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Abstract. In this contribution, we present the problem of shape optimization of the
plunger cooling which comes from the forming process in the glass industry. We look for
a shape of the inner surface of the insulation barrier located in the plunger cavity so as
to achieve a constant predetermined temperature on the outward surface of the plunger.
A rotationally symmetric system, composed of the mould, the glass piece, the plunger,
the insulation barrier and the plunger cavity, is considered. The state problem is given as
a multiphysics problem where solidifying molten glass is cooled from the inside by water
flowing through the plunger cavity and from the outside by the environment surrounding
the mould.

The cost functional is defined as the squared L2 norm of the difference between a pre-
scribed constant and the temperature on the outward boundary of the plunger. The tem-
perature distribution is controlled by changing the insulation barrier wall thickness.

The numerical results of the optimization to the required target temperature 800°C
of the outward plunger surface together with the distribution of temperatures along the
interface between the plunger and the glass piece before, during and after the optimization
process are presented.

Keywords: shape optimization; heat-conducting fluid; energy transfer

MSC 2010: 49Q10, 76D55, 93C20

1. INTRODUCTION

There are several possibilities for increasing the quality of the surface of glass
products and, moreover, to shorten the time needed to press one piece. Imagine
the pressing process of a big glass vase: At the beginning, a drop of hot glass falls
down into the mould, then the plunger comes down to press the vase and stays about
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13 seconds in the down position. Then the plunger leaves the vase. This is the critical
moment of the pressing process. If the surface of the plunger is too hot in any place
at the moment of separation, the glass melt adheres to the device and the moulded
piece deforms. On the other hand, if the surface of the plunger is too cold, small fire
cracks appear on the surface of the moulded piece. These two instances both mean
poorer quality of production. For these reasons, it is necessary to achieve a given
constant distribution of temperature along the surface of the plunger at the moment
of separation. We can control this by changing the shape of the cooling cavity, the
local speed of the cooling medium, the heat properties of the cooling medium and the
heat conductivity of the plunger material. One of the most effective ways to control
the distribution of the temperature along the outward surface of the plunger is to
change the shape of the inner cooling cavity located at the axis of the plunger. The
actual thermal conductivity of the plunger material is too high for good results to be
achieved. For this reason, we apply a so-called insulation barrier with significantly
lower thermal conductivity located inside the given plunger cavity, thusly enhancing
this effect. The plunger is cooled by permanently flowing water which comes into
the deepest part of the cavity by a filling tube located in the axis of the plunger; and
on its way back, it cools the plunger from the inside. The original construction of
the cavity was made by drilling holes of different radii and depths. This construction
causes whirls in the flowing water which play negative roles. The new construction
eliminates whirls by the smooth surface of the cavity.

2. FORMULATION OF THE PROBLEM

First we describe the geometry of the whole system in which the pressing takes
place. The system consists of the mould, the glass piece, the plunger, the insulation
barrier and the plunger cavity. We turn the system to the horizontal position to be
able to describe the optimized insulation barrier surface by a function of one variable.

We define the set of admissible functions as

0 for x € [xp,z5%],
ad = {Ff € COY(ap,zn]); Fj(z) = { 7

fi(z) for z € [25, zH],

2% € ]Tp, L7 — Smin), TP < TT — Smin < Ty given constants,

fi € CON [, zm)), fi(25) =0, f3(x) + smin < f(2) < fa(2),

Jo € O([xp,zH]), f2(xp) =0 given,
0 forz € [z%, 27 — Sminl,

fa() = { i

a>0, smin >0,
a for x € [xr — Smin, TH],
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where fo, f3 are fixed functions and s.,;, > 0 is a fixed constant given by the minimal
thickness of the gap between the inner plunger wall and the filling tube with radius
a > 0. The function f{ represents the shape of the insulation barrier located in the
plunger cavity.

We assume the region Qf, that depends on the design function Fj and that is
defined by the formula

¢.={(x,r) € R* Fi(z) <r < folx) forz € [zp,zul}.

Denote by © the set of all admissible regions 2, C R?, i.e. regions characterized
by Ff € UZ;. Let us define the convergence on the set ©. Since each €15, is uniquely
related to F}f, we can say that, for n — 0o, a sequence €23}, € © converges to a region

Ga € © if and only if the sequence of functions "F} converges uniformly in [xp, 2 x]
to the function Ff that defines Qg .

We consider the planar region €2 = Int Oy U Qg U Qpp U Qg U Q¢ that repre-

sents the planar cross section of the mould, the glass piece, the plunger, the insulation

barrier and the cooling channel of the plunger (see Figure 1).

I';

Onmo (Mould)

Is

I's
Qp1 (Plunger)

Q. (Barrier)

Qcr (Glass)

¢, (Cavity)  |TGut

Ty T

Figure 1. Scheme of the complete system with optimized part of boundary.

Furthermore, we denote by I'y the boundary between the plunger Qp; and the
moulded piece Qg, I's the boundary between the plunger Qp; and the insulation
barrier 2, and I' the boundary between the insulation barrier Qf, and the plunger
cavity €0¢,. We denote by I's the part of the boundary connecting the mould, the
moulded piece, the plunger and the insulation barrier with the presser, by I'y a part
of the axis of symmetry (see Figure 1), by I's the part of the boundary formed by the
tube. Moreover, ['g is the notation for the part of the boundary between the moulded
piece Qg1 and the mould )y, and I'; is the outward boundary of the mould, which
is surrounded by an external environment. Furthermore, I'j, denotes the part of the
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boundary, where the cooling water comes into the cooling channel of the plunger,
and I'¢ , stands for the part of the boundary, where the water exits the channel.
We introduce the weighted Sobolev space H}(€2;) (see [2]) provided with the norm

1/2

0v\2 Ov\2 _
@) el = ([ (G2 + (G +0ran) " i—0n2
(Qo = Qp1, Q1 = Qq1, Q2 = QE,, Q3 = o, Q= QF,)-
2.1. Water flow in the plunger cavity. We consider an incompressible poten-
tial flow of water, which is rotationally symmetric with respect to the z-axis.

The potential ® is given as a solution of the Neumann problem

L0 100 5%

7 o “ror a0 R
o
5, =0 on M4 UTS UTS3,
0o
o = velo 01 Lin,
o
% = hsglto on F(e)ut’

where 0/0n denotes the derivative with respect to the outward unit normal with
respect to the region Q¢,, I'Y = {[z;0]; = € [z, 27|} is the part of boundary QF,,

hin, . is the normal component of velocity at the entrance I'y, (A2, < 0) and %Y is
the normal component of velocity at the exit I'S,,. Further, we assume
(2.2) / I ordl + / RoSErdl = 0.

in Plut

The variational formulation for the potential flow is of the following form:
We look for a function ® € H}(Qg,) such that

(2.3) /Q

(8@ dp 0D dp

T oe o o)

e
Ca

:/ %Wﬂﬁ/h%wﬂVwUM%J

in Pout

The velocity field of the flowing water w = (w1, w2) in the cavity Q%, is given as

(2.4) w = grad .
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Theorem 2.1 (Existence and uniqueness of the velocity field). Under assump-
tion (2.2) there exists a unique velocity field of the form (2.4) satisfying the estimate
of the Euclidean norm in the form

in

(2:5) Nwllrzqe,) < cllhvero

L2 + 1Al 2 (re,))-

Proof. See [4], p. 409. O

Remark 2.1. The potential flow pattern in the plunger cavity does not corre-
spond to physical reality, but serves only to determine the direction of energy removal
from the cavity.

2.2. Heat source identification. Pressing glass products on a carousel press is
a periodic process in which a certain amount of heat energy is drawn from the glass
piece during each cycle. The purpose of the heat source identification problem is
to simplify the optimization problem. The non-stationary periodic heat flow effect
is approximated by the stationary “average flow” caused by the stationary source,
which releases the same amount of heat energy in the individual parts of the glass
piece during the pressing cycle.

In the first step we have to determine how much heat energy is necessary to be
dissipated from different parts of the glass piece Q) (see Figure 1) during one cycle
to achieve given constant temperature 7T, of the boundary I'y at the moment of the
plunger separation ¢p.

Problem A. We solve the mixed problem for heat conduction without internal
sources for an unknown temperature 94, which has in cylindrical coordinates the
differential form

oY 0% 109 0% )

(Pa) €101 atA = kl( 8r2A + - 87:4 + ax;) in [0;tp] X Qar,

94(0,z,7) =Ty in Qqi,

To — Tq
ﬁA(t,x,r)zTo—Otirlt on [0;tp] x Ty,
P
ﬁA(t,x,r):To—%t on [0;tp] x g,
8;;:(75,3:,7“) =0 on [0;tp] x (T3 UTY),

where c¢; is the specific heat of glass, k; the coefficient of thermal conductivity of
glass, o1 the density of glass, Ty the initial glass temperature, T, the given target
temperature on the boundary I'y, ¢3; the moment of the mould and the glass piece
separation, (ty; > tp) and I'{ C I'y is the part of boundary Qg;.
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The problem (P 4) is solved by the Rothe method of time discretization with time
step 7 for inhomogeneous initial and boundary conditions of the form

029k 109k 9%k
or? +; or + 02

(P],X) 019119,]2 - le( > = 01911912‘_1 in Qqay,

9% (z,7) =Ty in Qq,
To — 17
ACHD =Ty -2 Dig onI'y,
tp
To — T3
95 (z,7) =Ty — =2 Dg on T,
1273
vk
8—71‘4(% r)=0 on (T3 UTY),
for k = 1,2,..., N4, where Ny = tp/7, 9% is the approximation of the tempera-

ture ¥4 on the kth time layer.

The goal is to find a stationary problem to the problem (P4) with a time-
independent heat source that would release the same amount of heat energy in one
moulding cycle.

Problem B. We are looking for density of heat sources f(z,r) [W-kg™'] such
that the solution of the stationary heat problem

0?9 109 0%Up .
(P) _kl( Or? +; or + Ox? ) =af in. fa,
Ip(x,r) =1r, on I'y,
To — T}
ﬂB(JT,T):TQ—OTrltP on FG,
%f(x,r):o on T3 UTY,

matches the solution of the problem (P 4) at time ¢p [s].

By solving the problem A, we want to find the amount of thermal energy that
leads to the way of cooling, which achieves the desired temperature Tr, [K] on the
surface I'; at the time of separation of the glass piece and the plunger ¢p [s], and on
the surface I'g at the time of separation of the glass piece and the mould ¢, [s]. We
are looking for a thermal source f of the hypothetical stationary problem B, which
locally releases this amount of energy during the course of time from 0 to ¢p in the
region 2q).
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Denote by Qroc C Qa1 an arbitrarily small subregion of 2. Then we can express
the local amount of heat energy emitted from .. during one plunger cycle as

tp 904 tp a?m 1994 | 9*0a
—2dQdt =k dQ dt
0191/ /QL . 1/ /QL L\ or? r or + 0x? )

e 82193 109p  0*p w
= Qdt = - Q
kl/ /Q St o) dadt 91/0 [ jaoa,

thus

tp tp
(2.6) cl/ / %dﬁdt / / FdQdt.
QLoc 0 JQroc

By integration over time interval [0,¢p], we get

(2.7) cl/ (Waltp,z,7) — 0a(0,2,) A2 = —tp | f(z,7)dQ in Q.
QLoc QLoc

Because of the fact that the region 1, is arbitrarily small, we obtain

(2.8) flz,r) = f—;(m(o, z,r) —9a(tp, z,7)) in Qa.

We substitute initial condition 94 (0, x,7) = Ty and V4 (tp,z,7) = 9\ * (z,7) to get

(2.9) fz,r) = :—;(TO — N4 (z, 7)) in Qq,

where ¥\ (z,7) is the solution of the problem (P%). The problem (P%) is solved
by the finite element method (FEM) on each time layer. This is the way how to
find the values of the function 19%“ (z,r) in individual mesh nodes. We substitute
904 to (2.9) to get values of the density heat sources f(x,r) which we substitute
into the state problem for the optimal design of the insulation barrier shape which
follows.

2.3. State problem. We generalize the state system defined for the system com-
posed of the mould, the glass piece, the plunger and the plunger cavity, presented
in [4], by adding the insulation barrier into the cavity.
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The state problem based on the energy equation for the stationary flow w =
(w1, wsz) with steady temperature ¥ has the form
929 109 0% .
(Pr) o02c2gradd-w — k‘z(W + o + @) =o01f inQ,
¥ =i on Iy,
oY

o 0 on M3 UT,UT5UTE,,,
[k()%} 12p) + [k‘l%} Qs =0 on I's,
Vjap, = Viqg, on Iy,
09 90 )
[M%} . + {k‘z%} s 0 on I'g,

jag, = Vg, on Iy,
e P L P

19|QP1 = 7‘9‘QG1 on Fl,

B o+ (5] 0 =8 T
19‘QMO = 19‘QG1 on Pg,
[m% n mﬂ

= alexy on 'z,

where w is the stationary velocity of the flowing water obtained as the solution to
the problem (Py) in QF, (w = 0 in QF, U Qp; U Qa1 U Qwio), the material constant
k; represents the coefficient of thermal conductivity in ; (Q = Qp1, U = Qqy,
Qo = Q%,, Q3 = o, U = QF,) and g1, 02 the density of glass, water, respectively,
c2 the specific heat of cooling water in Qg , f is the density of heat sources obtained
from (2.9) in Qa (f =0in Q& UQE, UQp1Uo), Yin the absolute temperature of
the water at the inlet, a > 0 the coefficient of heat-transfer, 5 > 0 the flux density of
the modified mass of the body (see [7], p. 128) and Jext > 0 the temperature of the
environment. Symbol [09/0n]|q, denotes the derivative with respect to the outward
unit normal with respect to the region €2;.
Let us express the function 9, see (P},), as the sum of five functions, that is

¥ =99 + U1 + 92 + Uz + V4,

where

ﬁQi in Qi;
(2.10) Y = fori=0,1,2,3,4,

(QO = Qp], Q= QG], O = Q%m Q3 = QMoa Q4= QeBa)
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Further, we denote by ;|r; the trace of solution ¥; on the boundary I'; for i, j
if I'y is a boundary of ;.
Moreover, we introduce

H(Q) = {¢; ¥ defined in (2.10), ¥; € H}(;) for any i = 0,1, 2,3, 4,
U3lrs = V1lrs, J1lr, =Jolr,s Polr, = dalrs, Yalrg, = d2lrg }.

We define the norm in H(Q) as

(211) |9l = (190]1% ., + 9111 1.0, + 192113

+ 10313 1.0, + 19417 .02

The set H(Q2) with the norm (2.11) is a Hilbert space.
By virtue of the rotational symmetry of both the state problem and the function ¥,
the state problem can be formulated variationally in two dimensions similarly to [4].
We define the trilinear form, two bilinear forms and two functionals:

(2.12)  Energy'°(9, w, ) =c292/€ (%112 w1 + 8; wz)wrdQ
(2.13) Energy&™ (0, ) = ko /Q Pl(%io Zﬁ + %io ?)w) dQ
wh [ (Gt e ra
(B ot
i [ (GGG ra
R RCE
(2.14) Environmento (9, ) — /F s |rwor dT,
(2.15) Sourceq (¥) = o1 fordQ,
Qe
(2.16) Coeflq(v)) = g Byrdl + g BwrdI‘—f—/F aoxtr dT.
. 6 .

Further, we denote

Aq(¥,w, ) = Energyy'®(9, w, 1) + Energy&™d (19, 4) + Environmentg (¢, 1))

and

Faq () = Sourceq () + Coeffq ().
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We denote by H*(£2) the space dual to the space H(2) with the norm

A
[l = sup 2228
o el

We define the sets
Qg =QUTy,

and
“H2P = {v e C®(Qp); v|p, =0}.

Let Ho(92) be the closure of the set “H2P in H().
We assume the existence of a function 9§ € H(2) such that

(2.17) 0%

I = Vin  on iy,

We use the variational formulation of the energy equation to formulate:
The State Problem: We look for a function ¢ = 9(Fy) € H(f2) such that

(2.18) AQ(’lS‘,’w,w) = FQ(Z&) Vo e HQ(Q),
(2.19) 9 — 9% € Ho(Q),

where Ff € UZ,; and w is the corresponding flow pattern given as the gradient of the
solution to (2.3).

Theorem 2.2 (Existence and uniqueness of the solution of the state prob-
lem). The state problem (2.18), (2.19) has a unique solution 9(Fy) for each Ff € U,
and the associated flow pattern w obtained as the gradient of the unique solution of
(2.3). Moreover, there exists a constant C > 0 such that

(2.20) [9(FD) | < CllFalla-.

Proof. It is sufficient to verify the assumptions of the Lax-Milgram Theorem
(see also [4]). O

2.4. Shape optimization problem. We define the cost functional as
(221) TP = [ OEDIr, - T, P,
I

where ¥(F§)|r, is the T'j-trace of the solution ¥(Fy) of the state problem (2.18),
(2.19) in the region Qp) and TT, is a given constant representing the known optimal
temperature of the plunger surface.
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We introduce following;:
The Shape Optimization Problem for the Insulation Barrier: We look for
the optimal design Fopy € Ug, such that

(2.22) TP (Fopr) < TP(F§) VFf € U

Theorem 2.3 (Existence of solution of the shape optimization problem). The
shape optimization problem for the insulation barrier (2.22) has at least one solution.

Proof. We refer to Theorem 2.1 in [1], p. 29; see also [4]. O

3. SENSITIVITY ANALYSIS

The goal of the sensitivity analysis is to suggest a way of modifying the inner
shape of the plunger cavity formed by the insulation barrier in order to minimize the
cost functional (2.21). The state problem describes the cooling of the hot glass in the
region Qa1 by the cooling water in the region Q¢,. This is justifiable for the intro-
duction of the physical assumption that thermal energy is transmitted through the
gradient lines of the temperature field in the plunger and the insulation barrier from
the boundary I'y to the boundary I'} (see also [5]). The control of the temperature
distribution at the boundary I'; is based on the local change of thermal resistance
caused by the change of the insulation barrier thickness. Therefore, we control the
temperature at I'y by moving the boundary I'}.

We denote Q% = Int Qp UQSG,. Let B € I'y be the boundary point of Q% and
Up be its two-dimensional neighborhood. Let By, Br € I'y be boundary points of
Up and T, T'r C Q%g be the gradient lines of the temperature field in the plunger
and barrier such that By, € 't and Br € I'r. Let A} e 'y NIy, A, e 'rNI'; and
QLoc C Q% be a subregion bounded by 'y, T1°¢, T'g, Ik where T1°¢ = T'y N Qpoc,
¥ =T% N OQLoc (see Figure 2).

A *
rLoc ‘4”'
1

I's

Figure 2. Gradient lines determine the point mapping, which defines the homeomorphism
of heat transfer.
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We assume the Neumann boundary value problem in Q. as

0%y 109 0% )
(3.1) —kz(W ;E @) =0 in Qpec,
(3.2) ki% =g onT UT®UTRUTE",

where k; is the coefficient of thermal conductivity in €;, ¢ = 0,4, and g some local
heat flux.

According to the second law of thermodynamics, we have

09

3.3 — =0 onI'yUTlR,
(33 o LUTR
(because I'y,, T'r are the gradient lines of the temperature field), and according to
the necessary condition for the existence of the Neumann boundary value problem
solution we have

(3.4) ko/ @rdl‘ = —k?4/ @rdl‘
FIfOC 5‘ F%OC 3

n n

This equality allows us to define the homeomorphism of heat transfer.

Definition 3.1 (Homeomorphism of heat transfer). The mapping S: T'1 = TI'G
is called the homeomorphism of heat transfer if: for each segment I'}°¢ C T it
holds that the heat energy, which comes into region Q% through T't°¢, flows away
from Q%5 through S(T'hoc) = T'le C T's,.

If in some part of I'y we need to decrease the temperature, we locally decrease
the heat resistance by moving the points of I'; along the gradient lines to decrease
the thickness of the barrier. On the other hand, in places of I'y where we need
higher temperature, we increase thermal resistance by increasing the thickness of the
insulation layer, and this will locally decrease the intensity of cooling.

The amount of heat energy that guarantees a decrease of temperature of the surface
layer TLo¢ of the thickness h from the temperature ¥o(A*) (the FEM value of the
solution of (3.1), (3.2) at the point A* € I't°¢, S(A*) = B) to the temperature Tt ,,
can be approximately expressed in the form

(3.5) QRo¢ = oo PE°h(Uo(A*) — Tt ),

where PF°¢ is the area created by rotation I'°¢ around the z-axis.
This energy must be removed from the subregion .. through the surface T,
since S(T't°¢) = I'lv°c. This can be achieved by reducing the temperature J4(B) (the

FEM value of the solution of (3.1), (3.2) at the point B € I'y’°) to the value Tpe .
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The amount of heat energy that causes the temperature 54 (B) drop to the desired
value Tre, of the surface layer I‘ng"c of the thickness h can be expressed approximately

in the form
(3.6) QR = 404 PE°h(04(B) — Tre),

where PFo¢ is the area created by rotation I's’® around the z-axis.

Remark 3.1. Due to the large difference in conductivity between the plunger
and the insulation barrier, the insulating resistance of the plunger can be neglected.
For this reason we replace the boundary I'y by the boundary I's in the calculation.

In other considerations, we replace the point A* with the point A which is the
intersection I'; with the temperature gradient line from the point A*.
We compare (3.5) evaluated on I'; and (3.6) to get

(3.7) cs04PE°R(94(A) — Tt,) = c104 PE°h(04(B) — Tre)).

From that we get the estimate for the temperature Tre, associated with Tr, as

PLoc

(3.8) Tr, = V4(B) — P;L'; —(04(A) - Tr,).

If the thermal gradient line is parallel to the z-axis (e.g. to the axis of the sys-
tem due to symmetry), problem (3.1) is reduced to the stationary one-dimensional
heat conduction in the direction of the z-variable and has a linear solution. If the
thermal gradient line is parallel to the r-axis (e.g. in a hypothetical case of a tube
shape), problem (3.1) is reduced to the stationary one-dimensional heat conduction
for the variable r and has a logarithmic solution. Thus, we can consider that the
solution along the gradient line in the general direction has the character between
these extreme states. For the purpose of sensitivity analysis, we consider the linear
dependence of the temperature on the length of the thermal gradient line.

We consider fixed temperature on the boundary I'; and replace the gradient line
connecting A and B by the straight line connecting A and B (see the analogy for A’
and B' at Figure 3(a)) to get

Tr, —04(B)  Va(B) —Try,

(3.9) dist(A, B) — Shift(B)  Shift(B) '

where Shift(B) is the estimate of the point B movement in the direction of vector
¥ = A — B that increases or decreases the temperature distribution on I'}°¢. From
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e e e
QPl QBa QCa

<]
2
T Ya(AY)
<]
o TF1 Q%a
E
) - NN
T, 7
Al Bitl B' (Gradient line
e
Shift(B")
(a) Shift estimate. (b) Scheme of the rotated system.
Figure 3.
that stems
Tr, — 94(B -1
(3.10) Shift(B) = dist(A,B)<j174() N 1) .
V4(B) — Tre,

We choose the control points B, B!,..., B™ € I'} in such a way that
B' = [y, f&(x;)] forap <mp < a1 <2 <...< Ty =g

and the associated shadow points A% A',... A™ € I'y such that B® = S(A?) for
i=0,1,...,m.

Further, we denote A® = [z 4:, fa(w 4:)] for i = 0,1,...,m and I'y C I'y is a part
of boundary I's with endpoints A%, A% (A% € Ty is the midpoint of A*~!A? and
A%, € T is the midpoint of A°A*1), Bi = S(A%) and B% = S(A%) are images of
A}, A% in the homeomorphism of heat transfer.

We approximate

(1) PRo(AY) =~ 2nfaea)y [y, — )P+ (Fa(oag) — folwag )2
and
(3.12) PR (B~ 2nff oo\, — 2y 2+ (5 (em,) — F (e ).

We put these approximations into (3.8) and then (3.8) into (3.10) to compute the
magnitude of shift of the control point B’ in the direction of vector ¥* = A* — B’ for
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the next iteration from the formula
(3.13)  Shift(B") = dist(A’, BY)
) ( Ji@)y/ sy, =05 + Uilamy) = Jiamy)P? 1~ Gy N 1)*
fa(wa\J@a, = w4 + (falway) = falaay))? 9a(A) = Tr,

where U, denotes the solution of state problem (2.18)—(2.19) and Tt, the tempera-
ture, which the plunger outward surface I'; is optimized on (see Figure 3(a)). Positive
value of Shift(B?) means shift in the direction of vector 7%, i.e. to the region Qf,
(barrier) and negative value of Shift(B*) means shift in the direction of vector —°,
i.e. to the region Qf, (cavity).

The construction of the boundary I'; is performed in such a way that in each
iteration all the control points B? are first rotated in the negative sense by 60° to the
position Bi. Tn this position, a cubic spline forming a new shape of the boundary I?e];
is constructed and this curve is rotated back to the original coordinate system in
which other problems are solved. This makes it possible to achieve the shape of the
boundary I'§, with negative tangent directive in the lower part of the cavity (see
Figure 3(b)).

4. NUMERICAL RESULTS

In the numerical experiment, the algorithm for optimization of the insulation
barrier for the pressing of the vase made of lead crystal glassware was designed and
tuned. The optimized boundary was modelled using the cubic spline. First, the
stationary source of heat was found as a heat source identification problem (PX)
solution, and then it was used in all algorithm iterations. In each iteration, the
components of the potential flow of cooling water were first calculated by solving the
problem (Py), and then the distribution of the temperature throughout the whole
system was found by solving the state problem (Pj). Then, the cost functional value
for the target temperature 71, = 1073 [K] (= 800°C) on I'; was calculated and the
new positions of the control points of the optimized inner boundary of the insulation
barrier I'; were determined by the sensitivity analysis. The new insulation barrier
boundary shape for the next iteration was designed by passing the cubic spline to
the new positions of the control points. Ninety-nine iterations of the process were
performed and among them the iteration with the smallest value of the cost functional
was found.

4.1. Material properties of the system. We used the parameters of the vase
which was measured in laboratory and the results of the experiment were published
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in the research report [3]. The vase made from lead crystal glassware of the height
xpy = 0.267 [m] and of the mass 1.55 kg was pressed in the carousel press where the
plunger pressed consecutively in six moulds. The total time of the working cycle was
162 s with the plunger working cycle 27 s.

The molten glass with the density o1 = 2500 [kg/m?], the specific heat ¢; =
796 [J/kg-K] and the coefficient of thermal conductivity k; = 3.8 [W/m-K] was used
in the calculation. The plunger and the mould were made from steel with the density
00 = 03 = 7800 [kg/m?], the specific heat ¢y = c3 = 482 [J/kg-K] and the coefficient
of thermal conductivity kg = k3 = 73 [W/m-K]. The insulation barrier was made
from ceramics with the density o4 = 4500 [kg/m?], the specific heat ¢4 = 900 [J /kg-K]
and the coefficient of thermal conductivity ks = 2.5 [W/m-K]. The cooling water with
the density oo = 1000 [kg/m?], the specific heat co = 4180 [J/kg-K] and the coefficient
of thermal conductivity k2 = 0.6 [W/m-K] was used. The cooling was implemented
by the volume V' = 1[1/min| of water with the temperature 9J;, = 288 [K] (= 15°C)
at the entrance. The temperature of the environment was Yext = 333 [K] (= 60°C).
The coeflicient of heat-transfer between the mould and the environment was chosen
to be a = 14 [W/m?-K] (the value used for underfloor heating). The coefficient of
the flux density of the modified mass of body 5 = 0. The target temperature of the
plunger outward surface I'y was 71, = 1073 [K] (= 800°C).

The problem of stationary conduction of heat for mean values of temperatures
replaced the real periodical process of cooling.

4.2. Determining the stationary heat source. The stationary heat source was
determined as the solution of the heat source identification problem from Section 2.2
with the initial temperature Ty = 1423 [K] (= 1150°C) in the region Q¢ and the
prescribed linear decrease of temperature to the target temperature 7, = 1073 [K]
(= 800°C) on the boundary I'; at the time ¢p = 13 [s] and on the boundary I's at
the time ¢y = 88 [s].

We solve the problem (P4) by the method of time discretization as the prob-
lem (P¥) with time step 7 = 1 [s] for inhomogeneous initial and boundary conditions
for k=1,2,...,Ns with N4 = 13. Software FreeFem++ was used. The mesh with
25 781 nodes and 50 511 triangles was generated automatically and the continuous
piecewise quadratic Lagrangian elements P2 were used.

The FreeFem++ code for the weak formulation of the time discretized prob-
lem (P%) has the form

problem dHeat (9", ) = int2d(QG1)((01 s 01 % OF s 1)
+ ko (de(9F) x dae(y) + dy(9F) * dy(1)) * y)
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+ int2d(Qa) (—c1 * o1 % 91w 1h % y)
+ on(Ts, 9% = go) +on(T'y, 9% = g1),

where code variable y represents the (P¥) variable  and

ﬁo(x,r) =Ty in Qq,

Ty — 17
gl(a:,r):To—ToiFlk on I'y,

tp

Ty — 17
92($,T):T0—Tuk on I'g.

M

We get the stationary heat source in the region )¢ in accordance with (2.9). We
substitute this numerical solution at the last time layer to the formula

c
(41) Fasr) = 4 (To = 03 (7)) [W/ke],
where ¢; = 796 [J/(kg-K)] is the specific heat of glass.

Subsequently, this source was used in all 99 iterations of the optimization problem.

4.3. Determining the velocity of the cooling water. In each iteration of
the optimization process we first rotate the eleven points B? to the points ﬁ, then
construct the boundary fﬁ; as a natural cubic spline with the eleven control points
Bi and rotate it back to the boundary I';. We start with the points

0.015, 0], [0.020,0.010], [0.030,0.016], [0.044, 0.018], [0.060, 0.020], [0.085, 0.022],
0.118,0.024], [0.152, 0.025], [0.188,0.025], [0.226,0.025], [0.267, 0.025]

in the initial iteration.

After we had constructed the plunger cavity Q¢, in the current iteration, we solved
the Neumann problem (P ) to compute the potential of the velocity field of the cool-
ing water. The problem was solved again by FEM using the software FreeFem-++.
In the initial iteration, the mesh with 853 nodes and 1469 triangles was generated
automatically and the continuous piecewise quadratic Lagrangian elements P2 were
used.

The FreeFem++ code for the weak formulation of the problem (Py) has the form

problem Potential(®, ¢) = int2d(Q¢, ) ((dz(®) * dz(p) + dy(P) * dy(v)) *y)
- lntld(rln)( i/I(lelo *Q* y) - intld(rgut)(hslellto * ok y)a

where

in  __ V

velo — 1'[*60*@27

- Vv
velo ™ 1% 60 % (y(10)2 — a2)’

out
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V' =0.001 [m?/min] is the volume of cooling water at the entrance, a = 0.006 [m] is
the radius of the filling tube and y(10) is the second coordinate of the last control
point B'0.

We get the velocity field of the flowing water according to (2.4) by putting this
numerical solution into the following formulas:

9% e
(4.2) wy = 9r 0w

0 in Q- Qg,,

92 e
(4.3) wy = { or O

0 in Q—-Qg,.

4.4. Determining the distribution of temperature in the system. Both
the stationary heat source f from (4.1) and the components of the velocity field of
the flowing water wq, wq from (4.2), (4.3) were subsequently substituted into the
state problem (Pp,).

The problem was solved again by FEM using the software FreeFem++. In the
initial iteration, the mesh with 121 586 nodes and 242 425 triangles was generated
automatically and the continuous piecewise linear Lagrangian elements P1 were used.

The FreeFem++ code for the state problem (2.18), (2.19) has the form

problem Thermic (¥, ¢) = int2d(Q)(((k * (da(?) * dx(v) + dy(I) = dy(¥)))
+ co * 02 % (wy * dz(9) * ¢ + wa * dy(I) * 1)) x y)
— int2d(Q) (01 * f * ¥ * y) + int1d(T7)(a x I * 1) * y)
—int1d(T7) (@ * Pexs * ¥ * y) + on(Tin, ¥ = Jin)-

Remark 4.1. Numerical computation performed with the actual water conduc-
tivity value k2 = 0.6 [W/(m-K)], using a potential cooling water flow model in the
plunger cavity, shows a completely unrealistic temperature distribution in the direc-
tion of the r-axis. In the thin layer at the barrier surface, the water temperature is
close to the high barrier temperature and decreases after several millimetres to 18 °C.
The cooling water in the rest of the cavity has the temperature approximately 15 °C.
This points to the fact that the model of the potential flow of cooling water does not
correspond to the physical reality, however, the flow has only an auxiliary character
in the plunger cavity, which prefers one direction for the dissipation of heat energy.
The introduction of a real model, respecting the change of state of boiling water at
the surface of the barrier, would greatly increase the computational difficulty and its
effect on the optimization problem would be negligible. The easiest removal of this
discrepancy with reality, while maintaining the potential flow model, is a significant
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increase in water conductivity, thereby achieving a more natural distribution of tem-
perature in the direction of the r-axis in the plunger cavity. Therefore, we increased
the water conductivity ten times and we chose ko = 6 [W/(m-K)].

4.5. Determining of the new control points’ positions. Sensitivity analysis
with respect to the temperature along the boundary I'y was implemented in each
iteration. We have nine control points B;» € I'G from the previous jth iteration
and nine shadow points A; € 'y as the intersections of the temperature gradient
lines derived from the control points B}. In the shadow points A} we computed
the temperatures and compared them with the target temperature required on the
outward boundary of the plunger, i.e. T, = 1073 [K] (= 800°C). If the current
temperature in the given shadow point Aé- was higher than the target temperature,
we moved the control point B} in the direction of the temperature gradient to the
region Q5 (barrier); in the opposite case we moved it to the region Qf,, (cavity). The
magnitude of this shift was chosen in proportion to the amount of energy we had to
take more or less to achieve the target temperature T, = 1073 [K]. Analogously, we
moved the first control point B;-) along the z-axis or the last control point le-o along
the line z = 0.267 [m]. The displacement size was chosen according to the assumption
of an “almost” linear dependence of the temperature drop on the insulation barrier
thickness (see also (3.13)). In each iteration ((j + 1)th iteration) the new position of
the control points B; 41 was calculated according to the formula

) ) 1 ) )
Bju =B+ 5(4; - B))

( royy @n — e P ey e P T - 4B )1

X - C= - 1

h(m;)-w% — w4, )2+ (fo(@as,) — falzas,)? Da(4)) = T,
i=0,1,...,10,

where 54(14;-) and 54(33-) denote the solutions of the state problem (2.18)—(2.19)
in A} and Bj.

The curvilinear integral in the cost functional J? was computed numerically with
equidistant division into 1000 intervals along the length of the curve representing the
boundary I';.

4.6. Results of the iteration process. In the initial iteration the insulation
barrier was too thick, causing the value of the cost functional JZ = 168 334.33.

In the subsequent iterations the insulation barrier was significantly thinned, which
led to a sharp decline of the cost functional value. In the 10th iteration the value of
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the cost functional was Jj§ = 1140.44, the temperature distribution in the system
can be seen in Figure 4.

IsoValue

W498.291
W558.48

M618.668
W678.857
W739.045
W799.233
W859.422
M919.61

W979.799
m1039.99
H1100.18
M1160.36
W1220.55
W1280.74
W1340.93
W1401.12
W1461.31

Figure 4. Distribution of temperatures in the 10th iteration.

In the 20th iteration the value of the cost functional was Ji = 117.49, in the
60th iteration the value of the cost functional was J& = 2.992 and in the last
99th iteration the value of the cost functional was Jg3 = 1.122. We computed only
99 iterations. The temperature distribution in the system in the 99th iteration is
shown in Figure 5.

IsoValue

W464.921
W515.627
W566.333
W617.039
W667.744
W718.45

W769.156
W819.862
m870.568
W921.274
W971.98

m1022.69
W1073.39
W1124.1

W1174.8

W1225.51
W1276.22

Figure 5. Distribution of temperatures in the 99th iteration.

The following graphs in Figure 6 show the distribution of temperatures measured
from the lowest plunger point [zr,0] € T’y to the point [zy,0.055] € Ty along the
outward plunger surface I'; in the initial iteration, in the 10th, 20th, 60th, 99th
iterations and the target temperature 71, = 1073 [K].
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Figure 6. Distribution of temperatures along the outward plunger
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surface I'1.

The graph in Figure 7 has a changed temperature range to highlight the temper-

ature course of the last iterations.
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Figure 7. Distribution of temperatures along the outward plunger surface I'y with changed

temperature range on the temperature axis.

5. CONCLUSION

Numerical results show that the proposed algorithm effectively minimizes the value

of the cost functional and balances the temperature of the plunger outward surface

to the desired value in the considered model.

The laboratory experiment which would verify the degree of compliance of the

proposed model for the shape optimization of the insulation barrier with reality, was
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not performed. The agreement of the model and reality can only be inferred from an
analogy with the similar experimental verification of the model described in [6], in
which the optimized shape of the plunger cavity with the application of a regulation
current body was considered.

The model should contribute to streamlining the introduction of a new assortment
into the production. The original construction of the plunger cavity had been formed
by drilling holes of different diameters and depths, where the ceramic rings had been
inserted. The design had been based on the observed deficiencies on the surface of
the glass pieces from the test series.
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