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KYBERNET IKA — VOLUME 5 4 ( 2 0 1 8 ) , NUMBER 5 , PAGES 1 0 1 1 – 1 0 3 2

SLIDING-MODE PINNING CONTROL
OF COMPLEX NETWORKS

Oscar J. Suarez, Carlos J. Vega, Santiago Elvira-Ceja, Edgar N. Sanchez
and David I. Rodriguez

In this paper, a novel approach for controlling complex networks is proposed; it applies
sliding-mode pinning control for a complex network to achieve trajectory tracking. This control
strategy does not require the network to have the same coupling strength on all edges; and
for pinned nodes, the ones with the highest degree are selected. The illustrative example is
composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases
are presented. For the first case the whole network tracks a reference for each one of the states;
afterwards, the second case uses the backstepping technique to track a desired trajectory for
only one state. Tracking performance and dynamical behavior of the controlled network are
illustrated via simulations.

Keywords: complex network, pinning control, sliding mode, backstepping, trajectory
tracking

Classification: 05C82, 93D05, 93C10

1. INTRODUCTION

The study of various complex dynamical networks is currently pervading all kinds of
sciences, such as physics, biology, and social sciences; its impact is significant for science
and technology in different fields [3, 5, 30]. Interest in complex networks has been
increasing since the time of Euler in the sixteenth-century to recent studies. Different
topologies and graphic characteristics in complex networks are described by Erdös and
Rényi (ER) random graph model [9], Watts and Strogatz (WS) small-world model [29]
and Barabási and Albert (BA) scale-free model [1]. Concerning the special structures
of complex networks, a simple and effective control strategy named pinning control is
discussed in [10, 21], which was developed by applying local control to a small fraction
of network nodes. Recent research results propose many quantitative measurements of
complex networks, where three concepts play a key role: average path length, clustering
coefficient and degree distribution [3]. For achieving the best selection of pinned nodes
and a desired behavior, the present paper uses node degrees, and their distribution.

On the other hand, the sliding-mode control is a well-known discontinuous feedback
control technique, which has been reviewed in several books and many journal arti-
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cles. Theoretical analysis are presented by Emelyanov [8], Utkin et al. [11], and Utkin
[27]. Relative simplicity for design, control of independent motion (maintaining slid-
ing conditions), invariance to process dynamics, and external disturbances robustness
are main characteristics of sliding-mode control [11]. Recently, synchronization has be-
come a subject for study with increasing attention. For most of chaos synchronization
techniques, the master-slave or drive-response approach is used, where the basic idea
is to design a controller to accomplish the slave system states track the master system
ones asymptotically. Different control techniques have been developed for synchroniza-
tion of chaotic systems, among them, sliding-mode control [20, 31, 32]. For finite-time
synchronization of complex dynamical networks, theoretical analysis are reviewed in
[14, 24, 34]. In [14], fixed-time synchronization of complex dynamical networks with
non-identical nodes in the presence of bounded uncertainties and disturbances using
sliding-mode control technique was developed. Furthermore, [24] applies nonsingular
terminal sliding-mode control technique to realize the novel combination-combination
synchronization between combination of two chaotic systems as drive system and com-
bination of two chaotic systems as response system with unknown parameters in a finite
time. Finally [34], introduces the idea of combination synchronization into complex
networks; based on sliding-mode control principle, the finite-time combination synchro-
nization of four uncertain complex networks is investigated. In this regard, the main
disadvantage to the above works is that all network nodes require a controller.

The novelty of the present paper consists in developing a new controller based on slide
mode combined with pinning control for trajectory tracking of complex networks. The
proposed control strategy allows to achieve trajectory tracking even for chaotic systems,
this control strategy does not require the network to have the same coupling strength
on all edges and these strengths can vary randomly; its application is illustrated via
simulations. Two cases are presented; the first case considers that all network nodes
follows a reference system for each one of the respective states, and the second case uses
backstepping technique to track a desired trajectory for only one state of each network
node.

The paper is organized as follows: In section 2, mathematical preliminaries are pro-
vided. Section 3 presents the main contribution of this paper, where the control scheme
is proposed. Simulation results are reported in Section 4, using a scale-free network of
chaotic Chen oscillators with the chaotic Lorenz system as the reference for trajectory
tracking. Finally, conclusions are drawn in Section 5.

Notations: diag(. . .) denotes a block-diagonal matrix. AT and A−1 denote the trans-
pose and the inverse of the matrix A, respectively. Write A > 0 (A < 0) if A is positive
(negative) definite. ‖·‖1 stands for the 1-norm and ‖·‖2 for the Euclidean norm. λmin(·)
(λmax(·)) represents the minimum (maximum) eigenvalue of the corresponding matrix.
sign(·) denotes the signum function that extracts the sign of a real number. A ⊗ B
represents their Kronecker product.

2. MATHEMATICAL PRELIMINARIES

This section presents a brief review on sliding-mode control [23, 28], complex networks
[5], and pinning methodology [33].
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2.1. Sliding-mode control

Consider a multi-variable nonlinear system of the form

ẋ = f(x) +G(x)u + ω(x), (1)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, ω(x) ∈ Rm characterizes
the unknown disturbances, and f : Rn → Rn and G : Rn → Rn×m are smooth nonlinear
functions of x. The design of sliding-mode control consists basically of two stages. The
first stage of design is the selection of the sliding manifold s, obtained as the intersection
of m smooth manifolds:

s = {x ∈ Rn | si(x) = 0 ∈ R, i = 1, 2, . . . ,m} ,

where this manifold represents a desired system dynamics, which is of lower order than
the given system (whose dimension is n−m). The second stage is to find a discontinuous
control law such that it drives the trajectories to the sliding manifold in finite time and
then maintains them on this surface, such that the reaching modes satisfy the reachability
condition

sT ṡ < 0.

There are several methods for describing the dynamics of the sliding mode; one of
them is named as the equivalent control approach. For this method, the conditions in
the sliding mode are analyzed at s ≡ 0 and ṡ = 0. The equivalent control is obtained
from

ṡ(x) =
∂s

∂xT
(f(x) +G(x)ueq(x) + ω(x)) = 0,

assuming that ∂s
∂xT G(x) 6= 0, ∀x, as

ueq(x) = −
[
∂s

∂xT
G(x)

]−1(
∂s

∂xT
f(x) +

∂s

∂xT
ω(x)

)
. (2)

The resulting dynamics on the sliding mode is then written as

ẋ =

[
I −G(x)

[
∂s

∂xT
G(x)

]−1
∂s

∂xT

]
f(x) +

[
I −G(x)

[
∂s

∂xT
G(x)

]−1
∂s

∂xT

]
ω(x). (3)

According to (3), the ideal sliding dynamics are invariant with respect to the disturbances
if, and only if, the vector ω(x) belongs to the span of G(x) (matched condition), i. e.,[

I −G(x)

[
∂s

∂xT
G(x)

]−1
∂s

∂xT

]
ω(x) = 0.

Then, a non-zero vector function ϑ(x)Rm exists, such that

ω(x) = G(x)ϑ(x).

A classical control strategy, which achieves the control objective, is to use

u = ūeq −Kcsign (s) , (4)
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where ūeq represents the equivalent control (2) (without including ∂s
∂xT ω(x), since the

disturbance is unknown), Kc is a control gain, and

sign (s) = [sign(s1), sign(s2), . . . , sign(sm)]T ∈ Rm

is a vector input function whose ith component is

sign(si) =

{
1, si ≥ 0
−1, si < 0.

The described sliding-mode methodology can ensure finite-time convergence, as es-
tablished in the following theorem.

Theorem 2.1. (Bhat and Bernstein [2]) Suppose there exists a continuous function
V : D → R, such that the following conditions hold:

(i) V is positive definite.

(ii) There exist real numbers c > 0 and α ∈ (0, 1) and an open neighborhood ν ⊆ D
of the origin, such that

V̇ (x) + c(V (x))α ≤ 0, x ∈ ν\ {0} . (5)

Then, the origin is a finite-time-stable equilibrium of ẏ(t) = f(y(t)). Moreover, if N
is an open neighborhood N ⊆ D and T is the settling-time function, then

T(x) ≤ 1

c(1− α)
V (x)

1−α
, x ∈ N , (6)

and T is continuous on N . If in addition D = Rn, V is proper, and V̇ takes negative
values on Rn\ {0}, then the origin is a globally finite-time-stable equilibrium of ẏ(t) =
f(y(t)).

A detailed proof of this theorem is discussed in [2].

2.2. Complex networks

Consider a weighted network consisting of N linearly and diffusively coupled identical
nodes, with each node being an n-dimensional dynamical system. The state equations
of this network are given by

ẋi = f(xi) +

N∑
j=1, j 6=i

cijaijT(xj − xi), i = 1, 2, . . . , N, (7)

where xi = [xi1 ,xi2 , . . . ,xin ]
T ∈ Rn are the state vectors of node i, cij > 0 are

constants representing the coupling strengths between node i and node j, and T =
diag{τ1, τ2, . . . , τn} is the inner coupling matrix describing the connections among dif-
ferent components of a state vector.
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In (7), the coupling matrix A = [aij ] ∈ RN×N represents the coupling configuration
of the network. If there is a connection between node i and node j for i 6= j, then
aij = aji = 1; otherwise, aij = aji = 0 for i 6= j. If the degree ki of node i is defined to
be the number of its outreaching connections, then

N∑
j=1,j 6=i

aij =

N∑
j=1,j 6=i

aji = ki, i = 1, 2, . . . , N.

Let the diagonal elements of A be aii = −ki, i = 1, 2, . . . , N .

2.2.1. Pining control strategy

For network (7), the objective of control is to stabilize it onto a homogeneous stationary
state x̄, which satisfies f(x̄) = 0:

x1 = x2 = · · · = xN = x̄.

This objective is achieved by applying local linear feedback injections to a small fraction
of the nodes in the network, which are called pinned, for notational simplicity, these
nodes be labeled as 1, 2, . . . , l, where 1 ≤ l ≤ N , and l can actually be as small as one.
Thus, the controlled network can be written as

ẋi = f(xi) +

N∑
j=1

cijaijTxj + ui, i = 1, 2, . . . , l,

ẋi = f(xi) +

N∑
j=1

cijaijTxj , i = l + 1, . . . , N.

(8)

Using the local linear negative feedback control law

ui = −ciidiT(xi − x̄), (9)

where di > 0 is the feedback control gain, ui ∈ Rn is the local linear single-state feedback
control law, i = 1, 2, . . . , l, and the coupling strengths cii satisfy

ciiaii +

N∑
j=1,j 6=i

cijaij = 0.

Define the following matrices:

D = diag (d1, d2, . . . , dl, 0, · · · , 0) ∈ RN×N ,
D′ = diag (c11d1, c22d2, . . . , clldl, 0, · · · , 0) ∈ RN×N .

Moreover, using the Kronecker notation, one can write

Ẋ = IN ⊗ f(xi)− [(G+D)⊗T] X + (D′ ⊗T) X, (10)
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where X = [xT1 , . . . ,x
T
N ]T , X = [x̄T , . . . , x̄T ]T , G = (gij) ∈ RN×N is a symmetric and

semi-positive definite matrix, with gij = −cijaij , i, j = 1, 2, . . . , N , and G+D is positive
definite [6] with the minimal eigenvalue

λmin(G+D) > 0.

Lemma 2.2. (Li, Wang, and Chen [18]) Assume that the node ẋi = f(xi) is chaotic
for all i = 1, 2, . . . , N , with the maximum positive Lyapunov exponent hmax > 0. If
cij = c, di = cd and T = In, then the controlled network (8) is locally asymptotically
stable about the homogeneous state x̄, provided that

c >
hmax

λmin(−A+ diag(d, . . . , d, 0, . . . , 0))
, (11)

where λmin is the minimal non-zero eigenvalue of the matrix.

3. SLIDING-MODE PINNING CONTROL

Fig. 1. The proposed control scheme.

This section develops the main contributions of the paper. Sliding-mode pinning
control is proposed for trajectory tracking of complex networks. This scheme is visualized
in Figure 1. To establish a control law, based on the sliding-mode technique consider a
general complex network with pining control as in (8). Define xs as the desired nonlinear
reference system given by

ẋs = fs(xs), xs ∈ Rn. (12)

For trajectory tracking, suppose that the pinned node dynamics are known. On the
other hand, the tracking error is defined as esi = xi − xs.

The following theorem is established to guarantee trajectory tracking using sliding-
mode pinning control.
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Theorem 3.1. Consider the general complex network with pinning control as in (8),
with T = In, a reference system defined by (12) with fs(xs) being a chaotic system,
hmax being the maximum positive Lyapunov exponent of fi(xi) − fs(xs). If cmin, the
minimal coupling strength of the whole network, fulfills

cmin >
hmax

λmin(−A0 + D̂0)
, (13)

where A0 is obtained from the coupling matrix A = [aij ] ∈ RN×N by removing those

rows and columns that correspond to the controlled nodes i = 1, 2, . . . , l, and D̂0 =
diag(d̂0l+1

, . . . , d̂0N
) with d̂0i

=
∑l
j=1 aij , then the sliding-mode pinning control law

given by

ui = ūeqi −Ksi sign (σi(xi)) , i = 1, 2, . . . , l, (14)

with ūeqi = fs(xs) − f(xi), Ksi ∈ R is a control gain, and σi = esi = 0 ∈ Rn the
desired sliding manifold, ensures the tracking error, along the trajectories of (12), is
locally asymptotically stable.

P r o o f . Substitute the control law (14) into (8) to get

σ̇i =

N∑
j=1

cijaijTxj −Ksi sign (σi(xi)) , i = 1, 2, . . . , l,

∆
=f(x) +G(x)u + ω(x),

where f(x) = 0 , G(x) = In, and ω(x) =
∑N
j=1 cijaijTxj are the influence of other

network nodes, which are considered as a disturbance.

Assume now that the following bound is satisfied:∥∥∥∥∥∥
N∑
j=1

cijaijTxj

∥∥∥∥∥∥
1

≤ qi, qi > 0, i = 1, 2, . . . , l. (15)

Select the controller (14) with Ksi chosen as

Ksi ≥ qi +
Υi√
n
, Υi > 0, i = 1, 2, . . . , l.

Defining the Lyapunov function candidate as

V (σi) =
1

2
σTi σi ⇒ 2V = σTi σi ⇒

√
2V = ‖σi‖2,
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and taking the time derivative, one gets

V̇ (σi) = σTi

 N∑
j=1

cijaijTxj −Ksi sign (σi)


V̇ (σi) ≤

∥∥∥V̇ (σi)
∥∥∥

1

≤ ‖σi‖1

∥∥∥∥∥∥
N∑
j=1

cijaijTxj

∥∥∥∥∥∥
1

−Ksi‖σi‖1‖ sign (σi) ‖1

≤ ‖σi‖1

∥∥∥∥∥∥
N∑
j=1

cijaijTxj

∥∥∥∥∥∥
1

−Ksi ‖σi‖1 .

Using (15) and ‖ · ‖2 ≤ ‖ · ‖1 ≤
√
n ‖ · ‖2 [13, p. 648], one obtains

V̇ (σi) ≤ −(Ksi − qi)
√
n ‖σi‖2

≤ −Υi ‖σi‖2
≤ −Υi

√
2 (V (σi))

1/2
< 0. (16)

V (σi) > 0 is positive definite, the real number c = Υi

√
2 > 0 for Ksi > qi, and α = 1

2
such that

V̇ (σi) + Υi

√
2 (V (σi))

1/2 ≤ 0.

is satisfied. According to the Theorem 2.1, the control law (14) guarantees the conver-
gence of pinned nodes motion to the manifold σi = 0 in a finite time defined by the
settling time function

T(σi) ≤
2

Υi

√
2
V (σi)

1/2
.

In order to analyze the sliding modes dynamics stability (σi = xi − xs ≡ 0, σ̇i = 0),
the sliding mode equation is written as

xi = xs, i = 1, 2, . . . , l,

ẋi = f(xi) +
N∑

j=l+1

cijaijTxj +
l∑

j=1

cijaijTxs, i = l + 1, . . . , N.
(17)

Considering

aii = −
N∑

j=l,j 6=i

aij = −

 N∑
j=l+1,j 6=i

aij +

l∑
j=1

aij

 , (18)

network (17) can be rewritten as

xi = xs, i = 1, 2, . . . , l,

ẋi = f(xi) +
N∑

j=l+1

cija0ijTxj −
l∑

j=1

cijaijT(xi − xs), i = l + 1, . . . , N,
(19)
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where A0 = [a0ij ] ∈ R(N−l)×(N−l) is obtained from the coupling matrix A by removing
those rows and columns that correspond to the controlled nodes i = 1, 2, . . . , l, i. e.,

a0ij
= aij , j 6= i, j = l + 1, . . . , l, i = l + 1, . . . , l,

a0ij
= −

N∑
j=l+1,j 6=i

aij , i = l + 1, . . . , N,

The proof follows the same procedure as in [18, 25]. The controlled network (19) is
linearized for the unpinned nodes i = l + 1, . . . , N , so that

ės = es [Dfis (xs)]− B̂es, (20)

where Dfis (xs) ∈ Rn×n is the Jacobian of (fi − fs) at xs,

es =
[
esl+1

, esl+2
, . . . , esN

]T ∈ R(N−l)n,

with esi(t) = xi(t) − xs(t), i = l + 1, l + 2, . . . , N , and B̂ = (G0 + D̂) ∈ R(N−l)×(N−l),

where G0 = [−cija0ij
] ∈ R(N−l)×(N−l), D̂ = diag(d̂l+1, . . . , d̂N ) with d̂i =

∑l
j=1 aijcij .

According to [22], one has

0 < σmin

(
cmin

[
−A0 + D̂0

])
≤ σmin

(
G0 + D̂

)
,

where D̂0 = diag(d̂0l+1
, . . . , d̂0N

) with d̂0i
=
∑l
j=1 aij . The above inequality is obtained

based on the fact that cij ≥ cmin > 0 for all cij in G0. Then, the coupling strengths can
be different for different nodes.

Furthermore, the Transversal Lyapunov Exponents (TLEs) denoted by µk(λi), for
each eigenvalue λi, i = l + 1, l + 2, . . . , N , is given by [17]

µk(λi) = hk − cijλi, k = 1, 2, . . . , n,

where hk is the respective Lyapunov exponent. The TLEs determine the stability of
the controlled states [25], hence the local stability of the controlled network (8), ensures
negative TLEs. Thus, the following condition must be satisfied:

µmax(λmin) = hmax − cminλmin(−A0 + D̂0) < 0, (21)

(21) is equivalent to condition (13). Then, with the proposed control law (14), trajectory
tracking is achieved. �

On the other hand, consider to control the network (8), to track a reference output
xs ∈ Rm (m < n) with pinning control ui ∈ Rm. Assume that the pinned node
dynamics are known. The tracking error is defined as esi = xi − xs. In this case,
the backstepping technique is used to design a sliding manifold such that the resulting
sliding mode dynamics is described by a desired linear system. Next, one can synthesize
a discontinuous control law which enforce sliding-mode motion into the sliding manifold
designed by using backstepping control. For more details about backstepping control
see [15].

This approach is feasible if the nonlinear system can be transformed into a special
state-space form named as block feedback form given by the following definition
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Definition 3.2. (Block-feedback form BFF, Krstic et al. [15]) The system

ẋj = fj(x̄j) + gj(x̄j)xj+1 + ωj(t), j = 1, 2, . . . , r − 1,

ẋr = fr(x) + gr(x)u+ ωr(t),

ẋr+1 = fr+1(x) + gr+1(x)u+ ωr+1(t),

y = x1,

(22)

where x = [x1,x2, . . . ,xr+1]T , xr+1 represents the zero dynamics of the system, x̄j =
[x1,x2, . . . ,xj ]

T , j = 1, 2, . . . , r, xj ∈ Rnj , r is the number of blocks, ω(t) ∈ Rnj is
the bounded unknown disturbance vector, then there exists a constant ω̄j such that
‖ωj(t)‖ ≤ ω̄j , for 0 < t < ∞, system (22) has the block-feedback form with Zero
Dynamics, if

rank [gj ] = nj ∀x ∈ Rn ∧ t ∈ [0,∞), j = 1, 2, . . . , r.

The numbers n1, n2, . . . , nr are the controllability indexes and satisfies

n1 ≤ n2 ≤ . . . ≤ nr ≤ m,

with
∑r+1
j=1 nj = n.

It is easy to see that the relative degree of system (22) is r.
The following Lemma is established to guarantee output tracking for the whole net-

work, using sliding-mode pinning control.

Lemma 3.3. Assume that the complex network (8) with pinning control law defined
as

ui = ūeqi −Krisign (zri(xi)) ∈ Rm, i = 1, 2, . . . , l, (23)

where ūeqi is the equivalent control, Kri a control gain, and zri ∈ Rm the desired sliding
manifold, can be transformed to BFF, its zero dynamics is stable, and condition (13)
is fulfilled, then the tracking error, along the trajectories of xs, is locally ultimately
bounded.

P r o o f . Consider system (8) transformed in BFF form

ẋij = fij(xij ) + gij(xij )xj+1i
+ ωij(t), j = 1, 2, . . . , r − 1 ∧ i = 1, 2, . . . , l,

ẋir = fir(xi) + gir(xi)u+ ωir(t), i = 1, 2, . . . , l,

ẋir+1
= fir+1(xi) + gir+1(xi)u+ ωir+1(t), i = 1, 2, . . . , l,

ẋi = f(xi) +
N∑
j=1

cijaijTxj , i = l + 1, . . . , N,

(24)

where ωij(t) =
∑N
j=1 cijaijTxj , and ω̄ij ≥ |ωij(t)|, ∀i = 1, 2, . . . , N ∧ j = 1, 2, . . . , n,

are considered disturbances. Initially, the sliding manifold is designed for each pinned
node (i = 1, 2, . . . , l) using the backstepping technique, which is described step-by-step
as follows.
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Step 1: Let z1 be the error between x1 and its desired value xs:

z1 = x1 − xs.

Define the Lyapunov function candidate as

V (z1) =
1

2
‖z1‖2 > 0,

V̇ (z1) = zT1 ż1 = zT1 (f1(x̄1) + g1(x̄1)x2 + ω1(t)− ẋs). (25)

The objective is to design a virtual control x2 = α1 which forces z1 → 0. This
control is proposed as

α1 = g−1
1 (x̄1)(−f1(x̄1) + ẋr − k1z1) with k1 > 0.

Then, (25) becomes

V̇ (z1) = −k1 ‖z1‖2 + zT1 ω1 + g1(x̄1)zT1 z2.

Step j: The error dynamics for zj is derived

zj = xj − αj−1,

which represents the error between the actual and virtual controls. Select the
augmented Lyapunov function candidate as

V (z1, . . . , zj) =
1

2
‖z1‖2 + · · ·+ 1

2
‖zj‖2 = V (z1, . . . , zj−1) +

1

2
‖zj‖2 ,

and its derivative

V̇ (z1, . . . , zj) = zT1 ż1 + · · ·+ zTj żj (26)

= V̇ (z1, . . . , zj−1) + zTj (fj(x̄j) + gj(x̄j)xj+1 + ωj(t)− α̇j−1) .

Analogously, the objective at jth step is to design a virtual control xj+1 = αj
in order to stabilize the error zj = 0, which is proposed as

αj = g−1
j (x̄j) (−fj(x̄j)− α̇j−1 − gj−1(x̄j−1)zj−1 − kjzj) , with kj > 0. (27)

Replacing (27) in (26) then

V̇ (z1, . . . , zj) = −
j∑

k=1

kk ‖zk‖2 +

j∑
k=1

zTk ωk + gj(x̄j)zjzj+1.
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Step r: The sliding manifold is selected as zr = xs − αr−1. The dynamics for pinned
nodes (24) in z-variables is

ż1 = −k1z1 + g1(x̄1)z2 + ω1,

...

żj = −gj−1(x̄j−1)zj−1 − kjzj + gj(x̄j)zj+1 + ωj , j = 2, 3, . . . , r − 1,

...

żr−1 = −gr−2(x̄r−2)zr−2 − kr−1zr−1 + gr−1(x̄r−1)zr + ωr−1,

żr = fr(x) + gr(x)u+ ωr(t)− α̇r−1,

ẋr+1 = fr+1(x) + gr+1(x)u+ ωr+1(t).

Now, defining u as a discontinuous feedback control

u = g−1
r (x) (−fr(x) + α̇r−1)− g−1

r (x)krsign(zr)

u = ūeq −Kr sign (zr(xi)) ,

where ūeq = g−1
r (x) (−fr(x) + α̇r−1 − gr−1(x̄r−1)zr−1), and Kr = g−1

r (x)kr,
a candidate Lyapunov function is selected as V (zr) = 1

2z
T
r zr, the derivative of

V (zr) is computed as

V̇ (zr) = zTr żr

= zr(−kr sign (zr) + ωr)

≤ −kr‖zr‖1 + ω̄r‖zr‖1, kr ≥
u0√
nr

+ ω̄r,

≤ −u0‖zr‖2 ≤ −u0

√
2(V (zr))

1
2 < 0.

Then, control law (23) guarantees the convergence to the manifold zr = 0 in
a finite time.

To analyze the stability on sliding modes, the sliding-mode equation for the whole net-
work is rewritten as

ζ̇i = Aiζi + Ei(ζi) + ωi,
ẋir+1 = fir+1(xi) + gir+1(xi)ūeqi ,

i = 1, . . . , l,

ẋi = f(xi) +
N∑

j=l+1

cija0ij
Txj −

l∑
j=1

cijaijT(xi −α), i = l + 1, . . . , N,
(28)

where ζi = [z
(1)
i , . . . , z

(r−1)
i ]T , Ai = diag(−k(1)

i , . . . ,−k(r−1)
i ), ωi = [ω

(1)
i , . . . , ω

(r−1)
i ]T ,

Ei(ζi) = [gi1(x̄i1)z
(2)
i ,−gi1(x̄i1)z

(1)
i + gi2(x̄i2)z

(3)
i , . . . ,−gir−2(x̄ir−2

)z
(r−2)
i ],

correspond to the crossed terms, xir+1
correspond to zero dynamics of pinned nodes,

α = [xs, α1, . . . , αr−1]T .
ζi can be consider as a linear stable one, perturbed by the last terms. Since, these

terms are bounded, we can conclude that the trajectories of ζ are ultimately bounded.
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Moreover, it is assumed that the zero dynamics for pinned nodes is stable. For stability
of unpinned nodes ( i = l + 1, . . . , N), first, it is defined zi = xi − α; the dynamics of
these nodes are linearized on an outer neighborhood of the ultimate bound, so that

η̇ = η [Dfi (α)]− B̂η, (29)

where , Dfi (α) ∈ Rn×n is the Jacobian of fi at α,

η = [ηl+1, ηl+2, . . . , ηN ]
T ∈ R(N−l)n,

with ηi(t) = zi(t), i = l + 1, l + 2, . . . , N . From this point, the same procedure of
Theorem 3.1 can be applied in the linear region, which implies that the tracking error
for whole network is ultimately bounded. �
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Fig. 2. Phase portrait of Chen’s oscillator for different parameters:

black line (aC = 35, bC = 3 and cC = 28), blue line (aC = 30, bC = 3

and cC = 20), and red line (aC = 50, bC = 4 and cC = 40).

4. SIMULATION RESULTS

To illustrate tracking performance and dynamical behavior of the controlled network, two
cases are included. For the first one, the whole network tracks a reference for each one of
the states by means of the control inputs for pinned nodes (ui(t) ∈ Rn, i = 1, 2, . . . , l);
on the other hand, the second case uses the backstepping technique to track a desired
trajectory for only one state; in this case the control is scalar for each pinned nodes
(ui(t) ∈ R, i = 1, 2, . . . , l).
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4.1. Case 1

Consider a scale-free network of chaotic Chen’s oscillators [4] with degree distribution
δ(Ki) ≈ ki−2 and N = 50 nodes. The Chen’s oscillator is described by

ẋ = aC(y − x)

ẏ = (cC − aC)x− xz + cCy (30)

ż = xy − bCz,

where aC = 35, bC = 3 and cC = 28. Then, the maximum positive Lyapunov exponent
is hmax ≈ 2.018, which renders a chaotic behavior. Figure 2 presents phase portrait of
Chen’s oscillator for different parameters: black line (aC = 35, bC = 3 and cC = 28),
blue line (aC = 30, bC = 3 and cC = 20), and red line (aC = 50, bC = 4 and cC = 40).
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Fig. 3. Network states evolutions.

Suppose that T = diag(1, 1, 1). We want the network to track a desired reference
system (12) applying the sliding-mode pinning control only to the node with the highest
degree (l = 1). Defining the state variables as: x1 = x, x2 = y, x3 = z, the equation of
the pinned node x1 is

ẋ11
= aC(x12

− x11
) +

50∑
j=1

c1ja1jTxj1 + u11

ẋ12
= (cC − aC)x11

− x11
x13

+ cCx12
+

50∑
j=1

c1ja1jTxj2 + u12
(31)

ẋ13
= x11

x12
− bCx13

+

50∑
j=1

c1ja1jTxj3 + u13
,

where u1 = fs(xs)− f(x1)−Ks1 sign (σ1(x1)), with σ1(x1) = x1 − xs.
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Simulations are done using MATLAB 1 Simulink with the Euler solver and a fixed
step size of 0.5×10−4. Simulations are performed as follows. From t = 0s to t = 4.8s, the
network runs without any connection (cij = 0). From t = 4.8s, the coupling strengths
are a random set that it is time-variant, chosen with cij > 20. Then, at t = 5s, the
proposed control law is applied; the network is stabilized at a constant reference, which
is selected as the unstable equilibrium point, xs = [7.9373, 7.9373, 21]T . Afterwards, at
t = 10s, a reference selected as a the chaotic Lorenz attractor [19] is incepted to generate
the desired trajectory xs(t), which is defined as

ẋs1 = aL(xs2 − xs1)

ẋs2 = xs1(bL − xs3)− xs2 (32)

ẋs3 = xs1xs2 − cLxs3 ,

where aL = 10, bL = 28 and cL = 8/3. From t = 15s, plant parameters changes are
done for the network odd nodes as follows:

aC =

 30, 15 < t ≤ 16 and 19 < t ≤ 20
35, 0 < t ≤ 15, 16 < t ≤ 17 and 18 < t ≤ 19
50, 17 < t ≤ 18

bC =

{
3, 0 < t ≤ 17 and 18 < t ≤ 20
4, 17 < t ≤ 18

cC =

 20, 15 < t ≤ 16 and 19 < t ≤ 20
28, 0 < t ≤ 15, 16 < t ≤ 17 and 18 < t ≤ 19
40, 17 < t ≤ 18.

1MATLAB & Simulink are registered trademarks of MathWorks Inc.,Natick, Massachusetts, U.S.A.
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For all the described events cij always fulfill equation (13). Figure 3 displays the
states evolutions of the entire network. Before t = 5s, trajectory evolves freely without
control action; when the proposed control law is applied, the complex network tracks
the desired trajectory. As can be seen, tracking is achieved for both a constant reference
and a chaotic one even in presence of plant parameters changes, with 0.75% as the
mean square error (MSE), illustrating robustness of the proposed controller. Figure 4

control input signal ui(t) applied to the pinned node, displaying the typical chattering
characteristic for discontinuous control actions based on sliding modes. To eliminate or
at least reduce chattering, boundary layer, observer-based, regular form, and disturbance
rejection techniques can be used as in [12, 16, 26]. Moreover, Figure 5 display simulation
results for the average trajectory error. Figure 6 presents the values of the coupling
strengths cii = 1

ki

∑N
j=1,j 6=i cijaij . Finally, Figure 7 displays plant parameters changes
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associated with the values presented in Figure 2. The effects of the interconnected nodes
and the coupling strengths variations can be seen as unmodeled dynamics and external
disturbances.

Based on theoretical and simulation results, it is concluded that one main advantage
of the proposed controller is to achieve trajectory tracking successfully even in presence
of plant parameters changes, unmodeled dynamics, and bounded external disturbances.

4.2. Case 2

Consider a scalar control ui ∈ R, which is applied to only one state of the whole network.
Then, the equation of the pinned node is

ẋ11 = aC(x12 − x11) +

50∑
j=1

c1ja1jTxj1

ẋ12 = (cC − aC)x11 − x11x13 + cCx12 +

50∑
j=1

c1ja1jTxj2 (33)

ẋ13
= x11

x12
− bCx13

+

50∑
j=1

c1ja1jTxj3 + u1,

where u1 = ūeq − k31 sign(z31), with

z11
= x11

− xs

z12
= x12

− α1, α1 =
1

aC
(aCx11

+ x1r
− k1z11

)

z13
= x13

− α2, α2 =
1

x11

((cC − aC)x11 + cx12 − α̇1 + aCz11 + k2z12) ,
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Fig. 8. Time response for only one state of the whole network.

and ūeq = −x1x2 + bCx3 + α̇2 + x1z2.

For simulations, x1d
, the changes, and other characteristics are same as for Case 1.

From t = 0s to t = 4.8s, the network runs without any connection (cij = 0). From
t = 4.8s, the coupling strengths are set constant, randomly chosen with cij ≥ 30. Then,
at t = 5s, the proposed control law is applied; the state x1 of the whole network is
stabilized at a constant reference, which is selected as, xs = 7.9373. Afterwards, at
t = 10s, chaotic Lorenz system (32) (xs = xs1(t)) is selected as reference; furthermore,
at t = 15s, the value of coupling strengths cij changes for 25% of nodes of the entire
network.

For all the described events cij always fulfill equation (13). Figure 8 displays the time
response for the output y = x1 (only one state of the whole network). As can be seen,
tracking is achieved for both a constant reference and a chaotic one. Figure 9 shows
the control input signal u3 applied to the pinned node; due that the whole network (50
nodes) track a desired trajectory controlling only one node, the required energy is large
and depends on the number and location of the pinned nodes. Moreover, Figure 10

shows simulation results for the state evolutions. Before t = 5s, trajectory evolutes
freely without control; when the proposed control law is applied, the state x1 tracks
the desired trajectory, note that x2 and x3 track the trajectory given by Chen oscillator
one. Furthermore, at t = 15s, the perturbations are incepted that in case 1, validating
robustness properties of the proposed controller with 0.6921% MSE. The effects of the
interconnected nodes and the coupling strengths variations can be seen as unmodeled
dynamics and external disturbances.

Differing from previously published results, our controller fulfills output tracking using
pinning control strategy ensuring ultimately bounded tracking errors even in presence
of unmodeled dynamics and bounded external disturbances.
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5. CONCLUSIONS

This paper presents a new control strategy for trajectory tracking on complex networks,
based on pinning control and the sliding-mode technique. Simulation results illustrate
that trajectory tracking for the scale-free network of chaotic nodes can be effectively
achieved by using the proposed control scheme. Two cases are presented; the first case
presents sliding-mode pinning control for the whole network to follow a reference for each
one of the states, this controller is applied on the pinned node to control 50 nodes(150
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states). It is easy to see that trajectory tracking is achieved. The second case considers
the control for only one state, applying backstepping technique; desired output tracking
is also achieved.
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