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1. Introduction

Approximation theory is one of the most thriving areas within functional analy-

sis. Korovkin has proved a well known approximation theorem which states the

uniform convergence in C[a, b], the space of continuous real functions defined on

[a, b], of a sequence of positive linear operators by stating the convergence only on

three test functions {1, x, x2}. Korovkin theory provides a useful technique for ap-

proaching behavior of positive linear operators within the area of approximation

theory. This theory has been studied by many authors in various directions. There

is a deep insight into the relation between summability theory and approximation

theory. Based on this relation, we give some abstract Korovkin type theorems via

modular convergence in the sense of A -summability and strong convergence in the

sense of A -summability. These notions enable us to give generalizations of the Ko-

rovkin theorem. Our aim is to change classical test functions of Korovkin theorem

on modular spaces by using A -summability. Similar problems have been studied in

[1], [2], [3], [4].
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We recall the foundations of the theory of modular function spaces and some

notions which are needed. We refer the reader to [11], [17].

Let us start by considering the notion of A -summability of a sequence introduced

by Bell (see [12]). Assume that A = {A(n)} = (a
(n)
kj ), j, k, n ∈ N is a sequence of

infinite matrices. (Ax)
(n)
k :=

∑

j

a
(n)
kj xj is said to be the A -transform of x whenever

the series converges for all k and n. Then a sequence x is said to be A -summable

(or A -convergent) to some number L provided that

lim
k→∞

(Ax)
(n)
k = L uniformly in n ∈ N.

Also, A is said to be a regular method of matrices if lim
j→∞

xj = L implies

lim
k→∞

(Ax)
(n)
k = L uniformly in n ∈ N. This method has the advantage of summing

some divergent sequences and has been used in approximation theory (see [21]).

Let I be a locally compact Hausdorff topological space, endowed with a uniform

structure U ⊂ 2I×I which generates the topology of I. Let µ be a regular measure

defined on B which is the σ-algebra of all Borel sets of I. Then, by X(I) we denote

the space of all real-valued µ-measurable functions on I equipped with the equality

µ-a.e. As usual, let C(I) denote the space of all continuous real valued functions

on I. The space of all real-valued continuous and bounded functions on I is denoted

by Cb(I) and also the subspace of Cb(I) of all functions with compact support on I

is denoted by Cc(I). We say that a functional ̺ : X(I) → [0,∞] is a modular on

X(I) provided that the following conditions hold:

(i) ̺[f ] = 0 if and only if f = 0 µ-almost everywhere on I,

(ii) ̺[−f ] = ̺[f ] for every f ∈ X(I),

(iii) ̺[αf+βg] 6 ̺[f ]+̺[g] for every f, g ∈ X(I) and for any α, β > 0 with α+β = 1.

A modular ̺ is said to be Q-quasi convex if there exists a constant Q > 1 such

that the inequality

̺[αf + βg] 6 Qα̺[Qf ] +Qβ̺[Qg]

holds for every f, g ∈ X(I), α, β > 0 with α+ β = 1. In particular, if Q = 1, then ̺

is called convex.

A modular ̺ is said to be Q-quasi semiconvex if there exists a constant Q > 1

such that the inequality

̺[af ] 6 Qa̺[Qf ]

holds for every nonnegative function f ∈ X(I) and a ∈ (0, 1].

It is clear that every Q-quasi convex modular is Q-quasi semiconvex. We now

consider some subspaces of X(I) by means of a modular ̺ as follows:

L̺(I) :=
{

f ∈ X(I) : lim
λ→0+

̺[λf ] = 0
}
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and

E̺(I) := {f ∈ L̺(I) : ̺[λf ] < ∞ for all λ > 0}

is called the modular space generated by ̺ and the space of the finite elements of

L̺(I), respectively. Observe that if ̺ is Q-quasi semiconvex, then the space

{f ∈ X(I) : ̺[λf ] < ∞ for some λ > 0}

coincides with L̺(I). The notions about modulars have been introduced in [19] and

have been widely discussed in [4], [5], [7], [9]–[11], [13], [14], [16]–[18], and [20].

We need some of the following assumptions on modulars:

⊲ ̺ is monotone, i.e. for f, g ∈ X(I) if |f | 6 |g|, then ̺[f ] 6 ̺[g].

⊲ ̺ is strongly finite, i.e. χA ∈ E̺(I) for all A ∈ B with µ(A) < ∞.

⊲ ̺ is absolutely continuous, i.e. there exists α > 0 such that for every f ∈ X(I)

with ̺[f ] < ∞:

⊲⊲ for each ε > 0 there exists a set A ∈ B with µ(A) < ∞ and ̺[αfχI\A] 6 ε,

⊲⊲ for each ε > 0 there is δ > 0 with ̺[αfχB ] 6 ε for every B ∈ B with µ(B) < δ.

According to [8], recall that {fj} is modularly convergent to a function f ∈ L̺(I)

if and only if

lim
j→∞

̺[λ0(fj − f)] = 0 for some λ0 > 0,

also {fj} is strongly convergent to a function f ∈ L̺(I) if and only if

lim
j→∞

̺[λ(fj − f)] = 0 for every λ > 0.

Moreover, we recall the following convergences in modular spaces which have also

been studied in [15]. Let {fj} be a function sequence whose terms belong to L
̺(I).

Then {fj} is modularly convergent to a function f ∈ L̺(I) in the sense of A -

summability if and only if

lim
k

∞
∑

j=1

a
(n)
kj ̺[λ0(fj − f)] = 0 for some λ0 > 0 uniformly in n.

Also, {fj} is strongly convergent to a function f ∈ L̺(I) in the sense of A -

summability if and only if

lim
k

∞
∑

j=1

a
(n)
kj ̺[λ(fj − f)] = 0 for every λ > 0 uniformly in n.

If there exists a constant M > 0 such that for all u > 0

̺[2u] 6 M̺[u]
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holds, then it is said that ̺ satisfies the ∆2-condition. The key property of the

∆2-condition is the following theorem.

Theorem 1. Let L̺(I) be a modular space. ∆2-condition is sufficient in order

that strong convergence in the sense of A -summability and modular convergence in

the sense of A -summability be equivalent in L̺(I).

P r o o f. Obviously, strong convergence of {fj} to f in the sense ofA -summability

is equivalent to the condition lim
k

∞
∑

j=1

a
(n)
kj ̺[2Nλ(fj − f)] = 0 uniformly in n for some

λ > 0 and all N = 1, 2, . . . Let {fj} be modularly convergent to f in the sense of

A -summability. Then there exists λ > 0 such that lim
k

∞
∑

j=1

a
(n)
kj ̺[λ(fj − f)] = 0 uni-

formly in n. ∆2-condition implies by induction that ̺[2
Nλ(fj−f)] 6 MN̺[λ(fj−f)].

Therefore we get

lim
k

∞
∑

j=1

a
(n)
kj ̺[2Nλ(fj − f)] = 0.

This completes the proof. �

2. Main results

In this section we give some Korovkin-type theorems by using different test func-

tions from the ordinary ones {1, x, x2} in the sense of A -summability.

Observe now that if a modular ̺ is monotone and finite, then we have C(I) ⊂ L̺(I)

(see [11]). In a similar manner, if ̺ is monotone and strongly finite, then C(I) ⊂

E̺(I). Let ̺ be monotone and finite modular on X(I). Assume that D is a set

satisfying Cb(I) ⊂ D ⊂ X(I). Assume further that T := {Tj} is a sequence of

positive linear operators from D into X(I). Also we say that the sequence T satisfies

condition:

(∗) If there exists a subset XT ⊂ D ∩ L̺(I) with Cb(I) ⊂ XT and a positive real

constant R with Tjf ∈ L̺(I) for all f ∈ XT and j ∈ N such that

lim sup
k

∑

j

a
(n)
kj ̺[τ(Tjf)] 6 R̺[τf ]

for every f ∈ XT and τ > 0.

Assume that e0(t) = 1 for all t ∈ I and let ei, ai be functions in Cb(I) for i =

0, 1, . . . ,m. Put

(1) Ps(t) =

m
∑

i=0

ai(s)ei(t), s, t ∈ I
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and suppose that Ps(t), s, t ∈ I, satisfies the following conditions:

(K1) Ps(s) = 0 for all s ∈ I,

(K2) for every neighbourhood U ∈ U there is a positive real number η with Ps(t) > η

whenever s, t ∈ I, (s, t) /∈ U .

Some examples of Ps for which (K1) and (K2) are satisfied have been given in [4].

Theorem 2. Let A = {A(n)} be a sequence of infinite nonnegative real matrices

and let ̺ be a strongly finite, monotone and Q-quasi semiconvex modular. Assume

that ei and ai, i = 0, 1, . . . ,m satisfy properties (K1) and (K2). Let {Tj}, j ∈ N be

a sequence of positive linear operators satisfying condition (∗). If

lim
k→∞

∞
∑

j=1

a
(n)
kj ̺[λ(Tjei − ei)] = 0 uniformly in n

for some λ > 0 and i = 0, 1, . . . ,m, then for every f ∈ Cc(I)

lim
k→∞

∞
∑

j=1

a
(n)
kj ̺[γ(Tjf − f)] = 0 uniformly in n

for some γ > 0. Moreover, if

lim
k→∞

∞
∑

j=1

a
(n)
kj ̺[λ(Tjei − ei)] = 0 uniformly in n

for every λ > 0 and i = 0, 1, . . . ,m, then for every f ∈ Cc(I)

lim
k→∞

∞
∑

j=1

a
(n)
kj ̺[λ(Tjf − f)] = 0 uniformly in n

for every λ > 0.

P r o o f. Let f ∈ Cc(I). Since I is endowed with U uniformity, f is uniformly

continuous and bounded on I. Let ε > 0. Without loss of generality we can choose

0 < ε 6 1. From the uniform continuity of f there exists U ∈ U such that

|f(s)− f(t)| 6 ε, s, t ∈ I, (s, t) ∈ U.

For every s, t ∈ I and in correspondence with U let Ps(t) be as in (1) and η > 0

satisfy condition (K2). If M = sup
t∈I

|f(t)|, for s, t ∈ I, (s, t) /∈ U , we have

|f(s)− f(t)| 6 2M 6
2M

η
Ps(t).
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For every s, t ∈ I we obtain

|f(s)− f(t)| 6 2M 6 ε+
2M

η
Ps(t).

Therefore for every s, t ∈ I we get

(2) −ε−
2M

η
Ps(t) 6 f(s)− f(t) 6 ε+

2M

η
Ps(t).

Since Tj is a linear positive operator, using (2) for each j ∈ N and every s ∈ I we

have

−ε(Tje0)(s)−
2M

η
(TjPs(s)) 6 f(s)(Tje0)(s)− (Tjf)(s) 6 ε(Tje0)(s)+

2M

η
(TjPs)(s)

and hence

|(Tjf)(s)− f(s)| 6 |(Tjf)(s)− f(s)(Tje0)(s)|+ |f(s)(Tje0)(s)− f(s)|

6 ε(Tje0)(s) +
2M

η
(TjPs)(s) +M |(Tje0)(s) − e0(s)|.

Let γ > 0. Using the modular ̺ in the last inequality, for each j ∈ N we have

(3) ̺[γ(Tjf − f)] 6 ̺[3γε(Tje0)] + ̺[3γM(Tje0 − e0)] + ̺
[

6γ
M

η
(TjP(·))(·)

]

= J1 + J2 + J3.

So to prove the theorem it is sufficient to show that there exists a positive real

number γ such that lim
k→∞

∑

j

a
(n)
kj ̺[γ(Tjf − f)] = 0 uniformly in n. From hypothesis

there exists λ > 0 such that for each i = 0, 1, . . . ,m

lim
k→∞

∑

j

a
(n)
kj ̺[λ(Tjei − ei)] = 0 uniformly in n.

For each i = 0, 1, . . . ,m and s ∈ I choose N > 0 and γ > 0 such that |ai(s)| 6 N

and max{3γM, 6γMη−1(m + 1)N} 6 λ. Consider condition (K1), for each j ∈ N

and i = 0, 1, . . . ,m we get

J3 = ̺
[

6γ
M

η
(TjP(·))(·)

]

= ̺
[

6γ
M

η
(TjP(·))(·)− P(·)(·)

]

6

m
∑

i=0

̺
[

6γ
M

η
(m+ 1)N(Tjei − ei)

]

6

m
∑

i=0

̺[λ(Tjei − ei)].
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Hence we obtain

lim
k→∞

∑

j

a
(n)
kj J3 = 0 uniformly in n.

Moreover, from choosing λ and γ it is clear that lim
k→∞

∑

j

a
(n)
kj J2 = 0. Since ̺ is

Q-quasi semiconvex and 0 < ε 6 1, we have

(4) ̺[3γεe0] 6 Qε̺[3γQe0].

If condition (∗) is considered in (3) and (4), we get uniformly in n

(5) 0 6 lim sup
k

∑

j

a
(n)
kj ̺[γ(Tjf − f)] 6 lim sup

k

∑

j

a
(n)
kj ̺[3γε(Tje0)]

6 N̺[3γεe0] 6 NQε̺[3γQe0].

Since ε is arbitrary positive real number and ̺ is strongly finite using (5), we have

lim sup
k

∑

j

a
(n)
kj ̺[γ(Tjf − f)] = 0 uniformly in n

and hence

lim
k

∑

j

a
(n)
kj ̺[γ(Tjf − f)] = 0 uniformly in n.

This means that {Tjf} is modularly convergent to f in the sense of A -summability

on L̺(I). The second part can be proved similarly to the first one. �

The next theorem is similar to Theorem 2.1 of [15] (see also [4]) under weaker

condition by using different test functions.

Theorem 3. Let A = {A(n)} be a sequence of infinite nonnegative real matrices

and let ̺ be a strongly finite, monotone, absolutely continuous and Q-quasi semi-

convex modular on X(I). Let Tj, j ∈ N be a sequence of positive linear operators

satisfying condition (∗). If

lim
k→∞

∞
∑

j=1

a
(n)
kj ̺[λ(Tjei − ei)] = 0 uniformly in n

for every λ > 0 and i = 0, 1, . . . ,m, then for every f ∈ L̺(I)∩D with f−Cb(I) ⊂ XT ,

lim
k→∞

∞
∑

j=1

a
(n)
kj ̺[γ(Tjf − f)] = 0 uniformly in n

for some γ > 0, where XT and D are as before.
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P r o o f. Let f ∈ L̺(I) ∩ D such that f − Cb(I) ⊂ XT . From Proposition 3.2

of [4] there exist λ > 0 and a sequence (fm) in Cc(I) such that ̺[3λf ] < ∞ and

lim
m

̺[3λ(fm − f)] = 0. Take arbitrary fixed ε > 0 and choose a positive integer m

such that

(6) ̺[3λ(fm − f)] 6 ε.

For each j ∈ N we have

(7) ̺[λ(Tjf − f)] 6 ̺[3λ(Tjf − Tjfm)] + ̺[3λ(Tjfm − fm)] + ̺[3λ(fm − f)].

Using a similar technique as in the previous theorem, we obtain

(8) 0 = lim
k

∑

j

a
(n)
kj ̺[3λ(Tjfm − fm)]

= lim sup
k

∑

j

a
(n)
kj ̺[3λ(Tjfm − fm)] uniformly in n.

From condition (∗) there exists R > 0 such that

(9) lim
k

∑

j

a
(n)
kj ̺[3λ(Tjf − Tjfm)] 6 R̺[3λ(f − fm)] 6 Rε uniformly in n.

From (6)–(9) and the subadditivity of the operator lim sup we have

(10) 0 6 lim sup
k

∑

j

a
(n)
kj ̺[λ(Tjf − f)] 6 ε(R + 1) uniformly in n.

From (10) and the arbitrariness of ε we get for γ = λ

lim sup
k

∑

j

a
(n)
kj ̺[λ(Tjf − f)] = 0 uniformly in n.

This implies lim
k

∑

j

a
(n)
kj ̺[λ(Tjf − f)] = 0 uniformly in n. �
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3. Concluding remarks and examples

In this section we give some remarks and an example to show that our theorems

are generalizations of known theorems. We remark that if A(n) equals to identity

matrix for every n ∈ N, then A -summability reduces to the ordinary convergence.

In this case our Theorem 3 is similar to Theorem 3.2 of [8].

Take I = [0, 1] and let ϕ : R
+
0 → R

+
0 be a convex continuous function with

ϕ(0) = 0, ϕ(u) > 0 for u > 0, ϕ(u) → ∞ as u → ∞. Then it is easily shown

that

̺[f ] = Uϕ[f ] =

∫

I

ϕ(|f(t)|) dµ(t)

is a convex modular on the space X(I). Uϕ is known as an Orlicz modular in X(I).

The respective modular space L̺
ϕ(I) is called the Orlicz space. Now let us consider

the following linear positive operator on the space L̺
ϕ(I) which is defined as

(11) Bj(f ;x) := sj

j
∑

r=0

(

j

r

)

xr(1− x)j−r(j + 1)

∫ (r+1)/(j+1)

r/(j+1)

f(t) dt for x ∈ I,

where {sj} is a sequence of zeros and ones which is A -summable to 1, but not ordi-

nary convergent. Also we assume that A is a regular method of matrices. Observe

that the operators Bj map the Orlicz space L
̺
ϕ into itself. By Lemma 5.1 of [8], for

every h ∈ XB := L̺
ϕ, all λ > 0 and for a positive constant N we get

Uϕ[λBjh] 6 sjNUϕ[λh].

Then we have

lim
k

∑

j

a
(n)
kj Uϕ[λBjh] 6 NUϕ[λh].

It is easily seen that

Bj(e0;x) = sj ,

Bj(e1;x) = sj

( jx

j + 1
+

1

2(j + 1)

)

,

Bj(e2;x) = sj

(j(j − 1)x2

(j + 1)2
+

2jx

(j + 1)2
+

1

3(j + 1)2

)

,

where ei(t) = ti, i = 0, 1, 2. Therefore we can observe for any λ > 0 that

λ|Bj(e0;x)− e0(x)| = λ(1 − sj)
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which implies

Uϕ[λ(Bje0 − e0)] = Uϕ[λ(1− sj)] =

∫ 1

0

ϕ[λ(1 − sj)] dx

= ϕ[λ(1 − sj)] = (1 − sj)ϕ(λ)

because of the definition of {sj}. Now we get for any λ > 0

lim
k

∑

j

a
(n)
kj Uϕ[λ(Bje0 − e0)] = 0 uniformly in n.

Also since

λ|Bj(e1;x)− e1(x)| 6 λ
{

(1− sj) +
3sj

2(j + 1)

}

by the definition of {sj} and Uϕ, we may write that

Uϕ[λ(Bje1 − e1)] 6 Uϕ

[

λ
{

(1 − sj) +
3sj

2(j + 1)

}]

6 Uϕ[2λ(1− sj)] + Uϕ

[ 3λsj
j + 1

]

= ϕ[2λ(1− sj)] + ϕ
[ 3λsj
j + 1

]

,

which implies for any λ > 0 that

Uϕ[λ(Bje1 − e1)] 6 (1 − sj)ϕ[2λ] + sjϕ
[ 3λ

j + 1

]

.

Since ϕ is continuous, we have lim
j

ϕ[3λ/(j + 1)] = ϕ
[

lim
j

3λ/(j + 1)
]

= ϕ(0) = 0.

Therefore we have for every λ > 0

lim
k

∑

j

a
(n)
kj Uϕ[λ(Bje1 − e1)] = 0 uniformly in n.

Finally, since

λ|Bj(e2;x)− e2(x)| 6 λ
{

(1 − sj) + sj
15j + 4

3(j + 1)2

}

,

we get

Uϕ[λ(Bje2 − e2)] 6 Uϕ[2λ(1 − sj)] + Uϕ

[

λsj
30j + 8

3(j + 1)2

]

= ϕ[2λ(1− sj)] + ϕ
[

λsj
30j + 8

3(j + 1)2

]

,

which yields

(12) Uϕ[λ(Bje2 − e2)] 6 (1− sj)ϕ[2λ] + sjϕ
[

λ
30j + 8

3(j + 1)2

]

.
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Considering the continuity of ϕ, it follows from (12) for any λ > 0 that

lim
k

∑

j

a
(n)
kj Uϕ[λ(Bje2 − e2)] = 0 uniformly in n.

The sequence of operators {Bj} defined by (11) satisfies all conditions of Theorem 3.

So we conclude that

lim
k

∑

j

a
(n)
kj Uϕ[λ0(Bj(f)− f)] = 0 uniformly in n

holds for λ0 > 0 and every f ∈ L̺
ϕ(I). However, since {sj} is not convergent to zero,

it is clear that {Bj} is not modularly convergent to f .

Also remark that if we assume I = [0, 1], e0(t) = 1, e1(t) = t, e2(t) = t2,

a0(s) = s2, a1(s) = −2s, a2(s) = 1, s, t ∈ I in equation (1), A(n) = I for every

n ∈ N and that ̺ is a sup-norm on C(I) which is the set of all continuous functions

on I in Theorem 3, the classical Korovkin theorem is obtained.
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