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Abstract. Let F be a closed subset of Rn and let P (x) denote the metric projection
(closest point mapping) of x ∈ R

n onto F in lp-norm. A classical result of Asplund states
that P is (Fréchet) differentiable almost everywhere (a.e.) in R

n in the Euclidean case
p = 2. We consider the case 2 < p < ∞ and prove that the ith component Pi(x) of P (x) is
differentiable a.e. if Pi(x) 6= xi and satisfies Hölder condition of order 1/(p−1) if Pi(x) = xi.
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1. Introduction

Let ‖·‖ be a norm on R
n and let F be a closed subset of Rn. For every x ∈ R

n

we let P (x) denote the metric projection of x onto the set F , i.e. P (x) is the set of

points P (x) in F satisfying

(1) ‖P (x)− x‖ = inf
y∈F

‖y − x‖ = dist(x, F )

and dist(x, F )is the distance from x to F . It was proved by Asplund [2] that P (x)

is Fréchet differentiable almost everywhere (a.e.) in R
n with the Euclidean norm.

The key to the proof was Alexandroff’s theorem in [10] stating that convex functions

have second order differentials a.e. (Abazoglou in [1], Theorem 2, and Zajíček in [12],

Theorem 4), extended this result to norms that are close to being Euclidean. In the

two-dimensional case, P is known to be Fréchet differentiable a.e. for any strictly

convex norm, see [12], Theorem 3, which includes the lp-norm, 1 < p < ∞. The
present paper treats the lp-norm, 2 < p < ∞, in spaces of dimension at least three,
which is not covered by the results mentioned above.
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The metric projection (closest point mapping) in finite dimensional spaces was

studied at some length by Phelps in [8], [9]. The problem of the differentiability

of P (x) seems to first have been considered by Kruskal in [7]. He asked if the

set of points x ∈ R
n and directions v ∈ Sn−1 such that P (x) has a directional

derivative at x in the direction v, is dense in R
n × Sn−1. See Shapiro [11] and

the references contained there for more on directional differentiability of the metric

projection. Differentiability of metric projections in general Hilbert spaces is studied

in [5]. Asplunds result gives an affirmative answer to Kruskal’s question in the

Euclidean case. It is the purpose of this paper to give a partial extension of Asplund’s

result to 2 < p < ∞. We prove that Pi(x) is differentiable for a.e. x such that

Pi(x) − xi 6= 0 and that Pi(x) satisfies Lipschitz condition if Pi(x) − xi = 0, where

Pi(x) is the ith coordinate of P (x). We state our result as follows.

Theorem 1. Let 2 < p < ∞, let F be a closed subset of Rn and let P (x) denote

the metric projection onto F defined in (1) by the lp-norm. Then P (x) is single

valued and continuous for a.e. x in R
n. Further,

(a) Pi(x) is Fréchet differentiable for a.e. x such that Pi(x)− xi 6= 0,

(b) Pi(x) satisfies Pi(x+ h)−Pi(x) = O(‖h‖1/(p−1)
p ), as h → 0, for a.e. x such that

Pi(x)− xi = 0.

Remark. It remains an open question if Pi(x) is differentiable a.e. for closed

sets F or at least for convex sets, when Pi(x)− xi = 0.

The proof of the theorem uses Asplund’s idea to define a convex auxiliary func-

tion whose differential is closely connected to P (x). The new idea is the map

Dp : R
n → R

n and its differentiability properties.

The organisation of this paper is as follows. Section 2 gives our notation, defini-

tions and three propositions. The proof of the theorem is given in Section 4 after

some lemmas have been proved in Section 3.

2. Preliminaries

We consider Rn with points x = (x1, . . . , xn) and let l
p = lp(Rn), 1 < p < ∞,

denote Rn with the norm

‖x‖p =

( n
∑

i=1

|xi|p
)1/p

.

Then lp is an n-dimensional and uniformly convex Banach space with dual space lq,

p−1 + q−1 = 1, see [3] and [6]. Let F be a closed set in R
n and define the metric

projection P (x) onto F by (1). The map P (x) is in general multiple valued and we
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denote by P (x) any choice of an element in P (x). We say that P (x) is continuous

at the point x if P (x) is single valued at x and P (x + h) = P (x) + o(1), as h → 0,

for all P (x+ h) in P (x+ h). Similarily, P (x) is Fréchet differentiable at x if P (x) is

single valued at x and there is an n× n-matrix M such that

(2) P (x+ h) = P (x) +M · h+ o(‖h‖p), as h → 0

for all P (x+ h) in P (x+ h). In the following, differentiability always means Fréchet

differentiability in this sense. Before we prove Theorem 1 we prepare the way by

a series of propositions, which we give in a more general form than is actually needed

for the proof. In the following three propositions we assume that ‖·‖ is any uniformly
convex norm on R

n and that ‖x‖ is differentiable for x 6= 0. We denote any such

space (Rn, ‖·‖) by B. Let P (x) be the metric projection defined by (1) onto a closed

set F and let f(x) = ‖P (x)− x‖ be the distance between x and F . Then f satisfies

Lipschitz condition |f(x) − f(y)| 6 ‖x − y‖ and hence f is differentiable a.e. in R
n

by the Rademacher-Stepanoff theorem in [4], p. 216.

Proposition 1. For a.e. x ∈ F we have f ′(x) = 0 and P ′(x) = I, the identity

n× n matrix.

P r o o f. Let x ∈ F be a point where f ′(x) exists, then 0 6 ‖P (x+h)−x−h‖ =

f(x + h) − f(x) = f ′(x)h + o(‖h‖) gives f ′(x) = 0, P (x + h) − x − h = o(‖h‖), as
h → 0, and P ′(x) = I. �

Proposition 1 shows that P (x) is differentiable a.e. on F . Let B⋆ be the dual

space of B with norm ‖ · ‖⋆ and denote the pairing between B and B⋆ by 〈·, ·〉. For
any x 6= 0 in B there is x⋆ ∈ B⋆ such that 〈x⋆, x〉 = ‖x‖ and ‖x⋆‖⋆ = 1 by the

Hahn-Banach theorem. We call x⋆ the support functional of x. It is easy to prove

that x⋆ is unique and is given by the formula

〈x⋆, y〉 = lim
t→0

‖x+ ty‖ − ‖x‖
t

, y ∈ R
n.

An immediate consequence of Proposition 1 and the definition of x⋆ is the following

formula connecting f ′(x) and P (x), cf. [1], Lemma 4.

Proposition 2. Let x ∈ R
n \ F be a point where f is differentiable. Then P (x)

is single valued and continuous at x and f ′(x) = (x− P (x))⋆.

P r o o f. It is proved in [1], Lemma 4 that P (x) is single valued and f ′(x) =

(x − P (x))⋆. We show that P (x) is continuous at x. Choose sequences (xi)
∞

1 and
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(zi)
∞

1 such that xi → x and zi ∈ P (xi), as i → ∞. Then (zi)
∞

1 is bounded and we

may assume that (zi)
∞

1 converges to z ∈ F . We get

‖x− P (x)‖ 6 ‖x− z‖ 6 ‖x− xi‖+ ‖xi − zi‖+ ‖zi − z‖
= ‖x− xi‖+ f(xi) + ‖zi − z‖ → f(x) = ‖x− P (x)‖,

as i → ∞. Thus z = P (x), since P (x) is single valued, and P (x) is continuous

at x. �

3. Some technical lemmas

This section contains a number of technical lemmas. Lemma 6 and 7 constitute the

basis for the proof of Theorem 1 in the next section. We begin with an elementary

inequality.

Lemma 1. Let 1 < p < ∞. Then there is Cp > 1 such that

2p−1 · |t|p + 2p−1 − |t+ 1|p 6 Cp · (t− 1)2, −1 6 t 6 1,

where Cp = p/2, 1 < p < 2 and Cp = 2p−2 ·
(

p
2

)

, 2 6 p < ∞. The constant Cp for

2 6 p < ∞ is best possible.

P r o o f. Define

gp(t) = 2p−1 · |t|p + 2p−1 − |t+ 1|p − Cp · (t− 1)2, −1 6 t 6 1.

We first let 2 < p < ∞, noting that g2(t) ≡ 0. If 0 < t < 1, an easy calculation

shows that g′′p (t) < 0 and g′p(t) > g′p(1) = 0. Hence, gp(t) 6 gp(1) = 0, for 0 6 t 6 1.

If −1 < t < 0, then g
(3)
p (t) < 0, g′′p (t) has a unique zero at t0 in (−1, 0) and g′p(t)

has its maximum at t0. Since both g′p(0) and g′p(−1) are positive, we have g′p(t) > 0

and hence gp(t) 6 gp(0) < 0 for −1 6 t 6 0. The case 1 < p < 2 is proved in

a similar way. To show that Cp is best possible for 2 6 p < ∞, take t = 1 − h and

let h → 0. �

Lemma 2. Let 2 6 p < ∞. Then

2p−1 · |x|p + 2p−1 · |y|p − |x+ y|p 6 Cp · Rp−2 · |x− y|2

for all real numbers x, y such that |x| 6 R and |y| 6 R, where Cp is the constant in

Lemma 1.

P r o o f. Assume that |x| 6 |y| and take t = x/y in Lemma 1. �
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For any nonzero vector x in lp(Rn), 1 < p < ∞, the dual vector x⋆ is given by

x⋆ = ‖x‖1−p
p · (|x1|p−2 · x1, . . . , |xn|p−2 · xn). The following closely related map Dp

will be used in our proof of Theorem 1. Let 1 < p < ∞ and define a one-to-one

map Dp of R
n onto Rn by Dp(0) = 0 and

Dp(x) =
(1

p
· ‖x‖pp

)′

= (|x1|p−2 · x1, . . . , |xn|p−2 · xn)

for x 6= 0, where |xi|p−2 · xi = 0 if xi = 0. Note that D2 is the identity map.

Lemma 3. Let 1 < p < ∞. Then Dp is an injective map of R
n onto R

n with

inverse D−1
p (x) = Dq(x) and ‖Dp(x)‖qq = ‖x‖pp, where 1/p+ 1/q = 1.

P r o o f. It is clear that Dp(x) = 0 if only if x = 0. Let x 6= 0 and Dp(x) = y,

then

|xi|p−2 · xi = yi, |xi| = |yi|q−1

and xi = |yi|q−2 · yi, 1 6 i 6 n, i.e. x = Dq(y). Further, ‖y‖qq = ‖x‖pp, which
completes the proof of Lemma 3. �

Lemma 4. Let 2 6 p < ∞. Then Dp(x) is Fréchet differentiable for all x ∈ R
n

and D′

p(x) is given by the diagonal matrix

D′

p(x) = (p− 1) · (|xi|p−2 · δi,j),

where δi,j is the Dirac delta function.

P r o o f. This follows at once from the definition of Dp(x). �

Remark. Clearly,D′

2(x) is simply the n×n identity matrix andD′

p(x) is invertible

at x if and only if x has all its coordinates nonzero. If x ∈ R
n and xi 6= 0, then for

the ith coordinate we have

Dp(x+ h)i = Dp(x)i + (p− 1) · |xi|p−2 · hi + o(‖h‖2),

for any 1 < p < ∞.

Our main tool in the proof of Theorem 1 is the auxiliary function Kp(x) defined

as

(3) Kp(x) = −‖x− P (x)‖pp + λ · ‖x‖22,

where λ > 0 is to be defined below. Note the close relation between Kp(x) and P (x).

Then Kp(x) coincides with the corresponding auxiliary functions in [2] and [1] for
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p = 2. The assumption on the norm in [1] is however not satisfied in the present

case, since (‖x‖pp)′′ = p ·D′

p(x) is not always invertible. The main property of Kp(x)

is its local convexity for suitable choices of λ. More exactly, we have the following

lemma.

Lemma 5. Let 2 < p < ∞. Then for every R > 0 there is a number λ =

λ(F, p,R) > 0 such that Kp(x) is convex for ‖x‖p < R.

P r o o f. SinceKp(x) is continuous, it is sufficient to prove that it is also midpoint

convex. It turns out to be sufficient to prove that if ‖x‖p < R and ‖y‖p < R, then

(4) 2p−1 · ‖x+ z‖pp + 2p−1 · ‖y + z‖pp − ‖x+ y + 2z‖pp 6 λ · ‖x− y‖22,

where z = − 1
2P (x+y), provided λ is large enough, cf. [1] Lemma 6. Then (4) follows

from Lemma 2 applied to each coordinate separately with λ = Cp · Rp−2 · n, since
‖x‖p 6 R implies |xi| 6 R, 1 6 i 6 n. �

The next two lemmas on the connection between Kp(x) and P (x) are the keys to

the proof of Theorem 1.

Lemma 6. Let 1 < p < ∞ and let U be an open set where Kp(x) is convex and

let P (y) be any choice for P (y), y ∈ U . Define

K ′

p(y) = 2λ · y − p ·Dp(y − P (y)).

Then K′

p(y) is a subdifferential of Kp(y).

P r o o f. Let y ∈ U be fixed and choose {yj}∞1 in U such that yj → y, as j → ∞,
and f is differentiable at yj , j > 1. Then by the convexity of Kp,

Kp(yj + h) > Kp(yj) +K ′

p(yj) · h

for all j > 1 and any sufficiently small h. Fix any such h, then clearly Kp(yj + h) →
Kp(y + h) and Kp(yj) → Kp(y), as j → ∞, by the continuity of Kp. The lemma

follows from the continuity of Dp if for every x ∈ P (y) we can choose {yj}∞1 such
that also P (yj) → x, as j → ∞. We note that if z = y + t(x − y), 0 < t < 1, then

P (z) = x and any w close to z has projection close to x, by the uniform convexity

of the norm. This completes the proof of Lemma 6. �
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Lemma 7. Let 1 < p < ∞, let U be an open, convex set, where Kp(y) is convex

and let K′

p(y) be defined as in Lemma 7. Then if x is any point in U , where f is

differentiable and K ′′

p (x) exists, we have

K ′

p(x+ h) = K ′

p(x) +K ′′

p (x)h + o(‖h‖2), as h → 0.

The following proof is found in [1], p. 495 and is due to Fitzpatrick.

P r o o f. Let R > 0 be arbitrary and choose λ as in Lemma 6 such that Kp(x)

is convex for [[x]]p < R. Then Kp(x) is a.e. twice differentiable for ‖x‖p < R by

Alexandrov’s theorem. Fix any such point x, then for every 0 < ε < 1 there is δ > 0

such that if ‖y − x‖2 < δ, then

(5) |Kp(y)−Kp(x)− 〈K ′

p(x), y − x〉 − 1
2 〈K

′′

p (x)(y − x), y − x〉| 6 ε‖y − x‖22.

Let ‖z‖2 = ‖w‖2 = 1, 0 < |t| < δ and α =
√
ε · t. Then by properties of the

subdifferential

〈K ′

p(x+ tw), αz〉 6 Kp(x+ tw + αz)−Kp(x+ tw)

and by (5) we get

Kp(x+ tw+ αz) 6 4ε|t|2 +Kp(x) + 〈K ′

p(x), tw+ αz〉+ 1
2 〈K

′′

p (x)(tw +αz), tw+αz〉

and

Kp(x+ tw) > −ε|t|2 +Kp(x) + 〈K ′

p(x), tw〉 + 1
2K

′′

p (tw), tw〉.

Combining the last three inequalities we obtain

〈K ′

p(x + tw), αz〉 6 5ε|t|2 + 〈Kp(x), αz〉 + 1
2 〈K

′′

p (x)(tw), αz〉
+ 1

2 〈K
′′

p (x)(αz), tw〉 + 1
2 〈K

′′

p (x)(αz), αz〉+ 5ε|t|2

= 〈K ′

p(x), αz〈+〉K ′′

p (x)(tw), αz〉 + 5ε|t|2 + 1
2α

2〈K ′′

p (x)(z), z〉.

Since α =
√
ε|t|2, we have

〈K′

p(x+ tw)−K ′

p(x) −K ′′

p (x)(tw), z〉 6 5
√
ε|t|+ 1

2

√
ε|t|〈K ′′

p (x)(z), z〉

and equivalently

‖K′

p(x + tw)−K ′

p(x)−K ′′

p (x)(tw)‖2 6
(

5 + 1
2‖K

′′

p (x)‖2
)√

ε|t| = o(|t|),

which proves Lemma 7. �
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4. Proof of Theorem 1

The proof of Theorem 1 is based on the properties of the auxiliary function Kp(x)

proved above and the map Dp.

P r o o f of Theorem 1. We let F be a closed set in R
n and let P (x) denote the

metric projection onto F . Since P ′(x) = I a.e. in F by Proposition 1, we assume

that x ∈ R
n \ F . Recall the distance function f(x) = ‖P (x)− x‖p and the auxiliary

function Kp(x) defined by (3). Let R > 0 be arbitrary and choose λ as in Lemma 6

such thatKp(x) is convex for ‖x‖p < R. ThenKp(x) has a second order differentiable

a.e. in ‖x‖p < R by Alexandrov’s theorem, see [10].

In the following, we let x denote any point in R
n \ F , where f is differentiable,

Kp(x) has a second order differential and ‖x‖p < R. Then by Lemma 3 and Lemma 6

we have

(6) P (x+ h) = x+ h−Dq

(2λ

p
· (x+ h)− 1

p
·K ′

p(x+ h)
)

and further

(7) P (x+ h) = x+ h−Dq

(2λ

p
· (x+ h)− 1

p
·K ′

p(x) −
1

p
·K ′′

p (x)h+ o(‖h‖2)
)

= x+ h−Dq

(2λ

p
· x− 1

p
·K ′

p(x) +
2λ

p
· h− 1

p
·K ′′

p (x)h + o(‖h‖2)
)

as h → 0, by Lemma 4 and Lemma 7. Now assume that Pi(x) − xi 6= 0, then the

ith coordinate of 2λ · x−K ′

p(x) is nonzero by Lemma 6. Let z = (2λx −K ′

p(x))/p,

then the ith coordinate of the last term in (7) equals

Dq(z)i + (q − 1) · |zi|q−1 ·
(2λ

p
· hi −

1

p
· (K ′′

p (x)h)i

)

+ o(‖h‖2),

by the remark following Lemma 4. It follows that there exists a vector Li in R
n such

that

(8) P i(x+ h) = Pi(x) + 〈Li, h〉+ ϕi(h),

where ϕi(h) = o(‖h‖2). More exactly, Li is a linear combination of the ith unit row

vector in Rn and the ith row vector in K ′′

p (x). Hence, Pi is differentiable at x, which

proves statement (a) in Theorem 1. If Pi(x) = xi, (7) only gives the weaker result

Pi(x+ h)− Pi(x) = O(‖h‖q−1
p ), as h → 0, which proves (b). �
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Remark. It is tempting to guess that Pi(x + h) − xi − hi = o(‖h‖p), as h → 0,

when x is a density point of the set E where Pi(x) = xi for some 1 6 i 6 n. We have

only the weaker result that the set {h : |P i(x+ h)− xi − hi| 6 ε · ‖h‖p} has density
one at h = 0 for every ε > 0. This is usually called an approximate derivative of Pi

at x.
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