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METRICALLY REGULAR SQUARE OF METRICALLY
REGULAR BIPARTITE GRAPHS OF DIAMETER D = 7

Vladimír Vetchý

Abstract. The present paper deals with the spectra of powers of metrically
regular graphs. We prove that there is only two tables of the parameters of
an association scheme so that the corresponding metrically regular bipartite
graph of diameter D = 7 (8 distinct eigenvalues of the adjacency matrix) has
the metrically regular square. The results deal with the graphs of the diameter
D < 7 see [8], [9] and [10].

1. Introduction and Notation

The theory of metrically regular graphs originates from the theory of association
schemes first introduced by R.C. Bose and Shimamoto [1]. All graphs will be
undirected, without loops and multiple edges.

Definition 1. Let X be a finite set, cardX ≥ 2. For an arbitrary natural number
D let R = {R0, R1, . . . , RD} be a system of binary relations on X. A pair (X, R)
will be called an association scheme with D classes if and only if it satisfies the
axioms A1 - A4:

A1. The system R is a partition of the set X2 and R0 is the diagonal relation,
R0 = {(x, x); x ∈ X}.

A2. For each i ∈ {0, 1, . . . , D}, it holds R−1
i ∈ R.

A3. For each i, j, k ∈ {0, 1, . . . , D} it holds (x, y) ∈ Rk ∧ (x1, y1) ∈ Rk
then pij(x, y) = pij(x1, y1), where pij(x, y) = |{z; (x, z) ∈ Ri∧(z, y) ∈ Rj}|.
Then define pkij := pij(x, y) , where (x, y) ∈ Rk.

A4. For each i, j, k ∈ {0, 1, . . . , D} it holds pkij = pkji.

The set X will be called the carrier of the association scheme (X, R). Especially,
pki0 = δik, p0

ij = viδij , where δij is the Kronecker-Symbol and vi := p0
ii, and define

Pj := (pkij), 0 ≤ i, j, k ≤ D.
Given a graph G = (X,E) of diameter D we may define Rk = {(x, y); d(x, y) =

k}, where d(x, y) is the distance from the vertex x to the vertex y in the standard
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graph metric. If (X,R), R = {R0, R1, . . . , RD}, gives rise to an association scheme,
the graph is called metrically regular and the pkij are said to be its parameters or
its structural constants. Especially, metrically regular graphs with the diameter
D = 2 are called strongly regular.

Let G = (X,Y ) be an undirected graph without loops and multiple edges. The
second power (or square of G) is the graph G2 = (X,E′) with the same vertex set
X and in which mutually different vertices are adjacent if and only if there is at
least one path of length 1 or 2 in G between them.

The characteristic polynomial of the adjacency matrix A of a graph G is called
the characteristic polynomial of G and the eigenvalues and the spectrum of A are
called the eigenvalues and the spectrum of G. The greatest eigenvalue ρ of G is
called the index of G.

Define (0, 1)-matrices A0, . . . , AD by A0 = I and (Ai)jk = 1 if and only if the
distance from the vertex j to the vertex k in G is d (j, k) = i. Using these notations
it follows:
Theorem 1 ([4]). For a metrically regular graph G with diameter D and for any
real numbers r1, . . . , rD the distinct eigenvalues of

∑D
i=1 riAi and

∑D
i=1 riPi are

the same. In particular the distinct eigenvalues of a metrically regular graph are
the same as those of P1.
Theorem 2 ([7]). A metrically regular graph with diameter D has D + 1 distinct
eigenvalues.
Theorem 3 ([6]). The number of components of a regular graph G is equal to the
multiplicity of its index.
Theorem 4 ([5]). A graph containing at least one edge is bipartite if and only
if its spectrum, considered as a set of points on the real axis, is symmetric with
respect to the zero point.
Theorem 5 ([5]). A strongly connected digraph G with the greatest eigenvalue r
has no odd cycles if and only if −r is also an eigenvalue of G.
Theorem 6 ([8]). For every k ∈ N, k ≥ 2 there is one and only one metrically
regular bipartite graph G = (X,E) with diameter D = 3, n = |X| = 2k + 2, so that
G2 is a strongly regular graph.
Theorem 7 ([8]). There is only one table of the parameters of an association
scheme so that the corresponding metrically regular bipartite graph with 5 distinct
eigenvalues has the strongly regular square. The realization of this table is the
4-dimensional unit cube.
Theorem 8 ([9]). There are only four tables of the parameters of association
schemes for k ∈ {1, 2, 4, 10} so that the corresponding metrically regular bipartite
graphs with 6 distinct eigenvalues have the metrically regular square.
Theorem 9 ([10]). There is only one table of the parameters of an association
scheme with 6 classes so that the corresponding metrically regular bipartite graph of
diameter D = 6 (7 distinct eigenvalues of the adjacency matrix) has the metrically
regular square. The realization of this table is the 6-dimensional unit cube.
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Further, we use some of the known relations from the theory of associations
schemes (see eg. [3]).

vi =
∑
j

pkij(1.1)

vip
i
jk = vjp

j
ik(1.2)

2. Main result

Let λ1 > λ2 > λ3 > λ4 > λ5 > λ6 > λ7 > λ8 are the eigenvalues of MRG G
with respective multiplicities m1,m2,m3,m4,m5,m6,m7,m8. As G is a bipartite
graph we obtain from Theorem 4:

λ1 = −λ8, m1 = m8 = 1 ,(2.1)
λ2 = −λ7, m2 = m7 ,

λ3 = −λ6, m3 = m4 ,

λ4 = −λ5, m4 = m5 .

and it holds for the structural constants of G:

pkij = 0 for i, j, k ∈ {0, 1, . . . , 7} ,(2.2)
i+ j + k ≡ 0 (mod 2) and also for i+ j < k and |i− j| > k .

According to Theorem 1. λi (i = 1, 2, . . . , 8) is the solution of the equation |λI −
P1| = 0 and we get

λ8 − λ6[λ1 + p1
12p

2
11 + p2

13p
3
12 + p3

14p
4
13 + p4

15p
5
14 + p5

16p
6
15 + p6

17p
7
16
]

+ λ4[p1
12p

2
11(p3

14p
4
13 + p4

15p
5
14 + p5

16p
6
15 + p6

17p
7
16)

+ p2
13p

3
12(p4

15p
5
14 + p5

16p
6
15 + p6

17p
7
16) + +p3

14p
4
13(p5

16p
6
15 + p6

17p
7
16)

+ p4
15p

5
14p

6
17p

7
16 + λ1(p2

13p
3
12 + p3

14p
4
13 + p4

15p
5
14 + p5

16p
6
15 + p6

17p
7
16)
]

− λ2
{
p2

11p
3
14p

4
13(p5

16p
6
15 + p6

17p
7
16) + (p1

12p
2
11 + p2

13p
3
12)p4

15p
5
14p

6
17p

7
16

+ λ1
[
p2

13p
3
12(p4

15p
5
14 + p5

16p
6
15 + p6

17p
7
16)

+ p3
14p

4
13(p5

16p
6
15 + p6

17p
7
16)
]

+ p4
15p

5
14p

6
17p

7
16
}

+ λ1p
2
13p

3
12p

4
15p

5
14p

6
17p

7
16 = 0(2.3)



230 V. VETCHÝ

The condition for G to have the square G2 metrically regular gives the following
relations for the structural constants 2pkij of G2:

2p1
11 = 2p1

12 = p2
11 + p2

22(2.4)
2p1

12 = p1
23 = p2

13 + p2
24(2.5)

2p1
22 = 2p1

34 = p2
33 + p2

44(2.6)
2p1

23 = p1
45 = p2

35 + p2
46(2.7)

2p1
33 = 2p1

56 = p2
55 + p2

66(2.8)
2p1

34 = p1
67 = p2

57(2.9)
2p1

44 = p1
77 = p2

77 = 0(2.10)
2p2

11 = 2p3
12 = p4

22(2.11)
2p2

12 = p3
14 + p3

23 = p4
13 + p4

24(2.12)
2p2

13 = p3
25 = p4

15 + p4
26(2.13)

2p2
22 = 2p3

34 = p4
33 + p4

44(2.14)
2p2

23 = p3
36 + p3

45 = p4
35 + p4

46(2.15)
2p2

24 = p3
47 = p4

37(2.16)
2p2

33 = 2p3
56 = p4

55 + p4
66(2.17)

2p2
34 = p3

67 = p4
57(2.18)

2p2
44 = p3

77 = p4
77 = 0(2.19)

2p3
12 = p5

14 + p5
23 = p6

24(2.20)
2p3

13 = p5
16 + p5

25 = p6
15 + p6

26(2.21)
2p3

14 = p5
27 = p6

17(2.22)
2p3

22 = 2p5
34 = p6

33 + p6
44(2.23)

2p3
23 = p5

36 + p5
45 = p6

35 + p6
46(2.24)

2p3
24 = p5

47 = p6
37(2.25)

2p3
33 = 2p5

56 = p6
55 + p6

66(2.26)
2p3

34 = p5
67 = p6

57(2.27)
2p3

44 = p5
77 = p6

77 = 0(2.28)
2p4

13 = p7
16 + p7

25(2.29)
2p4

14 = p7
27(2.30)

2p4
22 = 2p7

34(2.31)
2p4

23 = p7
36 + p7

45(2.32)
2p4

24 = p7
47(2.33)

2p4
33 = 2p7

56(2.34)
2p4

34 = p7
67(2.35)

2p4
44 = p7

77 = 0(2.36)
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If A denotes the adjacency matrix of G and A2 is the adjacency matrix of G2 it is
easy to see

A2 = 1
p2

11
A2 + p2

11 − p1
11

p2
11

A− λ1

p2
11
I .

The eigenvalues of G2 are in regard of (2.2) in the form

(2.37) µi = λ2
i + p2

11λi − λ1

p2
11

, i ∈ {1, 2, . . . , 8} .

As G2 is a metrically regular graph with diameter 4 it must have just 5 distinct
numbers as its eigenvalues with regard of Theorem 2. So it must hold µi = µj =
µk = µl or µi = µj = µk and µl = µm or µi = µj , µk = µl and µm = µn
(for distinct numbers i, j, k, l,m, n; i, j, k, l,m, n 6= 1 because G2 is connected and
therefore its index µ1 has the multiplicity 1).

A. µi = µj = µk = µl
According to (2.37) we obtain

λi + λj = λi + λk = λi + λl = λj + λk = λj + λl = λk + λl = −p2
11

and we get the contradiction with λi 6= λj 6= λk 6= λl 6= λi .

B. µi = µj = µk, µl = µm.
According to (2.37) we obtain

λi + λj = λi + λk = λj + λk = −p2
11 , λl + λm = −p2

11 .

and we get the contradiction with λi 6= λj 6= λk 6= λi.

C. µi = µj , µk = µl, µm = µn.
As λ2 > λ3 > λ4 > 0, p2

11 > 0, λ2 ≥ |λt|, t ∈ {3, 4, 5, 6, 7},
λ3 ≥ |λs|, s ∈ {4, 5, 6} and λ4 = |λ5| we get:

µ2 = µj =⇒ λ2 + λj = −p2
11 =⇒ j ∈ {8} ,

µ3 = µk =⇒ λ3 + λk = −p2
11 =⇒ k ∈ {7, 8} ,

µ4 = µn =⇒ λ4 + λn = −p2
11 =⇒ n ∈ {6, 7, 8} ,

µ5 = µs =⇒ λ5 + λs = −p2
11 =⇒ s ∈ {6, 7, 8} ,

µ6 = µt =⇒ λ6 + λt = −p2
11 =⇒ t ∈ {4, 5, 7, 8} ,

µ7 = µu =⇒ λ7 + λu = −p2
11 =⇒ u ∈ {3, 4, 5, 6, 8} ,

µ8 = µv =⇒ λ8 + λv = −p2
11 =⇒ v ∈ {2, 3, 4, 5, 6, 7} ,
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and we obtain

λ2 = λ1 − p2
11 ,

λ3 = λ2 − p2
11 = λ1 − 2p2

11 ,

λ4 = λ3 − p2
11 = λ1 − 3p2

11 ,

λ5 = −λ4 = −λ1 + 3p2
11 ,(2.38)

λ6 = −λ4 − p2
11 = −λ1 + 2p2

11 ,

λ7 = −λ3 − p2
11 = −λ1 + p2

11 ,

λ8 = −λ1 .(2.39)

From (2.10), (2.19), (2.28) and (2.36) it follows

p7
27 = p7

47 = p7
67 = p7

77 = 0

and we get from (1.1) (i = 7; k = 7)

(2.40) v7 =
7∑
j=0

p7
7j = 1 .

As diameter of G D = 7 we have

(2.41) pkj,7 =
{

1, for j + k = 7, j, k ∈ {0, 1, . . . , 7} ,
0, for j + k 6= 7, j, k ∈ {0, 1, . . . , 7}

and with respect of (1.2) for (i = 1, j = 6, k = 7), (i = 2, j = 5, k = 7) and
(i = 3, j = 4, k = 7) we obtain

(2.42) v0 = v7 = 1 ; λ1 = v1 = v6 ; v2 = v5 ; v3 = v4 .

From (1.1) (i = 1; k = 1, 2, 7) it follows

(2.43) p1
12 = λ1 − 1 , p2

13 = λ1 − p2
11, p7

16 = λ1 .

With regard of (1.1) (i = 6, k = 1) and (2.42) it follows

(2.44) p1
56 = λ1 − 1

and from (1.2) we get

(2.45) v1p
1
56 = v6p

6
15 , so p6

15 = λ1 − 1 .

With respect to (1.1) (i = 2, 6; k = 7), (2.43), (2.41) it follows

(2.46) p7
25 = v2, p

7
36 = 0 .

Relations (1.2) and (2.42) (v3 = v4) gives

p3
14 = p4

13 ,(2.47)
p3

44 = p4
34 .(2.48)

λ2
1λ

2
2λ

2
3λ

2
4 = λ1p

2
13p

3
12p

4
15p

5
14p

6
17p

7
16(2.49)
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So, from (2.3), (2.38), (2.41) (p6
17 = 1), (2.43), (1.2) (i = 2, j = 3, k = 1);

(i = 4, j = 5, k = 1) and with respect to λ4 = λ1 − 3p2
11 > 0 we obtain

λ1 > 3p2
11(2.50)

λ1p
2
13

(v2

v3
p2

13

)
p4

15

(v4

v5
p4

15

)
p6

17p
7
16 = λ2

1λ
2
2λ

2
3λ

2
4

λ2
1(λ1 − p11)2 (p4

15
)2 = λ2

1(λ1 − p2
11)2(λ1 − 2p2

11)2(λ1 − 3p2
11)2

so p4
15 = (λ1 − 2p2

11)(λ1 − 3p2
11) .(2.51)

With regard of D = 7 we get p4
13 > 0 so from (1.1) (i = 1, k = 4) we obtain
1 6 p4

15 6 λ1 − 1 ,(2.52)
λ2

1 − (5p2
11 + 1)λ1 + (6p2

11p
2
11 + 1) 5 0 .

3p2
11 < λ1 6

5p2
11 + 1 +

√
(p2

11 + 5)2 − 28
2 < 3

(
p2

11 + 1
)

λ1 ∈
{

3p2
11 + 1, 3p2

11 + 2
}

(2.53)

A. λ1 = v1 = 3p2
11 + 2

From (2.51) we get p4
15 = 2(p2

11 +2) and from (1.1) (i = 1, k = 1) we obtain
p1

12 = λ1 − 1 = 3p2
11 + 1. As 1 6 p4

15 6 λ1 − 1 we get
p2

11 > 3(2.54)

From (1.2) (i = 1, j = 1, k = 2) we obtain

v2 = (3p2
11 + 2)(3p2

11 + 1)
p2

11
= 9p2

11 + 9 + 2
p2

11

so p2
11 ∈ {1, 2} and we get the contradiction with (2.54).

B. λ1 = v1 = 3p2
11 + 1

From (2.51), (1.1) (i = 1, k = 1; i = 1, k = 4) and (2.42) v3 = v4 we obtain
p4

15 =p2
11 + 1(2.55)

p1
12 = λ1 − 1 = 3p2

11(2.56)
p4

13 = 2p2
11 = p3

14(2.57)

From (1.2) (i = 1, j = 1, k = 2), (2.55) and (2.42) it follows
(2.58) v2 = 3

(
3p2

11 + 1
)

= v5

From (1.1) (i = 2, k = 1), (2.44) and (1.1) (i = 5, k = 1) we obtain
p1

23 = 3(2p2
11 + 1)(2.59)

p1
56 = 3p2

11(2.60)
p1

54 = 3(2p2
11 + 1)(2.61)
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(2.26), (2.42), (2.58) and (1.2) (i = 5, j = 6, k = 5) give

2p5
56 = (p6

55 + p6
66) ,

2v6

v5
p6

55 = (p6
55 + p6

66) ,

p6
55 + 3p6

66 = 0

and we obtain

(2.62) p6
55 = p6

66

(1.2) (i = 1, j = 4, k = 5), (2.55) and (2.61) give

(2.63) v4 = (3p2
11 + 1)3(2p2

11 + 1)
p2

11 + 1 = 18p2
11 − 3 + 6

p2
11 + 1 .

So, we get the spectrum of G in the form

(2.64) Sp(G) =
{
±(3p2

11 + 1); ±(2p2
11 + 1); ±(p2

11 + 1); ±1
1 m2 m3 m4

}
.

From (2.58), (2.63) and (2.64) we obtain for the number of the considered graph

n = 4(5p2
11 + 2)(3p2

11 + 2)
p2

11 + 1 .

For the eigenvalues λ1, λ2, . . . , λ8 and their corresponding multiplicitiesm1,m2, . . . ,m8
of the considered graphs it holds

m1 = 1, since the graph is connected,
8∑
i=1

mi =
7∑
j=0

vj = n, the number of vertices,

8∑
i=1

miλi = 0, since the graph has no loops,

8∑
i=1

miλ
2
i = nλ1, since the graph is regular,

8∑
i=1

miλ
3
i = nλ1p

1
11, the number of the chains of the length 3,

8∑
i=1

miλ
4
i = nλ1[2λ1 − 1 + p1

11(p1
11 − 1) + p1

12(p2
11 − 1)] ,

the number of the chains of the length 4.
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So, with respect to (2.1), (2.2) and (2.61) we obtain

m1 = 1

2m1 + 2m2 + 2m3 + 2m4 = 4(5p2
11 + 2)(3p2

11 + 2)
p2

11 + 1 ,

2m1(3p2
11 + 1)2 + 2m2(2p2

11 + 1)2 + 2m3(p2
11 + 1)2 + 2m4

= 4(5p2
11 + 2)(3p2

11 + 2)(3p2
11 + 1)

p2
11 + 1

2m1(3p2
11 + 1)4 + 2m2(2p2

11 + 1)4 + 2m3(p2
11 + 1)4 + 2m4

= 4(5p2
11 + 2)(3p2

11 + 2)(3p2
11 + 1)

p2
11 + 1

[
3(p2

11)2 + 3p2
11 + 1

]
.

These equations imply

m1 = 1 ,(2.65)

m2 = 3(3p2
11 + 1)

p2
11 + 1 ,(2.66)

m3 = 3(5p2
11 + 2)(3p2

11 + 1)
(p2

11 + 2)(p2
11 + 1) ,(2.67)

m4 = (5p2
11 + 2)(3p2

11 + 1)(2p2
11 + 1)

(p2
11 + 2)(p2

11 + 1) .(2.68)

As m2, m3, m4 ∈ N it must hold

(2.69) p2
11 ∈ {1, 2} .

The relations (1.1), (1.2), (2.1) – (2.69) give the following tables of the association
schemes:

1. p2
11 = 1

p1
10 =1 p2

20 =1 p3
30 =1 p4

40 =1 p5
50 =1 p6

60 =1 p7
70 =1

p1
12 =3 p2

11 =1 p3
12 =2 p4

13 =2 p5
14 =3 p6

15 =3 p7
16 =4

p1
23 =9 p2

13 =3 p3
14 =2 p4

15 =2 p5
16 =1 p6

17 =1 p7
25 =12

p1
34 =9 p2

22 =5 p3
23 =6 p4

22 =4 p5
23 =6 p6

24 =9 p7
34 =18

p1
45 =9 p2

24 =6 p3
25 =4 p4

24 =6 p5
25 =5 p6

26 =3 λ7 =− 3
p1

56 =3 p2
33 =9 p3

34 =9 p4
26 =2 p5

27 =1 p6
33 =9 m7 =6

p1
67 =1 p2

35 =6 p3
36 =2 p4

33 =9 p5
34 =9 p6

35 =9 λ8 =− 4
λ1 =4 p2

44 =9 p3
45 =6 p4

35 =6 p5
36 =3 p6

44 =9 m8 =1
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m1 =1 p2
46 =3 p3

47 =1 p4
37 =1 p5

45 =6 λ5 =− 1
λ2 =3 p2

55 =5 p3
56 =2 p4

44 =9 λ4 =1 m5 =14
m2 =6 p2

57 =1 λ3 =2 p4
46 =2 m4 =14 λ6 =− 2

p2
66 =1 m3 =14 p4

55 =4 m6 =14

2. p2
11 = 2

p1
10 =1 p2

20 =1 p3
30 =1 p4

40 =1 p5
50 =1 p6

60 =1 p7
70 =1

p1
12 =6 p2

11 =2 p3
12 =3 p4

13 =4 p5
14 =5 p6

15 =6 p7
16 =7

p1
23 =15 p2

13 =5 p3
14 =4 p4

15 =3 p5
16 =2 p6

17 =1 p7
25 =21

p1
34 =20 p2

22 =10 p3
23 =12 p4

22 =6 p5
23 =10 p6

24 =15 p7
34 =35

p1
45 =15 p2

24 =10 p3
25 =6 p4

24 =12 p5
25 =10 p6

26 =6 λ7 =− 5
p1

56 =6 p2
33 =20 p3

34 =18 p4
26 =3 p5

27 =1 p6
33 =20 m7 =7

p1
67 =1 p2

35 =10 p3
36 =4 p4

33 =18 p5
34 =20 p6

35 =15 λ8 =− 1
λ1 =7 p2

44 =20 p3
45 =12 p4

35 =12 p5
36 =5 p6

44 =20 m8 =1
m1 =1 p2

46 =5 p3
47 =1 p4

37 =1 p5
45 =10 λ5 =− 1

λ2 =5 p2
55 =10 p3

56 =3 p4
44 =18 λ4 =1 m5 =35

m2 =7 p2
57 =1 λ3 =3 p4

46 =4 m4 =35 λ6 =− 3
p2

66 =2 m3 =21 p4
55 =6 m6 =21

So we have proved the following theorem:

Theorem 10. There are only two tables of the parameters of association schemes
for p2

11 ∈ {1, 2} so that the corresponding metrically regular bipartite graphs with 8
distinct eigenvalues (diameter D = 7) have the metrically regular square.

The realization of the case p2
11 = 1 is (7,3)-bipartite Kneser graph [2] with the

intersection array

{4, 3, 3, 2, 2, 1, 1; 1, 1, 2, 2, 3, 3, 4} =
{p0

11, p
1
21, p

2
31, p

3
41, p

4
51, p

5
61, p

6
71; p1

01, p
2
11, p

3
21, p

4
31, p

5
41, p

6
51, p

7
61} .

In the case p2
11 = 2 it is the 7-dimensional unit cube.

According to Theorems 7 and 9 we can see, that there is only one table of
parameters of an association scheme with 2k classes (k ∈ {2, 3}) so that the
corresponding metrically regular bipartite graph of diameter D ∈ {4, 6} has a
metrically regular square.

So, with respect to Theorems 7 – 10 it would be reasonable to conjecture:
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Conjecture 11. There is only one table of parameters of an association scheme
with 2k classes (k ≥ 2) so that the corresponding metrically regular bipartite graph
of diameter D = 2k has a metrically regular square. The realization of this table is
the 2k-dimensional unit cube.
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