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Abstract. We establish the existence of solutions for evolution equations in Hilbert spaces
with anti-periodic boundary conditions. The energies associated to these evolution equa-
tions are quadratic forms. Our approach is based on application of the Schaefer fixed-point
theorem combined with the continuity method.
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1. Introduction

In this paper we are concerned with the quasilinear nonmonotone problem

(1.1)

{

u′(t) +Q(t, u(t))−1∇E(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = −u(T ),

where ∇E denotes the gradient in a Hilbert space H with respect to a fixed inner

product 〈·, ·〉H of a quadratic form E defined on a Hilbert space V , and Q : [0, T ]×

H → L(H) is a mapping such thatQ(t, u) is invertible for every (t, u) ∈ [0, T ]×H . We

are interested in solutions of problem (1.1) in the sense of L2, that is, in functions u

satisfying u′, ∇E(u) ∈ L2(0, T ;H). Our approach is based on application of the

Schaefer fixed-point theorem which is useful for proving the existence of solutions for

evolution problems.
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Lemma 1. Let X be a Banach space and let S : X → X be a compact mapping.

Assume that the Schaefer set C := {u ∈ X : u = λSu for some λ ∈ [0, 1]} is bounded.

Then S has a fixed-point.

In order to apply this theorem, we need to introduce the linear nonautonomous

problem

(1.2)

{

u′(t) +A(t)(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = −u(T )

with A(t) = Q(t, v(t))−1∇E, v ∈ L2(0, T ;H) being fixed. We show that problem

(1.2) admits a unique solution by means of the continuity method. This method

consists in approximating problem (1.2) by the family of linear problems

(1.3)

{

u′(t) + (1 − α)∇E(u(t)) + αA(t)(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = −u(T ),

where α takes on values from the interval [0, 1]. Let us denote

Z = {u ∈ W 1,2(0, T : H) ∩ L2(0, T ;D(∇E)) : u(0) = −u(T )}

and

Y = L2(0, T ;H).

We prove that the operator

K : Z → Y,

u 7→ u′ +A(·)u,

is continuously connected by the family of operators (Kα)α∈[0,1],

Kα : Z → Y,

u → u′ + (1− α)∇E + αA(·)u,

to the operatorK0 for which it is known that the solution of (1.3) exists and is unique.

This permits us to define a mapping S : Y → Y for which we apply Lemma 1, and

we obtain an eventual fixed-point, which is a solution to problem (1.1).

Anti-periodic problems have been widely studied by many authors. Okochi [12]

initiated the study for anti-periodic solutions of multivalued evolution equations in

Hilbert spaces. More precisely, he considered an abstract evolution problem of the

form

(1.4) u′(t) + ∂ϕ(u(t)) ∋ f(t), t ∈ R,
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where ∂ϕ denotes the subdifferential of a functional ϕ defined on a Hilbert space H .

Under the assumptions that ϕ is proper l.s.c. convex and even, it was proved that

for every f ∈ L2
loc(R;H) such that f(t + T ) = −f(t) for a.e. t ∈ R there exists an

anti-periodic solution of (1.1). We note that this result includes the result obtained

in this paper for Q(t, u) being constant. In [11], under some additional compactness

condition, the author used the Schauder fixed-point theorem in order to prove the

existence of anti-periodic solutions for the nonmonotone nonlinear problem

u′(t) + ∂ϕ(u(t))− λu(t) ∋ f(t), t ∈ R,

where λ > 0 is given.

In [3], the author studied the existence of solutions for the following evolution

equation
{

u′(t) +Au(t) +∇G(u(t)) + F (t, u(t)) = 0, t ∈ R,

u(t+ T ) = −u(t), t ∈ R,

where A : D(A) → H is a self-adjoint operator, ∇G is the gradient of a mapping

G : H → R and F : R × H → H is a nonlinear mapping. Applying the Schauder

fixed-point theorem, an existence result was obtained under the assumptions that

D(A) is compactly embedded into H , ∇G is a bounded continuous mapping and F

is a continuous mapping which is bounded by an L2 function. Recently, Zhenhai [17]

established an existence result for the following nonlinear evolution equation with

nonmonotone perturbations

{

u′(t) +Au(t) +G(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = −u(T )

in a reflexive Banach space V , where A is monotone and G is not. His approach

consists in applying the theory of maximal monotone and pseudomonotone operators.

He applied his main result in order to solve the diffusion equation involving the p-

Laplace operator with Dirichlet boundary conditions















∂u

∂t
−∆pu = f(x, u) in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0, ·) = −u(T, ·) in Ω,

where f : Ω×R → R satisfies some suitable conditions. Still in the setting of Banach

spaces, in [8] the authors considered the problem

(1.5)

{

u′(t) = −Au(t) + g(t, u(t)), t ∈ R,

u(t+ T ) = −u(t), t ∈ R
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in a Banach space X , where A : X → X is a linear continuous accretive mapping

and g : R×X → X is a continuous mapping which is even with respect to the second

variable. Using a combination of the contraction mapping principle, the theory of

accretive operators and the homotopy property of the Leray-Schauder degree, the

authors obtained an existence result for problem (1.5).

For further results on anti-periodic solutions for evolution equations we invite the

reader to consult [1], [9], [4], [5], [7], [6], [14], [13], [15], [16] and the references therein.

This paper consists of four sections. In Section 2 we summarize the relevant

material on gradients, we give all assumptions needed in this paper and we state

our main result. The proof of the main result will be given in Section 3. Finally, in

Section 4 we discuss an application of the preceding abstract theory to a quasilinear

diffusion equation.

2. Functional setting, assumptions and main result

Consider a real Hilbert space V with inner product 〈·, ·〉V and associated norm

‖·‖V and a second real Hilbert space H with inner product 〈·, ·〉H and associated

norm ‖·‖H . We suppose that V is densely and continuously embedded into H . Then

there exists a constant c > 0 such that

(2.1) ‖u‖H 6 c‖u‖V

for all u ∈ V . We shall consider also a continuous and symmetric bilinear form

a : V × V → R. Recall that a is continuous if and only if there exists C > 0 such

that

|a(u, v)| 6 C‖u‖V ‖v‖V

for all u, v ∈ V . Define the functional E : V → R by

E(u) = 1
2a(u, u)

for all u ∈ V . The functional E is called a quadratic form. Recall that since the

bilinear form is continuous on V × V , the functional E is continuously differentiable

on V , and using the fact that a is symmetric we have

E′(u)v = a(u, v)

for all u, v ∈ V . We shall define the gradient of E in H with respect to the inner

product 〈·, ·〉H by

D(∇E) = {u ∈ V : ∃w ∈ H ∀ v ∈ V, a(u, v) = 〈w, v〉H},

∇E(u) = w.
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Notice that since E is a quadratic form, the gradient ∇E is a linear operator on H

with domain D(∇E), which is a linear subspace of H . The operator ∇E is closed,

and D(∇E) equipped with the graph norm is a Banach space. Notice that since V

is densely embedded into H , the element ∇E(u) is uniquely determined. We let

further a function
Q : [0, T ]×H → L(H),

(t, u) 7→ Q(t, u),

be such that Q(t, u) is symmetric positive definite for every (t, u) ∈ [0, T ]×H . Here

L(H) denotes the space of linear bounded operators from H into H . Denoting by

Inner(H) the set of all inner products on H , this allows us to define the function

g : [0, T ]×H → Inner(H),

(t, u) 7→ 〈·, ·〉g(t,u),

with 〈v, w〉g(t,u) = 〈Q(t, u)v, w〉H . We denote by ‖·‖g(t,u) the norm associated with

the inner product 〈·, ·〉g(t,u). Our basic assumptions on V , H , a, Q and g are the

following.

(A1) There exists a constant c1 > 0 such that for every u ∈ V

c1‖u‖
2
V 6 a(u, u).

(A2) For every (t, u) ∈ [0, T ]×H , Q(t, u) is invertible.

(A3) For every u, v, w ∈ H , the function t → 〈v, w〉g(t,u) is measurable on [0, T ].

(A4) There exist two constants c2, c3 > 0 such that for every every t ∈ [0, T ] and

every u, v ∈ H

c2‖v‖H 6 ‖v‖g(t,u) 6 c3‖v‖H .

(A5) There exists a constant c4 > 0 such that for every t ∈ [0, T ] and every u, v ∈ H

c4‖v‖
2
H 6 〈Q(t, u)−1v, v〉H .

(A6) If (un) ⊂ H is such that

un → u in H,

then we have for every t ∈ [0, T ] and every v, w ∈ H

〈v, w〉g(t,un) → 〈v, w〉g(t,u).
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(A7) The mapping Q satisfies

un ⇀ u in L2(0, T ;H)

vn → v in L2(0, T ;H)

}

⇒ Q(·, vn)un ⇀ Q(·, v)u in L2(0, T ;H).

(A8) The embedding

W 1,2(0, T ;H) ∩ L2(0, T ;V ) →֒ L2(0, T ;H)

is compact.

We note that under assumptions (A3), (A4), and (A6), we have the following

fact: if u, v, w : [0, T ] 7→ H are three measurable functions, then the function

t → 〈v(t), w(t)〉g(t,u(t)) is measurable on [0, T ]. For the proof of this fact we invite

the reader to see [2], Remarks 6 and 7. We note also, from assumption (A4), that

we have for every (t, u) ∈ [0, T ]×H

‖Q(t, u)−1‖L(H) 6
1

c2
.

Let us consider the evolution problem

(2.2)

{

u′(t) +Q(t, u(t))−1∇E(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = −u(T ),

where f : [0, T ] → H is a given function. The identity u(0) = −u(T ) is called an

anti-periodic condition. We are concerned in solutions of problem (2.2) given in the

following sense.

A function u : [0, T ] → V is called a solution of problem (2.2) if

u ∈ W 1,2(0, T ;H) ∩ L2(0, T ;D(∇E)),

u satisfies problem (2.2).

Recall from the Sobolev embedding theorem that W 1,2(0, T ;H) is a subspace of

C([0, T ];H), so if u is a solution of problem (2.2), the anti-periodic condition u(0) =

−u(T ) makes sense. Recall also that the space

W 1,2(0, T ;H) ∩ L2(0, T ;D(∇E))

equipped with the norm

‖u‖2 =

∫ T

0

‖u(t)‖2H dt+

∫ T

0

‖u′(t)‖2H dt+

∫ T

0

‖∇E(u(t))‖2H dt

is continuously embedded into C([0, T ];V ).

428



The purpose of this paper is to prove the following theorem.

Theorem 2. Assume that assumptions (A1)–(A8) are satisfied. Then for every

f ∈ L2(0, T ;H), problem (2.2) admits a solution.

3. Proof of Theorem 2

We set

Z := {u ∈ W 1,2(0, T ;H) ∩ L2(0, T ;D(∇E)) : u(0) = −u(T )}

equipped with the norm satisfying

‖u‖2Z =

∫ T

0

‖u(t)‖2H dt+

∫ T

0

‖u′(t)‖2H dt+

∫ T

0

‖∇E(u(t))‖2H dt,

and

Y := L2(0, T ;H)

equipped with the norm

‖u‖Y =

(
∫ T

0

‖u(t)‖2H dt

)1/2

.

For every α ∈ [0, 1] and every v ∈ Y we consider the linear bounded operator

Aα : Z → Y,

u → (1− α)∇E(u) + αQ(·, v(·))−1∇E(u),

and the linear nonautonomous problem

(3.1)

{

u′(t) +Aα(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = −u(T ).

For every α ∈ [0, 1] we define the linear bounded operator

Sα : Z → Y,

u 7→ u′ +Aαu.

We introduce the set

M = {α ∈ [0, 1] : ∀ f ∈ Y, ∃ !u ∈ Z which is a solution of problem (3.1)}.

We note that α ∈ M if and only if the operator Sα is invertible.

Proposition 3. The set M is nonempty.
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P r o o f. Denote A = ∇E. It suffices to prove that 0 ∈ M , which is equivalent

to the fact that for every f ∈ L2(0, T ;H) there exists a unique u ∈ W 1,2(0, T ;H) ∩

L2(0, T ;D(A)), which is a solution of the linear autonomous problem

(3.2)

{

u′(t) +A(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = −u(T ).

It is known that for every f ∈ L2(0, T ;H) and every x ∈ V the initial value problem

{

u′(t) +A(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = x

admits a unique solution u ∈ W 1,2(0, T ;H) ∩ L2(0, T ;D(A)) and this solution is

given by

u(t) = e−tAx+

∫ t

0

e−(t−s)Af(s) ds, t ∈ [0, T ],

where (e−tA)t∈[0,T ] denotes the positive definite semigroup on H generated by −A.

Hence, the solution of the boundary value problem (3.2) is obtained by writing the

condition

(e−TA + IH)u(0) = −

∫ T

0

e−(T−s)Af(s) ds,

where the operator on the left-hand side is invertible, since −1 does not belong to the

spectrum of positive definite operator e−TA. Here IH denotes the identity mapping

of H . This yields the existence and uniqueness of solutions for problem (3.2). �

Proposition 4. The set M is open.

P r o o f. Denote by L(Z, Y ) and I(Z, Y ) the space of linear bounded operators

and the set of linear bounded invertible operators from Z into Y , respectively. The

desired result follows from the fact that I(Z, Y ) is open in L(Z, Y ) and from the

estimate

(3.3) ∃C > 0 ∀α, β ∈ [0, 1], ‖Sα − Sβ‖L(Z,Y ) 6 C|α− β|.

�

Proposition 5. If u ∈ W 1,2(0, T ;H)∩L2(0, T ;D(∇E)) then E(u(·)) ∈ W 1,1(0, T )

and we have for a.e. t ∈ (0, T )

d

dt
E(u(t)) = 〈∇E(u(t)), u′(t)〉H .

430



P r o o f. The proof of this result is similar to that of [10], Lemma 10.4. �

Proposition 6. The set M is closed.

P r o o f. Let (αn) be any sequence in M which converges to α ∈ [0, 1]. We

prove that α ∈ M , that is, Sα is invertible. It suffices to show that the sequence of

invertible operators (Sαn
) converges strongly to Sα in L(Z, Y ) and there exists c > 0

such that for every n ∈ N, ‖S−1
αn

‖L(Y,Z) 6 c. From property (3.3), we deduce that

(Sαn
) converges strongly to Sα in L(Z, Y ). Hence, it suffices to prove the uniform

estimates for (S−1
αn

). From the definition of the set M , for every n ∈ N there exists

a unique un ∈ Z, which is a solution of the linear nonautonomous problem

(3.4)











u′
n(t) + (1− αn)∇E(un(t)) + αnQ(t, v(t))−1∇E(un(t)) = f(t)

for a.e. t ∈ (0, T ),

un(0) = −un(T ).

Multiply (3.4) by ∇E(un(t)) with respect to the inner product 〈·, ·〉H , and then

integrate over (0, T ) to get

∫ T

0

〈∇E(un), u
′
n〉H dt+ (1− αn)

∫ T

0

‖∇E(un)‖
2
H dt

+ αn

∫ T

0

〈Q(t, v(t))−1∇E(un),∇E(un)〉H dt =

∫ T

0

〈f(t),∇E(un)〉H dt.

Using Proposition 5 and the fact that un(0) = −un(T ), we have

∫ T

0

〈∇E(un), u
′
n〉H dt =

1

2
a(un(T ), un(T ))−

1

2
a(un(0), un(0)) = 0.

It follows from assumption (A5) that

(1− αn + c4αn)

∫ T

0

‖∇E(un)‖
2
H dt 6

∫ T

0

‖f(t)‖H‖∇E(un)‖H dt,

which implies

C

∫ T

0

‖∇E(un)‖
2
H dt 6

∫ T

0

‖f(t)‖H‖∇E(un)‖H dt

with C = min{1, c4}. Therefore,

(3.5)

∫ T

0

‖∇E(un)‖
2
H dt 6 C′

∫ T

0

‖f(t)‖2H dt
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with C′ > 0 being independent of n. Multiply (3.4) by u′
n(t) with respect to the

inner product 〈·, ·〉H , and then integrate over (0, T ) to get

∫ T

0

‖u′
n‖

2
H dt+ (1− αn)

∫ T

0

〈∇E(un), u
′
n〉H dt

+ αn

∫ T

0

〈Q(t, v(t))−1∇E(un), u
′
n〉H dt =

∫ T

0

〈f(t), u′
n〉H dt.

From Proposition 5 and assumption (A4) it follows that

∫ T

0

‖u′
n‖

2
H dt 6

∫ T

0

( 1

c2
‖∇E(un)‖H + ‖f(t)‖H

)

‖u′
n‖H dt.

Using estimate (3.5), we obtain

(3.6)

∫ T

0

‖u′
n‖

2
H dt 6 C′′

∫ T

0

‖f(t)‖2H dt

with C′′ > 0 being independent of n. From assumption (A1) and estimate (2.1), we

have

c1

∫ T

0

‖un‖
2
V dt 6

∫ T

0

a(un, un) dt =

∫ T

0

〈∇E(un), un〉H

6 c

∫ T

0

‖∇E(un)‖H‖un‖V dt.

Employing again estimate (3.5), we get

(3.7)

∫ T

0

‖un‖
2
V dt 6 C′′′

∫ T

0

‖f(t)‖2H dt

with C′′′ > 0 being independent of n. Combining estimates (3.7), (3.6), and (3.5)

proves that (S−1
αn

) is uniformly bounded in L(Y, Z). This completes the proof. �

Proposition 7. For every f ∈ Y there exists a unique u ∈ Z, which is a solution

of the linear nonautonomous problem

(3.8)

{

u′(t) +Q(t, v(t))−1∇E(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = −u(T ).

P r o o f. Since [0, 1] is connected, we can deduce from Propositions 6, 4, and 3

that M = [0, 1], and the conclusion follows by taking α = 1 in problem (3.1). �
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Let f ∈ Y and v ∈ Y . From Proposition 7, there exists a unique u ∈ Z, which is

a solution of problem (3.8). This permits us to define the solution mapping

S : Y → Y,

v 7→ Sv = u,

where u ∈ Z is the unique solution of problem (3.8).

Proposition 8. The mapping S is continuous from Y into Y .

P r o o f. Let (vn) ⊂ Y be such that

(3.9) vn → v in Y,

and let un = Svn and u = Sv. We prove that un → u in Y . It suffices to prove that

un → u in Y for a subsequence. By definition of the mapping S, we have

(3.10)

{

u′
n +Q(t, vn(t))

−1∇E(un) = f(t) for a.e. t ∈ (0, T ),

un(0) = −un(T ).

Multiplying (3.10) by u′
n(t) with respect to the inner product 〈·, ·〉g(t,vn(t)) and inte-

grating over (0, T ), we get

∫ T

0

‖u′
n‖

2
g(t,vn)

dt+

∫ T

0

〈∇E(un), u
′
n〉H dt =

∫ T

0

〈f(t), u′
n〉g(t,vn) dt.

Proposition 5, the fact that un(0) = −un(T ), and assumption (A4), implies

c22

∫ T

0

‖u′
n‖

2
H dt 6 c23

∫ T

0

‖f(t)‖H‖u′
n‖H dt,

which yields

(3.11)

∫ T

0

‖u′
n‖

2
H dt 6 C

∫ T

0

‖f(t)‖2H dt

with C > 0 independent of n. Multiply (3.10) by un(t) with respect to the inner

product 〈·, ·〉g(t,vn(t)) and then integrate over (0, T ) to get

∫ T

0

〈u′
n, un〉g(t,vn) dt+

∫ T

0

a(un, un) dt =

∫ T

0

〈f(t), un〉g(t,vn) dt.
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From assumptions (A1), (A4), and estimate (2.1), we deduce

c1

∫ T

0

‖un‖
2
V dt 6

∫ T

0

c23(‖f(t)‖H + c‖u′
n‖H)‖un‖V dt.

It follows from (3.11) that there exists C′ > 0, which is independent of n, such that

(3.12)

∫ T

0

‖un‖
2
V dt 6 C′

∫ T

0

‖f(t)‖2H dt.

Employing (3.12), (3.11), and assumption (A4), we can see from (3.10) that

(∇E(un)) is bounded in L2(0, T ;H).

Consequently,

(un) is bounded in Z.

Hence, passing to a subsequence if necessary, we deduce that

un ⇀ w in W 1,2(0, T ;H),(3.13)

un ⇀ w in L2(0, T ;V ),(3.14)

∇E(un) ⇀ ∇E(w) in L2(0, T ;H),(3.15)

un → w in L2(0, T ;H).(3.16)

Convergence (3.16) is guaranteed by assumption (A8).

Multiplying (3.10) by Q(t, vn(t)), we find that

Q(t, vn(t))u
′
n +∇E(un) = Q(t, vn(t))f(t) a.e. t ∈ (0, T ).

This implies for every x ∈ L2(0, T ;H)

∫ T

0

〈Q(t, vn)u
′
n, x〉H dt+

∫ T

0

〈∇E(un), x〉H dt =

∫ T

0

〈Q(t, vn)f(t), x〉H dt.

Letting n → ∞ and employing (3.15), (3.13), (3.9), and assumption (A7), we obtain

for every x ∈ L2(0, T ;H)

∫ T

0

〈Q(t, v)w′, x〉H dt+

∫ T

0

〈∇E(w), x〉H dt =

∫ T

0

〈Q(t, v)f(t), x〉H dt.

Since x ∈ L2(0, T ;H) is arbitrary, this gives

Q(t, v(t))w′ +∇E(w) = Q(t, v(t))f(t) a.e. t ∈ (0, T ),
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that is,

w′ +Q(t, v(t))−1∇E(w) = f(t) a.e. t ∈ (0, T ).

From convergence (3.13) and the fact that un(0) = −un(T ) we get that w(0) =

−w(T ). Therefore, w ∈ Z is a solution of the problem
{

w′ +Q(t, v(t))−1∇E(w) = f for a.e. t ∈ (0, T ),

w(0) = −w(T ).

Since u is the unique solution of this last problem, we conclude that w = u. From

convergence (3.16) we get

un → u in L2(0, T ;H),

which proves that S is a continuous mapping. �

Proposition 9. The mapping S is relatively compact.

P r o o f. We prove that SK is a relatively compact set in Y for any bounded

set K in Y , which is equivalent to the fact that for any bounded sequence (vn) in Y

we can extract a subsequence, denoted again by (vn), such that (Svn) converges

strongly in Y . Let (vn) be any bounded sequence in Y and put un = Svn. Then un

is a solution of problem (3.10). As in the proof of Proposition 8, we can show

that (un) is bounded in W 1,2(0, T ;H) ∩ L2(0, T ;V ). Using assumption (A8), we

can extract from (un) a subsequence converging strongly in L
2(0, T ;H). This shows

that S is a relatively compact mapping. �

Proposition 10. The Schaefer set

C := {u ∈ Y : u = λSu for some λ ∈ [0, 1]}

is bounded in Y .

P r o o f. Let u ∈ C. Then there exists λ ∈ [0, 1] such that

(3.17)

{

u′(t) +Q(t, u(t))−1∇E(u(t)) = λf(t) for a.e. t ∈ (0, T ),

u(0) = −u(T ).

As in the proof of Proposition 8, by multiplying problem (3.17) by u′(t) and u(t),

respectively, with respect to the inner product 〈·, ·〉g(t,u(t)), there exists C > 0, which

is independent of u, such that

∫ T

0

‖u‖2V dt 6 C

∫ T

0

‖f(t)‖2H dt.

This last estimate implies that C is a bounded set in Y . �
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P r o o f of Theorem 2. Combining Propositions 8, 9, and 10, we claim from

Lemma 1 that there exists u ∈ Y which is a fixed-point of S, that is, u ∈ Z is a

solution of problem (2.2). The proof of Theorem 2 is complete. �

4. Application

Let Ω ⊂ R
N be open and bounded, ε ∈ (0, 1), and let

m : [0, T ]× Ω× R →
[

ε,
1

ε

]

be a measurable function such thatm(t, x, ·) is continuous for every (t, x) ∈ [0, T ]×Ω.

Let us consider the diffusion equation

(4.1)















∂u

∂t
−m(t, ·, u)∆u = f in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0, ·) = −u(T, ·) in Ω,

where ∆ is the Laplace operator. We put V = W
1,2
0 (Ω) equipped with the norm

‖u‖V = ‖∇u‖L2(Ω)N and H = L2(Ω) equipped with the usual inner product and

norm. Let E : V → R be the function defined for every u ∈ V by

E(u) =
1

2

∫

Ω

|∇u|2 dx.

We define the Laplace operator with Dirichlet boundary conditions on L2(Ω) by

D(∆) =

{

u ∈ W
1,2
0 (Ω): ∃w ∈ L2(Ω) ∀ v ∈ W

1,2
0 (Ω),

∫

Ω

∇u · ∇v dx = −

∫

Ω

wv dx

}

,

∆u = w.

Let Q : [0, T ]×H → L(H) be defined for every (t, u) ∈ [0, T ]×H by

Q(t, u) =
1

m(t, ·, u)
IH ,

where IH : H → H denotes the identity mapping of H . Then the function g : [0, T ]×

H → Inner(H) is given by

〈v, w〉g(t,u) =

∫

Ω

v(x)w(x)
dx

m(t, x, u(x))
.

We check that all assumptions of Theorem 2 are satisfied. The verification of as-

sumption (A7) can be made as in [2], Proof of Corollary 10. As a consequence of

Theorem 2, we obtain:
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Corollary 11. For every f ∈ L2(0, T ;L2(Ω)), problem (4.1) admits a solution

u ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;D(∆)).

A c k n ow l e d g em e n t. I would like to thank the reviewers for valuable remarks,

comments, and suggestions.
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