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Abstract. We investigate biological processes, particularly the propagation of malaria.
Both the continuous and the numerical models on some fixed mesh should preserve the basic
qualitative properties of the original phenomenon. Our main goal is to give the conditions
for the discrete (numerical) models of the malaria phenomena under which they possess
some given qualitative property, namely, to be between zero and one. The conditions
which guarantee this requirement are related to the time-discretization step-size. We give
a sufficient condition for some explicit methods. For implicit methods we prove that the
above property holds unconditionally.
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1. Introduction

Mathematical models are efficient tools of modelling different phenomena. In order

to have an adequate model, it is almost obvious that the continuous model and on

some fixed mesh the numerical model should preserve the basic qualitative properties

of the original phenomenon. Such models are called qualitatively adequate, or, in

short, reliable models.

In some earlier works, we have investigated discrete models of the heat conduc-

tion problem (e.g. [4], [5]). For the heat conduction process the main and physically

motivated characteristic properties are the non-negativity preservation, the maxi-

mum/minimum principle and the contractivity in the maximum norm. In biology
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one of the most challenging problems is the investigation of epidemic propagation.

The mathematical/numerical modelling of epidemic propagation may reveal valuable

information about the main characteristics of the epidemic under study.

This is why a number of mathematical models have been constructed and inves-

tigated in the literature, see e.g. [2]. The investigations started almost one hundred

years ago with a model based on a system of ordinary differential equations, given in

[7]. This model is a so-called compartmental model, where the population is divided

into disjoint groups according to the members’ relation to the disease, and the time-

dependent function of the number of the members in each group is determined by

solving a system of ordinary differential equations. The most typical compartments

are as follows: susceptibles (members that can be infected), infectives (members that

can pass on the disease to others) and recovered (members that have recovered from

the disease). The basic models are the SIR-type models and their modifications.

When the birth and the death of the members are not taken into account, then

the main qualitative properties of such a disease propagation process include mass

conservation, non-negativity preservation and monotonicity of the numbers of the

susceptibles and the recovered members.

One of the most current epidemic spreading issues today is to investigate the

spread of malaria.

Malaria is a parasitic vector borne disease endemic in many parts of the world. The

disease is a killer and as global warming occurs, endemic malaria will spread to more

areas. In 2016, nearly half of the world’s population was at risk of malaria. Most

of malaria’s cases and deaths occur in sub-Saharan Africa. However, WHO regions

South-East Asia, Eastern Mediterranean, Western Pacific, the United States, Europe

(especially Romania, Italy, Greece, Hungary and Austria) are also at risk [12], [3].

The paper is organized as follows. In Section 2 we describe the continuous models

for malaria and investigate the required qualitative property for the models. In

Section 3 we define and analyze the discretized Ross and delayed Ross-Macdonald

models. In Section 4 we give numerical examples for the discrete models. Finally, in

Section 5 we conclude the paper.

2. Continuous models of malaria

A mathematical model describes the dynamics of malaria and human population

compartments. There are different mathematical models of this disease. This paper

will examine mainly the Ross model and its delayed modification in order to achieve

a greater understanding of this phenomenon. Malaria parasite is transmitted from

person to person by a female Anopheles mosquito. The symptoms of malaria of
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an infected human include bouts of fever and anemia. On average, the incubation

period is about 12 days in humans and about 10 days in mosquitoes.

The amount of literature for the mathematical modelling of this disease is increas-

ing rapidly. (See e.g. [6], [8] and the references within.) In most of these models,

usually the following assumptions are made.

⊲ Total populations are constant for each groups.

⊲ The infection in the human confers negligible immunity and does not result in

death or isolation.

⊲ All newborns are susceptible.

⊲ Susceptible humans can receive the infection only by contacting with infective

mosquitoes.

⊲ A susceptible mosquito can receive the infection only from an infectious human.

2.1. The Ross model. The connection between mosquitoes and malaria was

first observed by Sir Ronald Ross [9]. In the construction of the model, he made

several assumptions in order to simplify and solve his equations. (E.g. for humans

the death rate was negligible compared with the recovery rate and the opposite

assumption holds for the mosquitoes, the birth rate of the mosquito equals its death

rate.) In this model the groups of humans and mosquitoes are divided into two

subgroups, namely, infected and susceptible ones. Hence, denoting by x(t) and y(t)

the density of infected humans and mosquitoes, respectively, the Ross model has the

form

(1)
ẋ(t) = αy(t)(1 − x(t)) − rx(t),

ẏ(t) = βx(t)(1 − y(t))− µy(t).

The positive parameters α, β, r and µ in (1) are computed from the available

biological information, like biting rate, proportion of bites that produce infection in

humans, proportion of bites by which one susceptible mosquito becomes infected,

etc. We note that the functions x(t) and y(t) could also be viewed as the number

of infected humans and infected mosquitoes, under the assumption that the total

populations, which are constant for each group, are equal to one.

Hence, supplied with the initial values x(0) and y(0), the Ross model (1) yields

a Cauchy problem for a system of two unknown functions.

Clearly, x(0) and y(0) are between zero and one. However, this property should

be preserved for any t > 0. Hence, it is quite natural to require that for any time

instant, starting from a suitable initial condition, the solutions of (1) have the above

property. In what follows, we will refer to this property as density preservation (DP)

property.
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In the following we examine this property.

Theorem 1. The Ross model (1) has the DP property.

P r o o f. We have to show that for any x(0), y(0) ∈ [0, 1] the relation x(t), y(t) ∈

[0, 1] is valid for all t > 0. Using the notation

(2) Ω = {(x, y) : 0 6 x, y 6 1},

we prove that the set Ω is positively invariant with respect to the Ross model (1).

To this aim we should show that the trajectories have to be reflected back when they

reach the boundary of Ω. If t̄ denotes the time-instant when the trajectory reaches

the boundary, we only have to check the sign of the derivatives at the boundary at

this time-point. Since

ẋ(t̄) = αy(t̄) > 0 if x(t̄) = 0 and ẋ(t̄) = −r < 0 if x(t̄) = 1,

ẏ(t̄) = βx(t̄) > 0 if y(t̄) = 0 and ẏ(t̄) = −µ < 0 if y(t̄) = 1,

the statement is proven. �

The feedback dynamics from mosquito to human and back to mosquito involve

considerable time delays due to the incubation periods of the parasites. This leads

to another model.

2.2. Delayed Ross-Macdonald model. Some modellers have noticed the omis-

sion of latencies in the Ross model and proposed modifications in the form of delayed

differential equations. However, most of these works only incorporate a single delay,

representing the latency of the parasite in mosquitoes. Ruan and Xiao modified the

Ross model by adding two delays accounting for the latencies in mosquitoes and

humans, respectively [10]. In this model for the transmission of the pathogen it is

assumed that the human and the mosquitoes remain exposed for some time (which is

called delay) and then become infectious. The delays are denoted by τh (latent period

for human) and τm (latent period for mosquito). Obviously they are assumed to be

non-negative. The delays may be just constants (the so-called constant delay case)

or functions of time (time-dependent delay case). In the delayed Ross-Macdonald

model the constant delay is given and has the form

(3)
ẋ(t) = αy(t− τh)(1 − x(t− τh))e

−rτh − rx(t),

ẏ(t) = βx(t − τm)(1− y(t− τm))e−µτm − µy(t).
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The terms e−rτh and e−µτm account for the probability that an infected human host

(mosquito) can survive the latent period τh (and τm respectively). This model as-

sumed the knowledge of the unknown functions x(t) and y(t) on the interval [−τ⋆, 0],

where τ⋆ = max{τh, τm}; they are also called history functions. The following state-

ment deals with a qualitative property of the above model.

Theorem 2. Let the history functions be mappings of type [−τ⋆, 0] ֌ [0, 1], and

assume that the conditions

(4) αe−rτh − r 6 0 and βe−µτm − µ 6 0

hold. Then the delayed Ross-Macdonald model (3) possesses the DP property.

P r o o f. Delay differential equations of this type can be handled as ODEs using

the method of steps, thus positive invariance of the set Ω can be treated similarly.

(Cf. [11], Theorem 3.4.) This means that we have to check the derivatives at the

boundary of the set. We denote again the time-instant when the trajectory reaches

the boundary by t̄. Since

ẋ(t̄) = αy(t̄− τh)(1 − x(t̄− τh))e
−rτh > 0 if x(t̄) = 0,

ẋ(t̄) = αy(t̄− τh)(1 − x(t̄− τh))e
−rτh − r 6 αe−rτh − r 6 0 if x(t̄) = 1,

ẏ(t̄) = βx(t̄ − τm)(1− y(t̄− τm))e−µτm > 0 if y(t̄) = 0,

ẏ(t̄) = βx(t̄ − τm)(1− y(t̄− τm))e−µτm − µ 6 βe−µτm − µ 6 0 if y(t̄) = 1,

the statement is proven. �

We note that without the condition (4) we cannot guarantee that the solution will

not exceed the upper bound.

3. Numerical methods for continuous malaria models

We are interested to know whether the positive invariance of the set Ω is preserved

on the discrete level. Naturally, a numerical method can be considered applicable if

this property is preserved. In some case this holds unconditionally, while in other

cases we have to impose restrictions for the discretization step-size ∆t. In the sequel,

we investigate the explicit Euler and implicit Euler discretization methods for the

continuous problems, formulated in the previous part.

3.1. Explicit Euler method applied to the Ross model. First we apply

the simplest explicit discretization method, the explicit Euler method to the Ross
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model (1), which results in the discrete model:

(5)
xn+1 = xn +∆t(αyn(1 − xn)− rxn),

yn+1 = yn +∆t(βxn(1 − yn)− µyn).

We have to show the positive invariance of the set Ω of this method. Therefore, we

need to guarantee that for any xn, yn ∈ [0, 1] the discrete model (5) results in xn+1,

yn+1 ∈ [0, 1].

Obviously, 0 6 xn+1 means that xn > ∆t(−αyn(1 − xn) + rxn). If

(6) −αyn(1− xn) + rxn 6 0

then this condition is satisfied for any ∆t, without restriction. Otherwise, we have

a condition for the step-size as follows:

∆t 6
xn

−αyn(1 − xn) + rxn

.

Hence, due to the inequality

1

r
6

xn

−αyn(1− xn) + rxn

we get that the choice of ∆t as ∆t 6 1/r ensures the non-negativity of xn+1.

Similarly, we can guarantee the non-negativity of yn+1 by choosing ∆t such that

∆t 6 1/µ.

The upper bound for xn+1, i.e., the condition xn+1 6 1 means that 1 − xn >

∆t(αyn(1− xn)− rxn).

If

(7) αyn(1− xn)− rxn 6 0

then this condition is satisfied for any ∆t, without restriction. Otherwise, we have

the condition

∆t 6
1

α
6

1− xn

αyn(1− xn)− rxn

,

with the consequence that the property xn+1 6 1 is satisfied under the assumption

∆t 6 1/α. Similarly, for the property yn+1 6 1 we assume that ∆t 6 1/β.

We summarize this result in the following theorem.

Theorem 3. If

(8) ∆t 6 min
{1

r
,
1

µ
,
1

α
,
1

β

}

then the explicit Euler method applied to the Ross model (5) possesses the DP

property.
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R em a r k 1. We could see that under the conditions (6) and (7) for the explicit

scheme the bound (8) can be omitted. This means that on a uniform mesh these

conditions should be satisfied for any xn and yn. This raises the question of whether

this condition can be guaranteed a priori. That means if the condition is true for

some x0 and y0, then is it also fulfilled for x1 and y1, defined by (1)? It is easy to

check in some concrete example that it is not so.

3.2. Implicit Euler method applied to the Ross model. Hereinafter for the

discretization of the continuous Ross model (1) we apply the implicit Euler method,

which results in the discrete model

(9) xn+1 = xn +∆t(αyn+1(1 − xn+1)− rxn+1),

yn+1 = yn +∆t(βxn+1(1 − yn+1)− µyn+1).

The positive invariance of the set Ω means again that we need to guarantee that

xn+1, yn+1 ∈ [0, 1] if xn, yn ∈ [0, 1].

From (9) we get that yn+1 can be expressed as

yn+1 = pxn+1 + qn,

where

(10) p =
β(1 + ∆tr +∆tα)

α(1 + ∆tβ +∆tµ)
, qn =

αyn − βxn

α(1 + ∆tβ +∆tµ)
.

Substituting this expression into the first equation of (9) we obtain the equation for

the xn+1 as follows

(11) Ax2
n+1 +Bnxn+1 + Cn = 0,

which is a quadratic algebraic equation with the coefficients

A = −∆tαp < 0, Bn = ∆tα(p− qn)−∆tr − 1,

and

Cn = xn +∆tαqn =
xn +∆tµxn +∆tαyn

1 + ∆tβ +∆tµ
> 0.

Since the discriminant is non-negative, the two roots x
(1)
n+1, x

(2)
n+1 of (11) are real

numbers. Moreover, for their product we have the obvious relation

x
(1)
n+1x

(2)
n+1 =

Cn

A
6 0.
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Note that the case Cn = 0 means that xn = yn = 0. In this case the two roots are

xn+1 = 0 and xn+1 = −B/A. Because x(0) = y(0) = 0 is an equilibrium point of the

Ross system, it is quite natural to choose xn+1 = 0. Otherwise we have one negative

and one positive root, which will be denoted as x−

n+1 and x+
n+1, respectively. For

these roots we have the relation

(12)
x−

n+1 + x+
n+1

2
= −

Bn

2A
=

α(p− qn)− r

2αp
−

1

2αp∆t
.

We notice that the parameters p and qn in (10) depend on ∆t and they are bounded

as ∆t → 0. Hence, letting ∆t → 0 the first expression on the right-hand side of (12)

is bounded, while the second part tends to −∞. This means that

|xn − x−

n+1| → ∞

with the consequence that we choose the positive root to get the approximation for

x(tn+1), i.e., we put xn+1 = x+
n+1. Hence, the non-negativity of xn+1 is ensured.

Using the second equation of (9), we can see that the non-negativity of xn+1

implies the non-negativity of yn+1, too.

Now, by using the first equation in (9), we have

xn+1(1 + α∆tyn+1 + r∆t) = xn + α∆tyn+1.

From this relation we can see that if yn+1 > 0, then 0 6 xn+1 < 1. Similarly, under

the condition xn+1 > 0 the relation 0 6 yn+1 < 1 is also valid. This completes the

argument, since the previous item shows that xn+1, yn+1 > 0 holds unconditionally.

We can summarize the result in the following theorem.

Theorem 4. The implicit Euler method applied to the Ross model (9) possesses

the DP property unconditionally.

3.3. Explicit Euler method applied to the delayed Ross-Macdonald

model.

We apply the explicit Euler method to the Ross-Macdonald model (3), which

results in the discrete model

(13)

{

xn+1 = xn +∆t(αyn,τh(1− xn,τh)e
−rτh − rxn),

yn+1 = yn +∆t(βxn,τm(1− yn,τm)e−rτm − µyn).

where, e.g., xn,τh approximates the value x(tn − τh). The value tn − τh is not

necessarily a grid-point, thus we have to use interpolation. For first order methods
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a linear interpolation is reasonable, see e.g. [1], Section 3.1, the Feldstein method,

which means that xn,τh is taken as a convex combination of the known xj and xj+1,

where tj 6 tn − τh 6 tj+1.

Recalling that the continuous model possessed the DP property under the assump-

tion (4), our goal is to guarantee the DP property on the discrete level under the

same assumption.

First, we notice that the calculation of 0 6 xn+1 goes exactly in the same way as

for the non-delayed case, and leads to the same bound as there.

The inequality xn+1 6 1 means that 1 − xn > ∆t(αyn,τh(1 − xn,τh)e
−rτh − rxn).

If the right-hand side is non-positive, then it is satisfied.

Note that the function

g(x) =
1− x

αe−rτh − rx

is monotonically increasing, since

g′(x) =
−αe−rτh + r

(αe−rτh − rx)2
> 0,

thus if the right-hand side ∆t(αyn,τh(1 − xn,τh)e
−rτh − rxn) is positive, then

∆t 6
erτh

α
6

1− xn

αe−rτh − rxn

6
1− xn

αyn,τh(1− xn,τh)e
−rτh − rxn

.

This means that the non-negativity of xn+1 and yn+1 is preserved under the assump-

tions ∆t 6 erτh/α and ∆t 6 eµτm/β, respectively.

We summarize this result in the following theorem.

Theorem 5. We assume that (4) holds. If

(14) ∆t 6 min
{1

r
,
1

µ
,
erτh

α
,
eµτm

β

}

then the explicit Euler method applied to the delayed Macdonald-Ross model pos-

sesses the DP property.

3.4. Implicit Euler method applied to the delayed Ross-Macdonald

model. We apply the implicit Euler method to the Ross-Macdonald model (3),

which results in the discrete model

(15)

{

xn+1 = xn +∆t(αyn+1,τh(1− xn+1,τh)e
−rτh − rxn+1),

yn+1 = yn +∆t(βxn+1,τm(1 − yn+1,τm)e−rτm − µyn+1).
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We assume that the step-size is small compared to the delays, i.e.,

(16) ∆t 6 min{τh, τm}

and we assume the natural condition (4) as well. In this case xn+1,τh is a convex

combination of two already known values xj and xj+1, j < n and we can handle

yn+1,τh similarly.

Using the form xn+1(1 + ∆tr) = xn + ∆tαe−rτhyn+1,τh(1 − xn+1,τh), we can see

that xn+1 > 0. Moreover,

xn+1 =
xn +∆tαe−rτhyn+1,τh(1− xn+1,τh)

1 + ∆tr
6

1 + ∆tαe−rτh

1 + ∆tr
6 1.

We summarize this result in the following theorem.

Theorem 6. We assume that (4) holds. If (16) holds, then the implicit Euler

method applied to the delayed Macdonald-Ross model possesses the DP property.

4. Numerical experiments

For the explicit scheme (5) and for the implicit scheme (9) we check our theoretical

result, given in Theorem 3 on examples and we also examine the sharpness of the

theoretical bound (8) of the explicit scheme. The computations were done with the

parameters α = 0.072, β = 0.2, r = 0.002 and µ = 0.2. For these parameters,

condition (8) in Theorem 3 yields the bound ∆t 6 5. In figures star symbols stand

for humans and solid lines for mosquitos.

For the initial density the values x(0) = 0.01 and y(0) = 0.01 were set. Figure 1 (a)

shows the result for this experiment with ∆t = 4, which satisfies the condition (8).

We can see that the solutions are between the bounds. Figure 1 (b) illustrates the

result for the step-size ∆t = 7, which is above the condition. This picture shows that

the system has exploded with this parameter.

The condition (8) is sufficient for the discrete DP property. Using the above

model parameters, with the initial condition x(0) = y(0) = 0.5, we can illustrate its

sharpness, too.

In Figure 2 (a) the numerical result is shown for ∆t = 4.9, which is still below the

bound (8). Although the result is correct, i.e., the DP property holds, apparently in

the initial stage the density function of mosquitoes oscillates.

In Figure 2 (b) the numerical result is shown for ∆t = 5.2, which is above the

bound (8). As we can see, even for this bigger parameter the model is DP preserving
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Figure 1. Explicit scheme with the step-size ∆t where the condition (8) is (a) satisfied,
(b) violated.
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(a) ∆t = 4.9 (b) ∆t = 5.2

Figure 2. Explicit scheme with the step-size ∆t where the condition (8) is (a) satisfied,
(b) violated.

on the considered interval, which shows that the bound (8) is a sufficient, but not

necessary condition for the DP property. However, we note that in the whole stage

the density function of mosquitoes strongly oscillates.

If we put a bit bigger ∆t, namely, ∆t = 5.3, then the model loses this property,

the DP property is no longer valid. (See Figure 3 (a).) However, for the implicit

Euler method, which has no bound for ∆t, we obtain correct results, as is shown in

Figure 4 (a).

If we choose quite a big ∆t, e.g., ∆t = 8, the model will continue to preserve the

DP property (see Figure 4 (b)) but not for the explicit scheme (see Figure 3 (b)).
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Figure 3. Explicit scheme with the step-size ∆t where the condition (8) is violated.
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Figure 4. Implicit scheme with the step-size ∆t (there is no condition).

5. Summary

In this paper we have investigated mathematically the propagation of malaria.

We gave two basic models, the Ross model and the delayed Ross-Macdonald model.

Both the continuous and the numerical models on some fixed mesh should preserve

a basic qualitative property of the original phenomenon, which is the DP property.

The continuous Ross model possesses this property. For the discrete Ross model we

gave a sufficient condition for explicit schemes. However, for the implicit scheme this

property holds unconditionally. For the continuous delayed Ross-Macdonald model

the DP property holds conditionally. We also formulated those conditions under

270



which the discrete models (both explicit and implicit) have this property. Numerical

examples are given which verify the theoretical results.
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