, f) = T (r, f)−N(r, b;L) + S(r, f)

and so N(r, b;L) 6 N(r, a; f) + S(r, f). Now by (3.12) we get N(r, a; f (1)) 6

N(r, a; f) + S(r, f).
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Also

N(r, a; f) 6 NA(r, a; f) +N(r, a; f (1)|f = a) 6 N(r, a; f (1)) + S(r, f).

Therefore N(r, a; f (1)) = N(r, a; f) + S(r, f), which is (3.5).

Now using Lemma 2.1, Lemma 2.2, Lemma 2.3 and (3.5) we similarly obtain (3.7).

Using ξ and η and proceeding likewise we get (3.11), which implies L ≡ f or a2f
(2)+

a3f
(3) + . . .+ anf

(n) − f ≡ 0. Solving this we get

(3.13) f = p1e
α1z + p2e

α2z + . . .+ pte
αtz,

where α1, α2, . . . , αt are the roots of a2ζ
2+a3ζ

3+ . . .+anζ
n−1 = 0 and p1, p2, . . . , pt

are constants or polynomials, not all identically zero and t (6 n) is an integer.

Differentiating (3.13) we get

(3.14) f (1) =

t
∑

i=1

(p
(1)
i + piαi)e

αiz.

Now from (3.13), (3.14) and ξ = (f (1) − a)(f − a)−1 we get

(3.15)

t
∑

i=1

(ξpi − p
(1)
i − piαi)e

αiz ≡ a(ξ − 1).

We suppose that ξ 6≡ 1. Then from (3.15) we get

(3.16)

t
∑

i=1

ξpi − p
(1)
i − piαi

a(ξ − 1)
eαiz ≡ 1.

Here T (r, f) = O(T (r, eαiz)) for i = 1, 2, . . . , t.

First we suppose that the left-hand side of (3.16) contains only one term, say,

ξpk − p
(1)
k − pkαk

a(ξ − 1)
eαkz ≡ 1.

Then T (r, eαkz) = S(r, f) = S(r, eαkz), a contradiction.

Next we suppose that the left-hand side of (3.16) contains only two terms, say,

ξpk − p
(1)
k − pkαk

a(ξ − 1)
eαkz +

ξpl − p
(1)
l − plαl

a(ξ − 1)
eαlz ≡ 1.
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So by Lemma 2.4 we get from above

T (r, eαkz) 6 N(r, 0; eαkz) +N(r,∞; eαkz)

+N
(

r,
a(ξ − 1)

ξpk − p
(1)
k − pkαk

; eαkz
)

+ S(r, eαkz)

= N(r, 0; eαlz) + S(r, eαkz) = S(r, eαkz),

a contradiction.

Finally we suppose that the left-hand side of (3.16) contains more than two terms,

then by Lemma 2.5 we get

(3.17)
ξpi − p

(1)
i − piαi

a(ξ − 1)
eαiz ≡ 1

for one value of i ∈ {1, 2, . . . , t}.

From (3.17) we see that T (r, eαiz) = S(r, f) = S(r, eαiz), a contradiction. There-

fore ξ ≡ 1 and so f (1) ≡ f . Hence, from L ≡ f we get L ≡ L(1), a contradiction to

the supposition. Therefore, indeed we have L ≡ L(1).

Now L ≡ L(1) ≡ f (1) implies L = L(1) = f (1) = λez, where λ (> 0) is a constant.

Therefore f = λez +K, where K is a constant.

By Lemma 2.4 we get

(3.18) T (r, λez) 6 N(r, 0;λez) +N(r,∞;λez) +N(r, a−K;λez) + S(r, λez)

= N(r, a; f) + S(r, λez).

If N(r, a; f) = S(r, f), then from (3.18) we get T (r, λez) = S(r, λez), which is a

contradiction. Therefore N(r, a; f) 6= S(r, f).

Again

(3.19) N(r, a; f) 6 NA(r, a; f) +N(r, a; f |f (1) = a).

Since NA(r, a; f) + NA(r, a; f
(1)) = O{logT (r, f)}, from (3.19) we must have

E(a; f) ∩ E(a; f (1)) 6= Φ, otherwise N(r, a; f) = S(r, f).

Let z3 ∈ E(a; f) ∩E(a; f (1)). Then f(z3) = f (1)(z3) and then f(z) = f (1)(z) +K

implies K = 0. Therefore f = L = λez. This proves the theorem. �

A c k n ow l e d gm e n t. Authors are thankful to the referee for valuable sugges-

tions and observations towards the improvement of the paper.
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