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OSCILLATORY AND NON OSCILLATORY CRITERIA

FOR THE SYSTEMS OF TWO LINEAR FIRST ORDER

TWO BY TWO DIMENSIONAL MATRIX

ORDINARY DIFFERENTIAL EQUATIONS

Gevorg Avagovich Grigorian

Abstract. The Riccati equation method is used for study the oscillatory and
non oscillatory behavior of solutions of systems of two first order linear two
by two dimensional matrix differential equations. An integral and an interval
oscillatory criteria are obtained. Two non oscillatory criteria are obtained as
well. On an example, one of the obtained oscillatory criteria is compared with
some well known results.

1. Introduction

Let P (t) ≡
(
pjk(t)

)2
j,k=1, Q(t) ≡ diag{q1(t), q2(t)}, R(t) ≡

(
rjk(t)

)2
j,k=1,

S(t) ≡
(
sjk(t)

)2
j,k=1 be real valued continuous matrix functions on [t0; +∞). Consi-

der the matrix linear system

(1.1)

Φ′ = P (t)Φ +Q(t)Ψ ;

Ψ′ = R(t)Φ + S(t)Ψ , t ≥ t0 .

Here Φ = Φ(t) ≡
(
φjk(t)

)2
j,k=1, Ψ = Ψ(t) ≡

(
ψjk(t)

)2
j,k=1 are unknown continuously

differentiable matrix functions on [t0; +∞).

Remark 1.1. The general case Q(t) ≡ S(t) diag{q1(t), q2(t)}S−1(t), t ≥ t0, where
S(t) is an invertible continuously differentiable on [t0; +∞) matrix function, can
be reduced to the case Q(t) ≡ diag{q1(t), q2(t)}, t ≥ t0, of the system (1.1) by the
linear transformation

Φ = S(t)Φ1 , Ψ = S(t)Ψ1 , t ≥ t0 .

in (1.1).
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Definition 1.1. A solution (Φ(t),Ψ(t)) of the system (1.1) is called oscillatory if
det Φ(t) has arbitrary large zeroes, otherwise it is called non oscillatory.

Definition 1.2. A solution (Φ(t),Ψ(t)) of the system (1.1) is called oscillatory on
the interval [t1; t2], (t0 ≤ t1 < t2 < +∞) if det Φ(t) has at least one zero on [t1; t2].

Definition 1.3. A solution (Φ(t),Ψ(t)) of the system (1.1) is called prepared (or
preferred) if Φ∗(t)Ψ(t) = Ψ∗(t)Φ(t), t ≥ t0, where ∗ is the transpose sign.

Definition 1.4. The system (1.1) is called oscillatory, if its all prepared solutions
are oscillatory.

Definition 1.5. The system (1.1) is called oscillatory on the interval [t1; t2],
(t0 ≤ t1 < t2 < +∞) if its all prepared solutions are oscillatory on the interval
[t1; t2].

Study of questions of oscillation and non oscillation of solutions of linear systems
of matrix equations, in particular of the system (1.1), is an important problem of
qualitative theory of differential equations and many works are devoted to them
(see for example [1], [3], [10]–[14]). In most of cases in the works [1], [3], [10]–[14]
and others on the matrix coefficients of the system are imposed conditions ensuring
some symmetry property of corresponding matrix Riccati equation (the hamiltonian
systems), namely if Y (t) is a solution to corresponding Riccati equation then the
transposed matrix function Y ∗(t) is a solution of the last one as well. In this work
we study the conditions on the coefficients of the system (1.1), for which the last
one has oscillatory and non oscillatory solutions. We impose conditions on the
coefficients of the system (1.1) for which the hamiltonian structure of it can not be
kept.

2. Auxiliary propositions

In this paragraph we prove two lemmas and represent a lemma and a theorem,
proved in other works. They will be used in the next paragraph for proving
oscillatory and non oscillatory criteria for the system (1.1).

In what follows the solutions of equations and systems of equations we will
assume real valued. In the system (1.1) make a change

(2.1) Ψ = Y (t)Φ , t ≥ t0 ,

where Y (t) is a continuously differentiable matrix function of dimension 2× 2 on
[t0; +∞). We will get:

(2.2)

Φ′ = [P (t) +Q(t)Y (t)]Φ ;

[Y ′(t) + Y (t)Q(t)Y (t) + Y (t)P (t)− S(t)Y (t)−R(t)]Φ = 0 , t ≥ t0 .

Consider the matrix Riccati equation

(2.3) Y ′ + Y Q(t)Y + Y P (t)− S(t)Y −R(t) = 0 , t ≥ t0 ,
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where Y =
(
yjk(t)

)2
j,k=1. From (2.2) is seen that if Y1(t) is a solution of Eq. (2.3)

on [t1; t2)(t0 ≤ t1 < t2 ≤ +∞), then (Φ1(t), Y1(t)Φ1(t)) is a solution to the system
(1.1) on [t1; t2), where Φ1(t) is any solution to matrix equation

(2.4) Φ′ = [P (t) +Q(t)Y1(t)]Φ , t ∈ [t1; t2) .

Obviously on the strength of (2.1) and (2.2) if (Φ(t),Ψ(t)) is a solution of the
system (1.1) and det Φ(t) 6= 0, t ∈ [t1; t2), then Y (t) ≡ Ψ(t)Φ−1(t) is a solution
to Eq. (2.3) on [t1; t2). Let Y0(t) be a solution to Eq. (2.3) on [t1; t2).

Definition 2.1. We will say that [t1; t2) is a maximum existence interval for Y0(t),
if Y0(t) cannot be continued to the right of t2 as a solution of Eq. (2.3).

Lemma 2.1. Let Y0(t) be a solution of Eq. (2.3) on [t1; t2), and let t2 < +∞. Then
[t1; t2) cannot be the maximum existence interval for Y0(t) provided the function

f(t) ≡
t∫
t1

tr[Q(τ)Y0(τ)]dτ , t ∈ [t1; t2), is bounded from below on [t1; t2).

Proof. Let Φ0(t) be a solution to the equation

(2.5) Φ′ = [P (t) +Q(t)Y0(t)]Φ , t ≥ t0 ,

with Φ0(t1) 6= 0. Then by Liouville formula

(2.6) det Φ0(t) = det Φ0(t1) exp
{ t∫
t1

tr
[
P (τ) +Q(τ)Y0(τ)

]
dτ
}
6= 0 ,

t ∈ [t1; t2). Recall that for any solution Φ0(t) of the linear matrix equation

Φ′ = A(t)Φ , t ≥ t0 ,

where A(t) is a square continuous matrix function, the Liuville’s theorem states
that (the Liuville’s formula)

det Φ0(t) = det Φ0(t0) exp
{ t∫
t0

tr(A(τ))dτ
}

(see [9, p. 47, Theorem 1.2]). Let (Φ̃(t), Ψ̃(t)) be the solution of the system (1.1)
with Φ̃(t1) = Φ0(t1), Ψ̃(t1) = Y0(t1)Φ0(t1). Then by (2.2)–(2.5) and the uniqueness
theorem

(2.7) Φ̃(t) = Φ0(t) , Ψ̃(t) = Y0(t)Φ0(t) , t ∈ [t1; t2) .

From the conditions of the lemma and from (2.6) it follows that |det Ψ0(t)| ≥ ε,
t ∈ [t1; t2), for some ε > 0. Then since det Ψ̃0(t) is a continuous function from (2.7) it
follows that det Φ̃(t) 6= 0, t ∈ [t1; t3), for some t3 > t2. Therefore Ỹ0(t) ≡ Ψ̃(t)Φ̃−1(t)
is a solution to Eq. (2.3) on [t1; t3). By (2.7) we have Ỹ0(t) = Y0(t), t ∈ [t1; t2).
Hence [t1; t2) is not the maximum existence interval for Y0(t). The lemma is
proved. �
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Let a(t), b(t), c(t), c1(t) be continuously differentiable functions on [t0; +∞).
Consider the Riccati equations

y′ + a(t)y2 + b(t)y + c(t) = 0 , t ≥ t0 ;(2.8)

y′ + a(t)y2 + b(t)y + c1(t) = 0 , t ≥ t0 ;(2.9)

Theorem 2.1. Let Eq. (2.9) has the solution y1(t) on [t1; t2) (t0 ≤ t1 < t2 ≤ +∞),
and let a(t) ≥ 0, c(t) ≤ c1(t), t ∈ [t1; t2). Then for each y(0) ≥ y1(t0) Eq.(2.8) has
the solution y0(t) on [t1; t2) with y0(t0) = y(0), and y0(t) ≥ y1(t), t ∈ [t1; t2).

A proof for a more general theorem is presented in [4] (see also [5]).
Let us write Eq. (2.3) in the expanded form. We have:

(2.10)

y′11 + q1(t)y2
11 + a11(t)y11 + q2(t)y12y21 + p21(t)y12 − s12(t)y21 − r11(t) = 0 ;

y′22 + q2(t)y2
22 + a22(t)y22 + q1(t)y12y21 + p12(t)y21 − s21(t)y12 − r22(t) = 0 ;

y′12 + [q1(t)y11 + q2(t)y22 + a21(t)]y12 + p12(t)y11 − s12(t)y22 − r12(t) = 0 ;

y′21 + [q1(t)y11 + q2(t)y22 + a12(t)]y21 + p21(t)y22 − s21(t)y11 − r21(t) = 0 ,

where ajk(t) ≡ pjj(t)− skk(t), j, k = 1, 2, t ≥ t0. Denote:

Ik(τ ; t) ≡
t∫
τ

exp
{
−

t∫
s

akk(ζ)dζ
}
rkk(s)ds , t ≥ τ ≥ t0 , k = 1, 2 .

Lemma 2.2. Let the following conditions hold
(A) qk(t) ≥ 0, k = 1, 2, r12(t) ≥ 0 (≤ 0), r21(t) ≤ 0 (≥ 0), p21(t) ≥ 0 (≤ 0),

s12(t) ≥ 0 (≤ 0), t ≥ t0;
(B) there exist infinitely large sequences ξ0,k = t0 < ξ1,k < · · · < ξm,k < · · ·

(k = 1, 2) such that

(2.11)
t∫

ξm,k

exp
{ τ∫
ξm,k

[
akk(s) + qk(s)Ik(ξm,k; s)

]
ds
}
rkk(τ)dτ ≥ 0 ,

t ∈ [ξm,k; ξm+1,k) , m = 0, 1, 2, . . . , k = 1, 2 .

Then for each ykk,0 > 0, k = 1, 2, y12,0 ≤ 0 (≥ 0), y21,0 ≥ 0 (≤ 0) Eq. (2.3)
has the solution Y0(t) ≡

(
y0
jk(t)

)2
j,k=1 on [t0; +∞), satisfying the initial conditions

y0
jk(t0) = yjk,0, j, k = 1, 2, and

(2.12) detY0(t) > 0 , t ≥ t0 .

Proof. Show that

(2.13) y0
kk(t) > 0 , t ∈ [t0;T ) , k = 1, 2 ,
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where [t0;T ) is the maximum existence interval for Y0(t). Suppose that it is not so.
Then from the initial conditions is seen that

y0
kk(t) > 0 , t ∈ [t0;T1) ,(2.14)

y0
11(T1)y0

22(T1) = 0 ,(2.15)

for some T1 ∈ (t0;T ). By virtue of the third and fourth equations of the system
(2.10) we have:

y0
12(t) = exp

{
−

t∫
t0

[q1(τ)y0
11(τ) + q2(τ)y0

22(τ) + a21(τ)]dτ
}

×
[
y0

12(t0)−
t∫

t0

exp
{ τ∫
t0

[
q1(s)y0

11(s) + q2(s)y0
22(s) + a21(s)

]
ds
}

×
(
p12(τ)y0

11(τ)− s12(τ)y22(τ)− r12(τ)
)
dτ
]
, t ∈ [t0;T );(2.16)

y0
21(t) = exp

{
−

t∫
t0

[q1(τ)y0
11(τ) + q2(τ)y0

22(τ) + a12(τ)]dτ
}

×
[
y0

21(t0)−
t∫

t0

exp
{ τ∫
t0

[
q1(s)y0

11(s) + q2(s)y0
22(s) + a12(s)

]
ds
}

×
(
p21(τ)y0

22(τ)− s21(τ)y11(τ)− r21(τ)
)
dτ
]
, t ∈ [t0;T ) .(2.17)

From here from the conditions of lemma and from (2.14) it follows that

(2.18) y0
12(t) ≥ 0 (≤ 0) , y0

21(t) ≤ 0 (≥ 0) , t ∈ [t0;T1) .

Consider the Riccati equations

y′ + qk(t)y2 + akk(t)y − rkk(t) = 0 , t ≥ t0 ,(2.19)
y′ + qk(t)y2 + akk(t)y + Lk(y0

k,3−k(t), y0
3−k,k(t), t) = 0 , t ≥ t0 ,(2.20)

k = 1, 2, where Lk(u, v, t) ≡ q3−k(t)uv+ p3−k,k(t)u− sk,3−k(t)v− rkk(t), u, v ∈ R,
t ≥ t0, k = 1, 2. From the conditions (A) of lemma and from (2.18) it follows that

(2.21) Lk
(
y0
k,3−k(t), y0

3−k,k(t), t
)
≤ −rkk(t) , t ∈ [t0;T1) , k = 1, 2 .

Let yk(t) be the solution of Eq. (2.19) with yk(t0) = y0
kk(t0) > 0, (k = 1, 2). Then

on the strength of Theorem 4.1 of work [5] from the conditions (B) of lemma it
follows that yk(t) exists on [t0;T ) and

(2.22) yk(t) > 0 , t ∈ [t0;T ) , k = 1, 2 .

Obviously by (2.10) the function y0
kk(t) is a solution to Eq. on [t0;T ), (k = 1, 2).

Then by virtue of Theorem 2.1 from (2.21) and (2.22) it follows that y0
kk(t) ≥

yk(t) > 0, t ∈ [t0;T1], k = 1, 2, which contradicts (2.15). The obtained contradiction
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proves (2.13). Show that T = +∞. From the conditions qk(t) ≥ 0, t ≥ t0, k = 1, 2
(a part of (A)), and from (2.13) it follows that

(2.23)
t∫

t0

tr[Q(τ)Y0(τ)]dτ ≥ 0 , t ∈ [t0;T ) .

Suppose T < +∞. Then by Lemma 2.1 from (2.23) it follows that [t0;T ) is not
the maximum existence interval for y0(t). The obtained contradiction shows that
T = +∞. From here, from the conditions (A) of lemma, from (2.13), (2.16) and
(2.17) it follows (2.12). The lemma is proved. �

Remark 2.1. The conditions (B) of Lemma 2.2 are satisfied if in particular
rkk(t) ≥ 0, t ≥ t0, k = 1, 2.

Lemma 2.3. Let Eq. (2.8) has a solution on [t1; +∞) for some t1 ≥ t0, and let

a(t) ≥ 0, c(t) ≥ 0, t ≥ t0,
+∞∫
t0

a(τ) exp
{
−

τ∫
t0

b(s)ds
}
dτ = +∞. Then Eq. (2.8) has

a positive solution on [t1; +∞).

The proof is presented in [6].

3. Oscillatory and non oscillatory criteria

Denote:

Fk(t) ≡
{
rkk(t)− (p3−k,k(t)− sk,3−k(t))2/(4q3−k(t)) , q3−k(t) 6= 0 ;
rkk(t) , q3−k(t) = 0 ,

t ≥ t0, k = 1, 2. Let j(∈ {1, 2}) be fixed. Consider the Riccati equation

(3.1) y′ + qj(t)y2 + ajj(t)y − Fj(t) = 0 , t ≥ t0 .

The solutions y(t) of this equation existing on some interval [t1; t2) (t0 ≤ t1 < t2 ≤
+∞), are connected with the solutions (φ(t), ψ(t)) of the system of scalar equations

(3.2)
{
φ′ = pjj(t)φ+ qj(t)ψ ;
ψ′ = Fj(t)φ+ sjj(t)ψ , t ≥ t0 ,

by relations (see [7])

(3.3) φ(t) = φ(t1) exp
{ t∫
t1

[
qj(τ)y(τ)+pjj(τ)

]
dτ
}
, φ(t1) 6= 0 , ψ(t) = y(t)φ(t) ,

t ∈ [t1; t2).

Definition 3.1. The system (3.2) is called oscillatory if for its each solution
(φ(t), ψ(t)) the function φ(t) has arbitrary large zeroes.

Definition 3.2. The system (3.2) is called oscillatory on the interval [t1; t2] if for
its each solution (φ(t), ψ(t)) the function φ(t) has at least one zero on [t1; t2].
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Theorem 3.1. Let the following conditions be satisfied:
(I) qk(t) ≥ 0, k = 1, 2, and if q3−j(t) = 0, then p3−j,j(t) = sj,3−j(t), t ≥ t0;
(II) the system (3.2) is oscillatory.

Then the system (1.1) is oscillatory.

Proof. Let (Φ(t),Ψ(t)) be a prepared solution to the system (1.1). Suppose that
(Φ(t),Ψ(t)) is not oscillatory. Then det Φ(t) 6= 0, t ≥ T , for some T ≥ t0. Let
Y0(t) ≡

(
y0
jk(t)

)2
j,k=1 = Ψ(t)Φ−1(t), t ≥ T . By (2.1) Y0(t) is a solution of Eq. (2.3)

on [T ; +∞). Then by (2.10) y0
jj(t) satisfies to the following Riccati equation

(3.4) y′ + qj(t)y2 + ajj(t)y + Lj(y0
j,3−j(t), y0

3−j,j(t), t) = 0 , t ≥ T

(the definition of Lj see below (2). Since (Φ(t),Ψ(t)) is a prepared solution we have
Y0(t) = Y ∗0 (t), t ≥ T . From here and from the conditions (I) of theorem it follows
that
(3.5) Lj(y0

j,3−j(t), y0
3−j,j(t), t) ≥ Fj(t) , t ≥ T .

Consider the Riccati equation
(3.6) y′ + qj(t)y2 + ajj(t)y − Fj(t) = 0 , t ≥ T .
Let yj(t) be its solution with yj(t) ≥ y0

jj(T ). Then using Theorem 2.1 by applying
(3.5) to the equations (3.4) and (3.6) we will conclude that yj(t) exists on [T ; +∞).
Therefore by (3.1)–(3.3) the functions

φj(t) = exp
{ t∫
T

[
qj(τ)y(τ) + pjj(τ)

]
dτ
}
, ψj(t) = yj(t)φj(t) , t ≥ T

form the solution (φj(t), ψj(t)) of the system (3.2) on [T ; +∞), which can be
continued on [t0; +∞) as a solution of the system (3.2). It is evident that φj(t) has
no arbitrary large zeroes which contradicts (II). The theorem is proved. �

By analogy can be proved

Theorem 3.2. Let the following conditions be satisfied:
(I∗) qk(t) ≥ 0, k = 1, 2, and if q3−j(t) = 0, then p3−j,j(t) = sj,3−j(t), t ∈ [t1; t2]
(t0 ≤ t1 < t2 < +∞);
(II∗) the system (3.2) is oscillatory on the interval [t1; t2].
Then the system (1.1) is oscillatory on the interval [t1; t2].

Remark 3.1. The restrictions (I) on Q(t) in Theorem 3.1 means that Q(t) is
nonnegative definite meanwhile in the works [1], [3], [10]–[14] and others the
corresponding coefficient is positive definite.

Remark 3.2. Suppose p12(t) = −s21(t), p12(t) = −s21(t), a12(t) = a21(t), r12(t) =
r21(t), t ≥ t0. Then by (2.10), if Y0(t) is a solution of Eq. (2.3) on some interval
[t0; t1), then Y ∗0 (t) is a solution of Eq. (2.3) on [t0; t1) too. On the strength of the
uniqueness theorem from here it follows that if Y0(t0) = Y ∗0 (t0), then Y0(t) = Y ∗0 (t),
t ∈ [t0; t1). Therefore taking into account (2.1) we conclude that if (Φ(t),Ψ(t)) is a
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solution of the system (1.1) with det Φ(t0) 6= 0, Φ∗(t0)Ψ(t0) = Ψ∗(t0)Φ(t0), then
Φ∗(t)Ψ(t) = Ψ∗(t)Φ(t), t ∈ [t0; t1). Obviously the last equality will be satisfied on
the whole interval [t0; +∞), provided we additionally require that P (t), Q(t), R(t)
and S(t) be analytical functions on the some domain of complex plane containing
the half line [t0; +∞). From the given restrictions above on P (t), Q(t), R(t) and
S(t) is seen that the system (1.1) can be not hamiltonian. So the system (1.1) can
have prepared solution not only in the case when it is hamiltonian but also in the
other cases.

Example 3.1. Consider the matrix equation

(3.7) Φ′′ +K(t)Φ = 0 , t ≥ t0 .

where K(t) ≡
(
a1 sinµ1t+ a2 sinµ2t

b cosµt
tα

b cosµt
tα a1 sinµ1t+ a2 sinµ2t

)
, a1, a2, α, µ, µ1, µ2

are some real nonzero constants and α > 1, µ1/µ2 is irrational. This equation is
equivalent to the system (1.1) with P (t) = S(t) ≡ 0, R(t) ≡ K(t), Q(t) ≡ I where
I is the identity matrix of dimension 2× 2. Therefore for this equation the system
(3.2) has the form {

φ′ = ψ ;
ψ′ = −(a1 sinµ1t+ a2 sinµ2t)φ , t ≥ t0 .

which is equivalent to the scalar equation

φ′′ + (a1 sinµ1t+ a2 sinµ2t)φ = 0 , t ≥ t0 .

This equation is oscillatory (see [8, Corollary 3.4]). Therefore the last system is
oscillatory too. By virtue of Theorem 3.1 from here it follows that Eq. (3.7) is
oscillatory. The eigenvalues λ±(t) of the matrix K(t) are equal

λ±(t) = a1 sinµ1t+ a2 sinµ2t ±
|b cosµt|

tα
, t ≥ t0 .

From here is seen that the Theorems 5 and 6 of work [3], and the Theorems 1, 2
and 3 of work [2] are not applicable to Eq. (3.7). The remaining theorems of these
works and the results of works [1], [10]–[14] are not explicit for applying them to
Eq. (3.7) (it is hard to guess can we apply them to Eq. (3.7)).

Corollary 3.1. Let the conditions (I) of Theorem 3.1 be satisfied and let

(III)
+∞∫
t0

qj(τ) exp
{
−

τ∫
t0

ajj(s)ds
}
dτ =

+∞∫
t0

[−Fj(τ)] exp
{ τ∫
t0

ajj(s)ds
}
dτ = +∞.

Then the system (1.1) is oscillatory.

Proof. On the strength of Theorem 3.1 it is enough to show that the system
(3.2) is oscillatory. Suppose that the system (3.2) is not oscillatory. Then by
(3.1)–(3.3) Eq. (3.1) has a solution on [t1; +∞) for some t1 ≥ t0. Set W (t) ≡



OSCILLATORY AND NON OSCILLATORY CRITERIA . . . 197

−Fj(t) exp
{ t∫
t1

ajj(τ)dτ
}

, t ≥ t1. In Eq. (3.1) make the change

y = z exp
{
− 2

t∫
t1

ajj(τ)dτ
}
, t ≥ t1 .

We will come to the equation

(3.8) z′ + U(t)z2 +W (t) = 0 , t ≥ t1 ,

where U(t) ≡ qj(t) exp
{
−

t∫
t1

ajj(τ)dτ
}

. Show that

(3.9)
+∞∫
t1

U(τ) exp
{ t∫
t1

U(s)ds
s∫

t1

W (ζ)dζ
}
dτ = +∞ .

On the strength of (III) we have:
t∫
t1

W (τ)dτ = −
t∫
t1

Fj(τ) exp
{ t∫
t1

ajj(s)ds
}
dτ ≥ 0,

t ≥ t2, for some t2 ≥ t1. By (III) from here it follows (3.9). In Eq. (3.8) make the
change

z = u−
t∫

t1

W (τ)dτ , t ≥ t1 .

We will get

(3.10) u′ + U(t)u2 − 2U(t)
t∫

t1

W (τ)dτu+ U(t)
[ t∫
t1

W (τ)dτ
]2

= 0 , t ≥ t1 .

Since by assumption Eq. (3.1)has a solution on [t1; +∞), from the above sub-
stitutions is seen that Eq. (3.10) has a solution on [t1; +∞) as well. By vir-
tue of Lemma 2.3 from here from (3.9) and from the inequalities qj(t) ≥ 0,

U(t)
[ t∫
t1

W (τ)dτ
]2 ≥ 0, t ≥ t1 it follows that Eq. (3.10) has a positive solution u0(t)

on [t1; +∞). Then z0(t) ≡ u0(t)−
t∫
t1

W (τ)dτ is a solution to Eq. (3.8) such that

(3.11) z0(t) >
t∫

t1

W (τ)dτ , t ≥ t1 .

From (3.8) it follows that

(3.12) z0(t) = z0(t1)−
t∫

t1

U(τ)z2
0(τ)dτ −

t∫
t1

W (τ)dτ , t ≥ t1 .
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From here and from (3.11) we have:

(3.13) 0 ≤
t∫

t1

U(τ)z2
0(τ)dτ < z0(t1) , t ≥ t1 .

(z0(t1) = u0(t1) > 0). Taking into account (III) from here we will get:[
z0(t1)−

t∫
t1

U(τ)z2
0(τ)dτ −

t∫
t1

W (τ)dτ
]2 ≥ 1, t ≥ T , for some T ≥ t0. From here and

from (3.12) it follows that z2
0(t) ≥ 1, t ≥ T . Therefore by (III)

+∞∫
T

U(τ)z2
0(τ)dτ ≥

+∞∫
T

U(τ)dτ = +∞, which contradicts (3.13). The corollary is proved. �

Corollary 3.2. Let the conditions (I∗) of Theorem 3.2 be satisfied and let

(IV)
t2∫
t1

min
[
qj(τ) exp

{
−

τ∫
t1

ajj(s)ds
}
,−Fj(τ) exp

{ τ∫
t1

ajj(s)ds
}]
dτ ≥ π.

Then the system (1.1) is oscillatory on the interval [t1; t2].

Proof. On the strength of Theorem 3.2 it is enough to show that the system (3.2)
is oscillatory on the interval [t1; t2]. In (3.2) make the changes

(3.14)


φ = exp

{ t∫
t1

pjj(τ)dτ
}
ρ sin θ ;

ψ = exp
{ t∫
t1

sjj(τ)dτ
}
ρ cos θ t ≥ t0 .

We will get:

(3.15)
{
ρ′ sin θ + θ′ρ cos θ = Qj(t)ρ cos θ ;

ρ′ cos θ − θ′ρ sin θ = Rj(t)ρ sin θ, t ≥ t0 ,

where Qj(t) ≡ exp
{
−

t∫
t1

ajj(τ)dτ
}
qj(t), Rj(t) ≡ exp

{ t∫
t1

ajj(τ)dτ
}
Fj(t), t ≥ t0 (the

function ajj(t) is defined below (2.10)). This system is equivalent to the system
(3.2) in the sense that to each nontrivial solution (φ(t), ψ(t)) of the system (3.2)
corresponds the solution (ρ(t), θ(t)) of the system (3.15) with ρ(t) > 0, t ≥ t0
defined by (3.14). Let us multiply the first equation of the system (3.15) on cos θ
and the second one multiply on sin θ and subtract from the first obtained equation
the second one. We will get:

(3.16) θ′ρ = ρ
[
Qj(t) cos2 θ −Rj(t) sin2 θ

]
, t ≥ t0 .

Let (φ0(t), ψ0(t)) be a nontrivial solution of the system (3.2) and let (ρ0(t), θ0(t))
be the corresponding (by (3.14)) to (φ0(t), ψ0(t)) solution of the system (3.15).
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Then ρ0(t) 6= 0, t ≥ t0, and therefore by (3.16) the following equality takes place

θ′0(t) = Qj(t) cos2 θ0(t)−Rj(t) sin2 θ0(t)

= 1
2
[
Qj(t)−Rj(t) + (Qj(t) +Rj(t)) cos 2θ0(t)

]
,

t ≥ t0. From here it follows

θ′0(t) ≥ 1
2
[
Qj(t)−Rj(t)− |Qj(t) +Rj(t)|

]
= min{Qj(t),−Rj(t)} , t ≥ t0 .

Let us integrate this inequality from t1 to t2 Taking into account the conditions of
the corollary we will get:

θ0(t2)− θ0(t1) ≥
t2∫
t1

min{Qj(τ),−Rj(τ)}dτ ≥ π .

Due to (3.14) from here it follows that φ0(t) has at least one zero on [t1; t2]. The
corollary is proved. �

Remark 3.3. Let t0 ≤ η1 < ζ1 < . . . ηm < ζm . . . be a infinitely large sequence
and let the following conditions be satisfied:
(IVm) qk(t) ≥ 0, and if q3−j(t) = 0, then p3−j(t) = sj,3−j(t), t ∈ [ηm; ζm], k = 1, 2;
ζm∫
ηm

min
[
qj(τ) exp

{
−

τ∫
ηm

ajj(s)ds
}
,−Fj(τ) exp

{ τ∫
ηm

ajj(s)ds
}]
dτ ≥ π, m = 1, 2, . . . .

Then on the strength of Corollary 3.2 the system (1.1) is oscillatory. From the

conditions (IVm) m = 1, 2, . . . is seen that outside of the set
+∞⋃
m=1

[ηm; ζm] the func-

tions q1(t) and q2(t) can take values of arbitrary sign and therefore the nonnegative
definiteness of Q(t) on [t0; +∞) can be broken.

Remark 3.4. Let P (t) = S(t) ≡ 0, Q(t) = −R(t) ≡ I, t ≥ 0, where I is the
identity matrix of dimension 2×2. It is evident that in this particular case the condi-
tions (I∗) of Corollary 3.2 are satisfied on the arbitrary interval [t1; t2](⊂ [0; +∞))
and the condition (IV) is fulfilled only if t2 − t1 ≥ π. It also is evident that for this
case (Φ0(t),Ψ0(t)), where Φ0(t) ≡ diag{sin t, sin t}, Ψ0(t) ≡ diag{cos t, cos t}, is a
prepared solution to the system (1.1). This solution is not oscillatory on [ε;π − ε]
for each ε ∈ (0;π). Therefore in the inequality (IV) we may not replace π by a
number less than π.

Example 3.2. Consider the system

(3.17)
{

Φ′ = K1(t)Ψ ;
Ψ′ = V1(t)Φ , t ≥ t0 ,

where

K1(t) ≡ diag
{

max{sin t, 0},max{sin t, 0}
}
,

V1(t) ≡ diag
{

min{sin t, 0},min{sin t, 0}
}
,
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t ≥ t0. Obviously for this system the conditions (I∗) of Corollary 3.2 are not fulfilled
for all [t1; t2](⊂ [t0; +∞)). Therefore Corollary 3.2 cannot be used to establish
oscillatory behavior of the system (3.17). It is easy to verify that for the system
(3.17) the conditions of Corollary 3.1 are fulfilled. Therefore the system (3.17) is
oscillatory.

Example 3.3. Consider the system

(3.18)
{

Φ′ = K2(t)Ψ ;
Ψ′ = −K2(t)Φ , t ≥ 0 ,

where K2(t) ≡ diag{λ sin t, λ sin t}, t ≥ 0, λ ≥ π
2 . Obviously the conditions (I) of

Corollary 3.1 for this system are not fulfilled. Therefore it cannot be applied to the
system (3.18). It is not difficult to verify that for t1 = 2πm, t2 = π(2m+ 1) the
conditions of Corollary 3.2 are fulfilled for all m = 1, 2, . . . . Taking into account
Remark 3.3 from here we conclude that the system (3.18) is oscillatory.

Theorem 3.3. Let the conditions of Lemma 2.2 be satisfied. Then for each solution
(Φ(t),Ψ(t)) ≡

((
φjk(t)

)2
j,k=1,

(
ψjk(t)

)2
j,k=1

)
of the system (1.1) with det Φ(t0) 6= 0,

y0
11 ≡

ψ11(t0)φ22(t0)−ψ12(t0)φ21(t0)
det Φ(t0) > 0, y0

22 ≡
ψ22(t0)φ11(t0)−ψ21(t0)φ12(t0)

det Φ(t0) > 0,
y0

12 ≡
ψ12(t0)φ11(t0)−ψ11(t0)φ12(t0)

det Φ(t0) ≥ 0 (≤ 0), y0
21 ≡

ψ21(t0)φ22(t0)−ψ22(t0)φ21(t0)
det Φ(t0) ≤ 0

(≥ 0), the equality

(3.19) sign [det Φ(t)] = sign [detψ(t)] 6= 0 , t ≥ t0 .

takes place. Therefore (Φ(t),Ψ(t)) is non oscillatory.

Proof. On the strength of Lemma 2.2 Eq. (2.3) has the solution Y0(t) ≡
(
yjk(t)

)2
j,k=1,

on [t0; +∞) with yjk(t0) = y0
jk, j, k = 1, 2, and

(3.20) detY0(t) > 0 , t ≥ t0 .

Since by (2.4) Φ(t) is a solution to the matrix equation

Φ′ = [P (t) +Q(t)y0(t)]Ψ , t ≥ t0 ,

according to Liouville formula we have

(3.21) det Φ(t) = det Φ(t0) exp
{ t∫
t0

tr[P (τ) +Q(τ)Y0(τ)]dτ
}
6= 0 , t ≥ t0 .

By (2.1) the equality Ψ(t) = Y0(t)Φ(t), t ≥ t0, holds. From here from (3.20) and
(3.21) it follows (3.19). The theorem is proved. �
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Denote:

Ĩ1(τ ; t) ≡
t∫
τ

exp
{
−

t∫
s

ajj(ζ)dζ
}
Fj(s)ds ,

Ĩ2(τ ; t) ≡ −
t∫
τ

exp
{
−

t∫
s

a3−j,3−j(ζ)dζ
}
F3−j(s)ds , t ≥ τ ≥ t0 .

Theorem 3.4. Let the following conditions be satisfied:
(C) qj(t) ≥ 0, q3−j(t) ≤ 0 and if qj(t) = 0 then pj,3−j(t) = s3−j,j(t), if

q3−j(t) = 0 then p3−j,j(t) = sj,3−j(t), t ≥ t0;
(D) there exists infinitely large sequences ξ0,k = t0 < ξ1,k < · · · < ξm,k < · · · ,

k = 1, 2 such that

(D1)
t∫

ξm,1

exp
{ τ∫
ξm,1

[
ajj(s) + qj(s)Ĩ1(ξm,1; s)

]
ds
}
Fj(τ)dτ ≥ 0, t ∈ [ξm,1; ξm+1,1),

(D2)
t∫

ξm,2

exp
{
−

τ∫
ξm,2

[
a3−j,3−j(s) + q3−j(s)Ĩ2(ξm,2; s)

]
ds
}
F3−j(τ)dτ ≤ 0,

t ∈ [ξm,2; ξm+1,2), m = 1, 2, . . . .

Then for each prepared solution (Φ(t),Ψ(t)) ≡
((
φjk(t)

)2
j,k=1,

(
ψjk(t)

)2
j,k=1

)
of the

system (1.1) with det Φ(t0) 6= 0,

y0
11 ≡

ψ11(t0)φ22(t0)− ψ12(t0)φ21(t0)
det Φ(t0) ≥ 0 ,

y0
22 ≡

ψ22(t0)φ11(t0)− ψ21(t0)φ12(t0)
det Φ(t0) ≤ 0 the inequality

det Φ(t) 6= 0 , t ≥ t0 ,(3.22)

takes place. Therefore (Φ(t),Ψ(t)) is non oscillatory. Moreover if y0
11 > 0, y0

22 < 0,
then

(3.23) sign det Φ(t) = − sign det Ψ(t) 6= 0 , t ≥ t0 .

Proof. Let Y (t) ≡
(
yjk(t)

)2
j,k=1 be the solution of Eq. (2.3) with Y (t0) =

Ψ(t0)Φ−1(t0), where (Φ(t),Ψ(t)) is a prepared solution to the system (1.1), sa-
tisfying the conditions of the theorem, and let [t0;T ) be the maximum existence
interval for Y (t). Show that

(3.24) T = +∞ .

By (2.10) yjj(t) and y3−j,3−j(t) are solutions to the equations

y′ + qj(t)y2 + ajj(t)y + Lj(yj,3−j(t), y3−j,j(t), t) = 0 ,(3.25)

y′ − q3−j(t)y2 + a3−j,3−j(t)y + L3−j(y3−j,j(t), yj,3−j(t), t) = 0 ,(3.26)
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for each t ∈ [t0;T ), respectively. From the conditions (C) it follows that the
following inequalities are satisfied:
(3.27) Lj(X,X, t) ≤ Fj(t) , L3−j(X,X, t) ≤ −F3−j(t) , X ∈ R, t ≥ t0 .
(for qj(t) 6= 0 (q3−j(t) 6= 0) the Fj(t) (F3−j(t)) is the maximum for the quadratic
trinomial Lj(X,X, t) (L3−j(X,X, t)) of variable X ∈ R). Show that
(3.28) det Φ(t) 6= 0 , t ∈ [t0;T ).
By (2.4) Φ(t) is a solution to the matrix equation

Φ′ = [P (t) +Q(t)Y (t)]Φ , t ∈ [t0;T ) .
By virtue of Liouville formula from the condition det Φ(t0) 6= 0 of theorem it
follows (3.28). Therefore by (2.1) and the uniqueness theorem Y (t) = Ψ(t)Φ−1(t),
t ∈ [t0;T ). Then since (Φ(t),Ψ(t)) is prepared we have Y (t) = Y ∗(t), t ∈ [t0;T ).
Hence
(3.29) y12(t) = y21(t) , t ∈ [t0;T ) .
Let y1(t) and y2(t) be the solutions to the equations

y′ + qj(t)y2 + ajj(t)y + Fj(t) = 0 , t ≥ t0 ,(3.30)

y′ − q3−j(t)y2 + a3−j,3−j(t)y − F3−j(t) = 0 , t ≥ t0 ,(3.31)

respectively with y1(t0) = y2(t0) = 0. By virtue of Theorem4.1 of work [5] from (C),
(D1) and (D2) it follows that y1(t), y2(t) exist on [t0; +∞) and are nonnegative

for all t ≥ t0 Moreover if yk(t0) > 0, k = 1, 2 then yk(t) > 0, t ≥ t0, k = 1, 2.
Using Theorem 2.1 to the pairs (3.25), (3.30) and (3.26), (3.32) taking into account
(3.27) from here we will get:
(3.32) y11(t) ≥ y1(t) ≥ 0 , y22(t) ≤ −y2(t) ≤ 0 , t ∈ [t0;T ) ,
and if y0

11 = y11(t0) > 0, y0
22 = y22(t0) < 0, then

(3.33) y11(t) > 0 , y22(t) < 0 , t ∈ [t0;T ) .
Suppose T < +∞. Then from (C) and (3.32) it follows that the function f(t) ≡
t∫
T0

tr[Q(τ)Y (τ)]dτ , t ∈ [t0;T ) is bounded from below on [t0;T ). By Lemma 2.1

from here it follows that [t0;T ) is not the maximum existence interval for Y (t).
The obtained contradiction proves (3.24). From (3.24) and (3.28) it follows (3.22),
and from (3.24), (3.28) and (3.33) it follows (3.23). The theorem is proved. �
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