
Applications of Mathematics

Petr Salač
Numerical solution of the pressing devices shape optimization problem in the glass
industry

Applications of Mathematics, Vol. 63 (2018), No. 6, 643–664

Persistent URL: http://dml.cz/dmlcz/147562

Terms of use:
© Institute of Mathematics AS CR, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147562
http://dml.cz


63 (2018) APPLICATIONS OF MATHEMATICS No. 6, 643–664

NUMERICAL SOLUTION OF THE PRESSING DEVICES SHAPE

OPTIMIZATION PROBLEM IN THE GLASS INDUSTRY

Petr Salač, Liberec

Received September 19, 2017. Published online November 16, 2018.

Abstract. In this contribution, we present the problem of shape optimization of the
plunger cooling which comes from the forming process in the glass industry. We look for
a shape of the inner surface of the insulation barrier located in the plunger cavity so as
to achieve a constant predetermined temperature on the outward surface of the plunger.
A rotationally symmetric system, composed of the mould, the glass piece, the plunger,
the insulation barrier and the plunger cavity, is considered. The state problem is given as
a multiphysics problem where solidifying molten glass is cooled from the inside by water
flowing through the plunger cavity and from the outside by the environment surrounding
the mould.
The cost functional is defined as the squared L

2
r norm of the difference between a pre-

scribed constant and the temperature on the outward boundary of the plunger. The tem-
perature distribution is controlled by changing the insulation barrier wall thickness.
The numerical results of the optimization to the required target temperature 800 ◦C

of the outward plunger surface together with the distribution of temperatures along the
interface between the plunger and the glass piece before, during and after the optimization
process are presented.

Keywords: shape optimization; heat-conducting fluid; energy transfer
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1. Introduction

There are several possibilities for increasing the quality of the surface of glass

products and, moreover, to shorten the time needed to press one piece. Imagine

the pressing process of a big glass vase: At the beginning, a drop of hot glass falls

down into the mould, then the plunger comes down to press the vase and stays about

This work was realized with financial support of the Technological Agency of the Czech
Republic, project No. TA03010852.

DOI: 10.21136/AM.2018.0247-17 643

http://dx.doi.org/10.21136/AM.2018.0247-17


13 seconds in the down position. Then the plunger leaves the vase. This is the critical

moment of the pressing process. If the surface of the plunger is too hot in any place

at the moment of separation, the glass melt adheres to the device and the moulded

piece deforms. On the other hand, if the surface of the plunger is too cold, small fire

cracks appear on the surface of the moulded piece. These two instances both mean

poorer quality of production. For these reasons, it is necessary to achieve a given

constant distribution of temperature along the surface of the plunger at the moment

of separation. We can control this by changing the shape of the cooling cavity, the

local speed of the cooling medium, the heat properties of the cooling medium and the

heat conductivity of the plunger material. One of the most effective ways to control

the distribution of the temperature along the outward surface of the plunger is to

change the shape of the inner cooling cavity located at the axis of the plunger. The

actual thermal conductivity of the plunger material is too high for good results to be

achieved. For this reason, we apply a so-called insulation barrier with significantly

lower thermal conductivity located inside the given plunger cavity, thusly enhancing

this effect. The plunger is cooled by permanently flowing water which comes into

the deepest part of the cavity by a filling tube located in the axis of the plunger; and

on its way back, it cools the plunger from the inside. The original construction of

the cavity was made by drilling holes of different radii and depths. This construction

causes whirls in the flowing water which play negative roles. The new construction

eliminates whirls by the smooth surface of the cavity.

2. Formulation of the problem

First we describe the geometry of the whole system in which the pressing takes

place. The system consists of the mould, the glass piece, the plunger, the insulation

barrier and the plunger cavity. We turn the system to the horizontal position to be

able to describe the optimized insulation barrier surface by a function of one variable.

We define the set of admissible functions as

Ue
ad =

{
F e
4 ∈ C(0),1([xP , xH ]) ; F e

4 (x) =

{
0 for x ∈ [xP , x

e
B],

fe
4 (x) for x ∈ [xeB, xH ],

xeB ∈ ]xP , xT − smin], xP < xT − smin < xH given constants,

fe
4 ∈ C(0),1([xeB , xH ]), fe

4 (x
e
B) = 0, f3(x) + smin 6 fe

4 (x) 6 f2(x),

f2 ∈ C([xP , xH ]), f2(xP ) = 0 given,

f3(x) =

{
0 for x ∈ [xeB, xT − smin[,

a for x ∈ [xT − smin, xH ],
a > 0, smin > 0

}
,
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where f2, f3 are fixed functions and smin > 0 is a fixed constant given by the minimal

thickness of the gap between the inner plunger wall and the filling tube with radius

a > 0. The function fe
4 represents the shape of the insulation barrier located in the

plunger cavity.

We assume the region Ωe
Ba that depends on the design function F

e
4 and that is

defined by the formula

Ωe
Ba = {(x, r) ∈ R2; F e

4 (x) < r < f2(x) for x ∈ [xP , xH ]}.

Denote by Θ the set of all admissible regions Ωe
Ba ⊂ R2, i.e. regions characterized

by F e
4 ∈ Ue

ad. Let us define the convergence on the set Θ. Since each Ω
e
Ba is uniquely

related to F e
4 , we can say that, for n→ ∞, a sequence Ωn

Ba ∈ Θ converges to a region

Ωe
Ba ∈ Θ if and only if the sequence of functions nF e

4 converges uniformly in [xP , xH ]

to the function F e
4 that defines Ω

e
Ba.

We consider the planar region Ω = IntΩMo ∪ΩGl ∪ ΩPl ∪ Ωe
Ba ∪ Ωe

Ca that repre-

sents the planar cross section of the mould, the glass piece, the plunger, the insulation

barrier and the cooling channel of the plunger (see Figure 1).

Γ1

Γe

B

fe

4

f2

ΩPl (Plunger)
ΩGl (Glass)

Ωe

Ca
(Cavity)

Γ4

Γ6

Γ7

ΩMo (Mould)

Γin

xT

xP xe

B
xL

Γ3

Γe

out

Γ5

Ωe

Ba
(Barrier)

Γ2

xH

Figure 1. Scheme of the complete system with optimized part of boundary.

Furthermore, we denote by Γ1 the boundary between the plunger ΩPl and the

moulded piece ΩGl, Γ2 the boundary between the plunger ΩPl and the insulation

barrier Ωe
Ba and Γ

e
B the boundary between the insulation barrier Ω

e
Ba and the plunger

cavity Ωe
Ca. We denote by Γ3 the part of the boundary connecting the mould, the

moulded piece, the plunger and the insulation barrier with the presser, by Γ4 a part

of the axis of symmetry (see Figure 1), by Γ5 the part of the boundary formed by the

tube. Moreover, Γ6 is the notation for the part of the boundary between the moulded

piece ΩGl and the mould ΩMo and Γ7 is the outward boundary of the mould, which

is surrounded by an external environment. Furthermore, Γin denotes the part of the
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boundary, where the cooling water comes into the cooling channel of the plunger,

and Γe
out stands for the part of the boundary, where the water exits the channel.

We introduce the weighted Sobolev space H1
r (Ωi) (see [2]) provided with the norm

(2.1) ‖v‖1,r,Ωi
=

(∫

Ωi

[(∂v
∂x

)2
+
(∂v
∂r

)2
+ v2

]
r dΩ

)1/2
, i = 0, 1, 2, 3, 4,

(Ω0 ≡ ΩPl, Ω1 ≡ ΩGl, Ω2 ≡ Ωe
Ca, Ω3 ≡ ΩMo, Ω4 ≡ Ωe

Ba).

2.1. Water flow in the plunger cavity. We consider an incompressible poten-

tial flow of water, which is rotationally symmetric with respect to the x-axis.

The potential Φ is given as a solution of the Neumann problem

−
∂2Φ

∂r2
−

1

r

∂Φ

∂r
−
∂2Φ

∂x2
= 0 in Ωe

Ca,(Pf)

∂Φ

∂n
= 0 on Γe

B ∪ ΓC
4 ∪ Γ5,

∂Φ

∂n
= hinvelo on Γin,

∂Φ

∂n
= houtvelo on Γe

out,

where ∂/∂n denotes the derivative with respect to the outward unit normal with

respect to the region Ωe
Ca, Γ

C
4 = {[x; 0]; x ∈ [xeB, xT ]} is the part of boundary Ω

e
Ca,

hinvelo is the normal component of velocity at the entrance Γin (hinvelo < 0) and houtvelo is

the normal component of velocity at the exit Γe
out. Further, we assume

(2.2)

∫

Γin

hinvelor dΓ +

∫

Γe
out

houtvelor dΓ = 0.

The variational formulation for the potential flow is of the following form:

We look for a function Φ ∈ H1
r (Ω

e
Ca) such that

(2.3)

∫

Ωe
Ca

(∂Φ
∂x

∂ϕ

∂x
+
∂Φ

∂r

∂ϕ

∂r

)
r dΩ

=

∫

Γin

hinveloϕr dΓ +

∫

Γe
out

houtveloϕr dΓ ∀ϕ ∈ H1
r (Ω

e
Ca).

The velocity field of the flowing water w = (w1, w2) in the cavity Ω
e
Ca is given as

(2.4) w = gradΦ.
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Theorem 2.1 (Existence and uniqueness of the velocity field). Under assump-

tion (2.2) there exists a unique velocity field of the form (2.4) satisfying the estimate

of the Euclidean norm in the form

(2.5) ‖|w|‖L2
r(Ω

e
Ca

) 6 c(‖hinvelo‖L2
r(Γin) + ‖houtvelo‖L2

r(Γ
e
out

)).

P r o o f. See [4], p. 409. �

R em a r k 2.1. The potential flow pattern in the plunger cavity does not corre-

spond to physical reality, but serves only to determine the direction of energy removal

from the cavity.

2.2. Heat source identification. Pressing glass products on a carousel press is

a periodic process in which a certain amount of heat energy is drawn from the glass

piece during each cycle. The purpose of the heat source identification problem is

to simplify the optimization problem. The non-stationary periodic heat flow effect

is approximated by the stationary “average flow” caused by the stationary source,

which releases the same amount of heat energy in the individual parts of the glass

piece during the pressing cycle.

In the first step we have to determine how much heat energy is necessary to be

dissipated from different parts of the glass piece ΩGl (see Figure 1) during one cycle

to achieve given constant temperature TΓ1
of the boundary Γ1 at the moment of the

plunger separation tP .

Problem A. We solve the mixed problem for heat conduction without internal

sources for an unknown temperature ϑA, which has in cylindrical coordinates the

differential form

c1̺1
∂ϑA
∂t

= k1

(
∂2ϑA
∂r2

+
1

r

∂ϑA
∂r

+
∂2ϑA
∂x2

)
in [0; tP ]× ΩGl,(PA)

ϑA(0, x, r) = T0 in ΩGl,

ϑA(t, x, r) = T0 −
T0 − TΓ1

tP
t on [0; tP ]× Γ1,

ϑA(t, x, r) = T0 −
T0 − TΓ1

tM
t on [0; tP ]× Γ6,

∂ϑA
∂n

(t, x, r) = 0 on [0; tP ]× (Γ3 ∪ ΓG
4 ),

where c1 is the specific heat of glass, k1 the coefficient of thermal conductivity of

glass, ̺1 the density of glass, T0 the initial glass temperature, TΓ1
the given target

temperature on the boundary Γ1, tM the moment of the mould and the glass piece

separation, (tM > tP ) and ΓG
4 ⊂ Γ4 is the part of boundary ΩGl.
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The problem (PA) is solved by the Rothe method of time discretization with time

step τ for inhomogeneous initial and boundary conditions of the form

c1̺1ϑ
k
A − k1τ

(
∂2ϑkA
∂r2

+
1

r

∂ϑkA
∂r

+
∂2ϑkA
∂x2

)
= c1̺1ϑ

k−1
A in ΩGl,(Pk

A)

ϑ0A(x, r) = T0 in ΩGl,

ϑkA(x, r) = T0 − τ
T0 − TΓ1

tP
k on Γ1,

ϑkA(x, r) = T0 − τ
T0 − TΓ1

tM
k on Γ6,

∂ϑkA
∂n

(x, r) = 0 on (Γ3 ∪ ΓG
4 ),

for k = 1, 2, . . . , NA, where NA = tP /τ , ϑ
k
A is the approximation of the tempera-

ture ϑA on the kth time layer.

The goal is to find a stationary problem to the problem (PA) with a time-

independent heat source that would release the same amount of heat energy in one

moulding cycle.

Problem B. We are looking for density of heat sources f(x, r) [W·kg−1] such

that the solution of the stationary heat problem

−k1

(∂2ϑB
∂r2

+
1

r

∂ϑB
∂r

+
∂2ϑB
∂x2

)
= ̺1f in ΩGl,(PB)

ϑB(x, r) = TΓ1
on Γ1,

ϑB(x, r) = T0 −
T0 − TΓ1

tM
tP on Γ6,

∂ϑB
∂n

(x, r) = 0 on Γ3 ∪ ΓG
4 ,

matches the solution of the problem (PA) at time tP [s].

By solving the problem A, we want to find the amount of thermal energy that

leads to the way of cooling, which achieves the desired temperature TΓ1
[K] on the

surface Γ1 at the time of separation of the glass piece and the plunger tP [s], and on

the surface Γ6 at the time of separation of the glass piece and the mould tM [s]. We

are looking for a thermal source f of the hypothetical stationary problem B, which

locally releases this amount of energy during the course of time from 0 to tP in the

region ΩGl.
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Denote by ΩLoc ⊂ ΩGl an arbitrarily small subregion of ΩGl. Then we can express

the local amount of heat energy emitted from ΩLoc during one plunger cycle as

c1̺1

∫ tP

0

∫

ΩLoc

∂ϑA
∂t

dΩdt = k1

∫ tP

0

∫

ΩLoc

(∂2ϑA
∂r2

+
1

r

∂ϑA
∂r

+
∂2ϑA
∂x2

)
dΩdt

= k1

∫ tP

0

∫

ΩLoc

(∂2ϑB
∂r2

+
1

r

∂ϑB
∂r

+
∂2ϑB
∂x2

)
dΩdt = −̺1

∫ tP

0

∫

ΩLoc

f dΩdt,

thus

(2.6) c1

∫ tP

0

∫

ΩLoc

∂ϑA
∂t

dΩdt = −

∫ tP

0

∫

ΩLoc

f dΩdt.

By integration over time interval [0, tP ], we get

(2.7) c1

∫

ΩLoc

(ϑA(tP , x, r) − ϑA(0, x, r)) dΩ = −tP

∫

ΩLoc

f(x, r) dΩ in ΩGl.

Because of the fact that the region ΩLoc is arbitrarily small, we obtain

(2.8) f(x, r) =
c1
tP

(ϑA(0, x, r)− ϑA(tP , x, r)) in ΩGl.

We substitute initial condition ϑA(0, x, r) = T0 and ϑA(tP , x, r) = ϑNA

A (x, r) to get

(2.9) f(x, r) =
c1
tP

(T0 − ϑNA

A (x, r)) in ΩGl,

where ϑNA

A (x, r) is the solution of the problem (Pk
A). The problem (Pk

A) is solved

by the finite element method (FEM) on each time layer. This is the way how to

find the values of the function ϑNA

A (x, r) in individual mesh nodes. We substitute

ϑNA

A to (2.9) to get values of the density heat sources f(x, r) which we substitute

into the state problem for the optimal design of the insulation barrier shape which

follows.

2.3. State problem. We generalize the state system defined for the system com-

posed of the mould, the glass piece, the plunger and the plunger cavity, presented

in [4], by adding the insulation barrier into the cavity.
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The state problem based on the energy equation for the stationary flow w =

(w1, w2) with steady temperature ϑ has the form

̺2c2 gradϑ·w − ki

(∂2ϑ
∂r2

+
1

r

∂ϑ

∂r
+
∂2ϑ

∂x2

)
= ̺1f in Ω,(Ph)

ϑ = ϑin on Γin,

∂ϑ

∂n
= 0 on Γ3 ∪ Γ4 ∪ Γ5 ∪ Γe

out,
[
k0
∂ϑ

∂n

]
|ΩPl

+
[
k4
∂ϑ

∂n

]
|Ωe

Ba

= 0 on Γ2,

ϑ|ΩPl
= ϑ|Ωe

Ba
on Γ2,

[
k4
∂ϑ

∂n

]
|Ωe

Ba

+
[
k2
∂ϑ

∂n

]
|Ωe

Ca

= 0 on Γe
B,

ϑ|Ωe
Ba

= ϑ|Ωe
Ca
on Γe

B,[
k0
∂ϑ

∂n

]
|ΩPl

+
[
k1
∂ϑ

∂n

]
|ΩGl

= β on Γ1,

ϑ|ΩPl
= ϑ|ΩGl

on Γ1,
[
k3
∂ϑ

∂n

]
|ΩMo

+
[
k1
∂ϑ

∂n

]
|ΩGl

= β on Γ6,

ϑ|ΩMo
= ϑ|ΩGl

on Γ6,
[
k3
∂ϑ

∂n
+ αϑ

]
|ΩMo

= αϑext on Γ7,

where w is the stationary velocity of the flowing water obtained as the solution to

the problem (Pf) in Ωe
Ca (w = 0 in Ωe

Ba ∪ ΩPl ∪ ΩGl ∪ ΩMo), the material constant

ki represents the coefficient of thermal conductivity in Ωi (Ω0 ≡ ΩPl, Ω1 ≡ ΩGl,

Ω2 ≡ Ωe
Ca, Ω3 ≡ ΩMo, Ω4 ≡ Ωe

Ba) and ̺1, ̺2 the density of glass, water, respectively,

c2 the specific heat of cooling water in Ω
e
Ca, f is the density of heat sources obtained

from (2.9) in ΩGl (f = 0 in Ωe
Ca ∪Ωe

Ba ∪ΩPl ∪ΩMo), ϑin the absolute temperature of

the water at the inlet, α > 0 the coefficient of heat-transfer, β > 0 the flux density of

the modified mass of the body (see [7], p. 128) and ϑext > 0 the temperature of the

environment. Symbol [∂ϑ/∂n]|Ωi
denotes the derivative with respect to the outward

unit normal with respect to the region Ωi.

Let us express the function ϑ, see (Ph), as the sum of five functions, that is

ϑ = ϑ0 + ϑ1 + ϑ2 + ϑ3 + ϑ4,

where

(2.10) ϑi =

{
ϑ|Ωi

in Ωi,

0 in Ω \ Ωi

for i = 0, 1, 2, 3, 4,

(Ω0 ≡ ΩPl, Ω1 ≡ ΩGl, Ω2 ≡ Ωe
Ca, Ω3 ≡ ΩMo, Ω4 ≡ Ωe

Ba).
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Further, we denote by ϑi|Γj
the trace of solution ϑi on the boundary Γj for i, j

if Γj is a boundary of Ωi.

Moreover, we introduce

H(Ω) = {ϑ; ϑ defined in (2.10), ϑi ∈ H1
r (Ωi) for any i = 0, 1, 2, 3, 4,

ϑ3|Γ6
= ϑ1|Γ6

, ϑ1|Γ1
= ϑ0|Γ1

, ϑ0|Γ2
= ϑ4|Γ2

, ϑ4|Γe
B
= ϑ2|Γe

B
}.

We define the norm in H(Ω) as

(2.11) ‖ϑ‖H = (‖ϑ0‖
2
1,r,Ω0

+ ‖ϑ1‖
2
1,r,Ω1

+ ‖ϑ2‖
2
1,r,Ω2

+ ‖ϑ3‖
2
1,r,Ω3

+ ‖ϑ4‖
2
1,r,Ω4

)1/2.

The set H(Ω) with the norm (2.11) is a Hilbert space.

By virtue of the rotational symmetry of both the state problem and the function ϑ,

the state problem can be formulated variationally in two dimensions similarly to [4].

We define the trilinear form, two bilinear forms and two functionals:

EnergyveloΩ (ϑ,w, ψ) = c2̺2

∫

Ωe
Ca

(∂ϑ2
∂x

w1 +
∂ϑ2
∂r

w2

)
ψr dΩ,(2.12)

EnergycondΩ (ϑ, ψ) = k0

∫

ΩPl

(∂ϑ0
∂x

∂ψ

∂x
+
∂ϑ0
∂r

∂ψ

∂r

)
r dΩ(2.13)

+ k1

∫

ΩGl

(∂ϑ1
∂x

∂ψ

∂x
+
∂ϑ1
∂r

∂ψ

∂r

)
r dΩ

+ k2

∫

Ωe
Ca

(∂ϑ2
∂x

∂ψ

∂x
+
∂ϑ2
∂r

∂ψ

∂r

)
r dΩ

+ k3

∫

ΩMo

(∂ϑ3
∂x

∂ψ

∂x
+
∂ϑ3
∂r

∂ψ

∂r

)
r dΩ

+ k4

∫

Ωe
Ba

(∂ϑ4
∂x

∂ψ

∂x
+
∂ϑ4
∂r

∂ψ

∂r

)
r dΩ,

EnvironmentΩ(ϑ, ψ) =

∫

Γ7

αϑ3|Γ7
ψr dΓ,(2.14)

SourceΩ(ψ) = ̺1

∫

ΩGl

fψr dΩ,(2.15)

CoeffΩ(ψ) =

∫

Γ1

βψr dΓ +

∫

Γ6

βψr dΓ +

∫

Γ7

αϑextψr dΓ.(2.16)

Further, we denote

AΩ(ϑ,w, ψ) = Energy
velo
Ω (ϑ,w, ψ) + EnergycondΩ (ϑ, ψ) + EnvironmentΩ(ϑ, ψ)

and

FΩ(ψ) = SourceΩ(ψ) + CoeffΩ(ψ).
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We denote by H∗(Ω) the space dual to the space H(Ω) with the norm

‖ψ‖H∗ = sup
ϕ 6=0

AΩ(ϕ,w, ψ)

‖ϕ‖H
.

We define the sets

ΩH = Ω ∪ Γin

and
eH2D = {v ∈ C∞(ΩH); v|Γin

= 0}.

Let H0(Ω) be the closure of the set
eH2D in H(Ω).

We assume the existence of a function ϑeΓ ∈ H(Ω) such that

(2.17) ϑeΓ|Γin
= ϑin on Γin.

We use the variational formulation of the energy equation to formulate:

The State Problem: We look for a function ϑ ≡ ϑ(F e
4 ) ∈ H(Ω) such that

AΩ(ϑ,w, ψ) = FΩ(ψ) ∀ψ ∈ H0(Ω),(2.18)

ϑ− ϑeΓ ∈ H0(Ω),(2.19)

where F e
4 ∈ Ue

ad and w is the corresponding flow pattern given as the gradient of the

solution to (2.3).

Theorem 2.2 (Existence and uniqueness of the solution of the state prob-

lem). The state problem (2.18), (2.19) has a unique solution ϑ(F e
4 ) for each F

e
4 ∈ Ue

ad

and the associated flow pattern w obtained as the gradient of the unique solution of

(2.3). Moreover, there exists a constant C > 0 such that

(2.20) ‖ϑ(F e
4 )‖H 6 C‖FΩ‖H∗ .

P r o o f. It is sufficient to verify the assumptions of the Lax-Milgram Theorem

(see also [4]). �

2.4. Shape optimization problem. We define the cost functional as

(2.21) J B(F e
4 ) =

∫

Γ1

(ϑ(F e
4 )|Γ1

− TΓ1
)2r dΓ,

where ϑ(F e
4 )|Γ1

is the Γ1-trace of the solution ϑ(F
e
4 ) of the state problem (2.18),

(2.19) in the region ΩPl and TΓ1
is a given constant representing the known optimal

temperature of the plunger surface.
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We introduce following:

The Shape Optimization Problem for the Insulation Barrier: We look for

the optimal design FOpt ∈ Ue
ad such that

(2.22) J B(FOpt) 6 J B(F e
4 ) ∀F e

4 ∈ Ue
ad.

Theorem 2.3 (Existence of solution of the shape optimization problem). The

shape optimization problem for the insulation barrier (2.22) has at least one solution.

P r o o f. We refer to Theorem 2.1 in [1], p. 29; see also [4]. �

3. Sensitivity analysis

The goal of the sensitivity analysis is to suggest a way of modifying the inner

shape of the plunger cavity formed by the insulation barrier in order to minimize the

cost functional (2.21). The state problem describes the cooling of the hot glass in the

region ΩGl by the cooling water in the region Ωe
Ca. This is justifiable for the intro-

duction of the physical assumption that thermal energy is transmitted through the

gradient lines of the temperature field in the plunger and the insulation barrier from

the boundary Γ1 to the boundary Γ
e
B (see also [5]). The control of the temperature

distribution at the boundary Γ1 is based on the local change of thermal resistance

caused by the change of the insulation barrier thickness. Therefore, we control the

temperature at Γ1 by moving the boundary Γ
e
B.

We denote Ωe
PB = IntΩPl ∪ Ωe

Ba. Let B ∈ Γe
B be the boundary point of Ω

e
PB and

UB be its two-dimensional neighborhood. Let BL, BR ∈ Γe
B be boundary points of

UB and ΓL, ΓR ⊂ Ωe
PB be the gradient lines of the temperature field in the plunger

and barrier such that BL ∈ ΓL and BR ∈ ΓR. Let A
∗
L ∈ ΓL ∩ Γ1, A

∗
R ∈ ΓR ∩Γ1 and

ΩLoc ⊂ Ωe
PB be a subregion bounded by ΓL, Γ

Loc
1 , ΓR, Γ

Loc
B , where Γ

Loc
1 = Γ1∩ΩLoc,

ΓLoc
B = Γe

B ∩ΩLoc (see Figure 2).

Γ1

Γe

B

Ωe

PB

Ωe

Ca

Γ5

b b b b b b b b b b b b b b

b

b

b

b

b
b

b

A∗

L

A∗

R

BL

B
BR

ΓLoc
1

ΓLoc
B

ΩLoc

ΓL

ΓR

Figure 2. Gradient lines determine the point mapping, which defines the homeomorphism
of heat transfer.
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We assume the Neumann boundary value problem in ΩLoc as

−ki

(∂2ϑ
∂r2

+
1

r

∂ϑ

∂r
+
∂2ϑ

∂x2

)
= 0 in ΩLoc,(3.1)

ki
∂ϑ

∂n
= g on ΓL ∪ ΓLoc

1 ∪ ΓR ∪ ΓLoc
B ,(3.2)

where ki is the coefficient of thermal conductivity in Ωi, i = 0, 4, and g some local

heat flux.

According to the second law of thermodynamics, we have

(3.3)
∂ϑ

∂n
= 0 on ΓL ∪ ΓR,

(because ΓL, ΓR are the gradient lines of the temperature field), and according to

the necessary condition for the existence of the Neumann boundary value problem

solution we have

(3.4) k0

∫

ΓLoc

1

∂ϑ

∂n
r dΓ = −k4

∫

ΓLoc

B

∂ϑ

∂n
r dΓ.

This equality allows us to define the homeomorphism of heat transfer.

Definition 3.1 (Homeomorphism of heat transfer). The mapping S : Γ1 → Γe
B

is called the homeomorphism of heat transfer if: for each segment ΓLoc
1 ⊂ Γ1 it

holds that the heat energy, which comes into region Ωe
PB through ΓLoc

1 , flows away

from Ωe
PB through S(ΓLoc

1 ) = ΓLoc
B ⊂ Γe

B.

If in some part of Γ1 we need to decrease the temperature, we locally decrease

the heat resistance by moving the points of Γe
B along the gradient lines to decrease

the thickness of the barrier. On the other hand, in places of Γ1 where we need

higher temperature, we increase thermal resistance by increasing the thickness of the

insulation layer, and this will locally decrease the intensity of cooling.

The amount of heat energy that guarantees a decrease of temperature of the surface

layer ΓLoc
1 of the thickness h from the temperature ϑ̃0(A

∗) (the FEM value of the

solution of (3.1), (3.2) at the point A∗ ∈ ΓLoc
1 , S(A

∗) = B) to the temperature TΓ1
,

can be approximately expressed in the form

(3.5) QLoc
Γ1

= c0̺0P
Loc
Γ1

h(ϑ̃0(A
∗)− TΓ1

),

where PLoc
Γ1
is the area created by rotation ΓLoc

1 around the x-axis.

This energy must be removed from the subregion ΩLoc through the surface Γ
Loc
B ,

since S(ΓLoc
1 ) = ΓLoc

B . This can be achieved by reducing the temperature ϑ̃4(B) (the

FEM value of the solution of (3.1), (3.2) at the point B ∈ ΓLoc
B ) to the value TΓe

B
.
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The amount of heat energy that causes the temperature ϑ̃4(B) drop to the desired

value TΓe
B
of the surface layer ΓLoc

B of the thickness h can be expressed approximately

in the form

(3.6) QLoc
ΓB

= c4̺4P
Loc
ΓB

h(ϑ̃4(B) − TΓe
B
),

where PLoc
ΓB
is the area created by rotation ΓLoc

B around the x-axis.

R em a r k 3.1. Due to the large difference in conductivity between the plunger

and the insulation barrier, the insulating resistance of the plunger can be neglected.

For this reason we replace the boundary Γ1 by the boundary Γ2 in the calculation.

In other considerations, we replace the point A∗ with the point A which is the

intersection Γ2 with the temperature gradient line from the point A
∗.

We compare (3.5) evaluated on Γ2 and (3.6) to get

(3.7) c4̺4P
Loc
Γ2

h(ϑ̃4(A)− TΓ1
) = c4̺4P

Loc
ΓB

h(ϑ̃4(B)− TΓe
B
).

From that we get the estimate for the temperature TΓe
B
associated with TΓ1

as

(3.8) TΓe
B
= ϑ̃4(B)−

PLoc
Γ2

PLoc
ΓB

(ϑ̃4(A) − TΓ1
).

If the thermal gradient line is parallel to the x-axis (e.g. to the axis of the sys-

tem due to symmetry), problem (3.1) is reduced to the stationary one-dimensional

heat conduction in the direction of the x-variable and has a linear solution. If the

thermal gradient line is parallel to the r-axis (e.g. in a hypothetical case of a tube

shape), problem (3.1) is reduced to the stationary one-dimensional heat conduction

for the variable r and has a logarithmic solution. Thus, we can consider that the

solution along the gradient line in the general direction has the character between

these extreme states. For the purpose of sensitivity analysis, we consider the linear

dependence of the temperature on the length of the thermal gradient line.

We consider fixed temperature on the boundary Γe
B and replace the gradient line

connecting A and B by the straight line connecting A and B (see the analogy for Ai

and Bi at Figure 3(a)) to get

(3.9)
TΓ1

− ϑ̃4(B)

dist(A,B)− Shift(B)
=
ϑ̃4(B) − TΓe

B

Shift(B)
,

where Shift(B) is the estimate of the point B movement in the direction of vector

~v = A − B that increases or decreases the temperature distribution on ΓLoc
1 . From
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(b) Scheme of the rotated system.

Figure 3.

that stems

(3.10) Shift(B) = dist(A,B)

(
TΓ1

− ϑ̃4(B)

ϑ̃4(B)− TΓe
B

+ 1

)−1

.

We choose the control points B0, B1, . . . , Bm ∈ Γe
B in such a way that

Bi = [xi, f
e
4 (xi)] for xP 6 x0 < x1 < x2 < . . . < xm = xH

and the associated shadow points A0, A1, . . . , Am ∈ Γ2 such that B
i = S(Ai) for

i = 0, 1, . . . ,m.

Further, we denote Ai = [xAi , f2(xAi )] for i = 0, 1, . . . ,m and Γi
2 ⊂ Γ2 is a part

of boundary Γ2 with endpoints A
i
L, A

i
R (A

i
L ∈ Γ2 is the midpoint of A

i−1Ai and

Ai
R ∈ Γ2 is the midpoint of A

iAi+1), Bi
L = S(Ai

L) and B
i
R = S(Ai

R) are images of

Ai
L, A

i
R in the homeomorphism of heat transfer.

We approximate

(3.11) PLoc
Γ2

(Ai) ≈ 2πf2(xAi )
√
(xAi

R
− xAi

L
)2 + (f2(xAi

R
)− f2(xAi

L
))2

and

(3.12) PLoc
ΓB

(Bi) ≈ 2πfe
4 (xi)

√
(xBi

R
− xBi

L
)2 + (fe

4 (xBi
R
)− fe

4 (xBi
L
))2.

We put these approximations into (3.8) and then (3.8) into (3.10) to compute the

magnitude of shift of the control point Bi in the direction of vector ~v i = Ai−Bi for
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the next iteration from the formula

(3.13) Shift(Bi) = dist(Ai, Bi)

×

(
fe
4 (xi)

√
(xBi

R
− xBi

L
)2 + (fe

4 (xBi
R
)− fe

4 (xBi
L
))2

f2(xAi)
√
(xAi

R
− xAi

L
)2 + (f2(xAi

R
)− f2(xAi

L
))2

·
TΓ1

− ϑ̃4(B
i)

ϑ̃4(Ai)− TΓ1

+ 1

)−1

,

where ϑ̃4 denotes the solution of state problem (2.18)–(2.19) and TΓ1
the tempera-

ture, which the plunger outward surface Γ1 is optimized on (see Figure 3(a)). Positive

value of Shift(Bi) means shift in the direction of vector ~v i, i.e. to the region Ωe
Ba

(barrier) and negative value of Shift(Bi) means shift in the direction of vector −~v i,

i.e. to the region Ωe
Ca (cavity).

The construction of the boundary Γe
B is performed in such a way that in each

iteration all the control points Bi are first rotated in the negative sense by 60◦ to the

position B̃i. In this position, a cubic spline forming a new shape of the boundary Γ̃e
B

is constructed and this curve is rotated back to the original coordinate system in

which other problems are solved. This makes it possible to achieve the shape of the

boundary Γe
B with negative tangent directive in the lower part of the cavity (see

Figure 3(b)).

4. Numerical results

In the numerical experiment, the algorithm for optimization of the insulation

barrier for the pressing of the vase made of lead crystal glassware was designed and

tuned. The optimized boundary was modelled using the cubic spline. First, the

stationary source of heat was found as a heat source identification problem (Pk
A)

solution, and then it was used in all algorithm iterations. In each iteration, the

components of the potential flow of cooling water were first calculated by solving the

problem (Pf ), and then the distribution of the temperature throughout the whole

system was found by solving the state problem (Ph). Then, the cost functional value

for the target temperature TΓ1
= 1073 [K] (= 800 ◦C) on Γ1 was calculated and the

new positions of the control points of the optimized inner boundary of the insulation

barrier Γe
B were determined by the sensitivity analysis. The new insulation barrier

boundary shape for the next iteration was designed by passing the cubic spline to

the new positions of the control points. Ninety-nine iterations of the process were

performed and among them the iteration with the smallest value of the cost functional

was found.

4.1. Material properties of the system. We used the parameters of the vase

which was measured in laboratory and the results of the experiment were published
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in the research report [3]. The vase made from lead crystal glassware of the height

xH = 0.267 [m] and of the mass 1.55 kg was pressed in the carousel press where the

plunger pressed consecutively in six moulds. The total time of the working cycle was

162 s with the plunger working cycle 27 s.

The molten glass with the density ̺1 = 2500 [kg/m3], the specific heat c1 =

796 [J/kg·K] and the coefficient of thermal conductivity k1 = 3.8 [W/m·K] was used

in the calculation. The plunger and the mould were made from steel with the density

̺0 = ̺3 = 7800 [kg/m3], the specific heat c0 = c3 = 482 [J/kg·K] and the coefficient

of thermal conductivity k0 = k3 = 73 [W/m·K]. The insulation barrier was made

from ceramics with the density ̺4 = 4500 [kg/m3], the specific heat c4 = 900 [J/kg·K]

and the coefficient of thermal conductivity k4 = 2.5 [W/m·K]. The cooling water with

the density ̺2 = 1000 [kg/m3], the specific heat c2 = 4180 [J/kg·K] and the coefficient

of thermal conductivity k2 = 0.6 [W/m·K] was used. The cooling was implemented

by the volume V = 1[l/min] of water with the temperature ϑin = 288 [K] (= 15 ◦C)

at the entrance. The temperature of the environment was ϑext = 333 [K] (= 60 ◦C).

The coefficient of heat-transfer between the mould and the environment was chosen

to be α = 14 [W/m2·K] (the value used for underfloor heating). The coefficient of

the flux density of the modified mass of body β = 0. The target temperature of the

plunger outward surface Γ1 was TΓ1
= 1073 [K] (= 800 ◦C).

The problem of stationary conduction of heat for mean values of temperatures

replaced the real periodical process of cooling.

4.2. Determining the stationary heat source. The stationary heat source was

determined as the solution of the heat source identification problem from Section 2.2

with the initial temperature T0 = 1423 [K] (= 1150 ◦C) in the region ΩGl and the

prescribed linear decrease of temperature to the target temperature TΓ1
= 1073 [K]

(= 800 ◦C) on the boundary Γ1 at the time tP = 13 [s] and on the boundary Γ6 at

the time tM = 88 [s].

We solve the problem (PA) by the method of time discretization as the prob-

lem (Pk
A) with time step τ = 1 [s] for inhomogeneous initial and boundary conditions

for k = 1, 2, . . . , NA with NA = 13. Software FreeFem++ was used. The mesh with

25 781 nodes and 50 511 triangles was generated automatically and the continuous

piecewise quadratic Lagrangian elements P2 were used.

The FreeFem++ code for the weak formulation of the time discretized prob-

lem (Pk
A) has the form

problemdHeat(ϑk, ψ) = int2d(ΩGl)
(
(c1 ∗ ̺1 ∗ ϑ

k ∗ ψ

+ k1 ∗ τ ∗ (dx(ϑ
k) ∗ dx(ψ) + dy(ϑk) ∗ dy(ψ))) ∗ y

)
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+ int2d(ΩGl)(−c1 ∗ ̺1 ∗ ϑ
k−1 ∗ ψ ∗ y)

+ on(Γ6, ϑ
k = g2) + on(Γ1, ϑ

k = g1),

where code variable y represents the (Pk
A) variable r and

ϑ0(x, r) = T0 in ΩGl,

g1(x, r) = T0 − τ
T0 − TΓ1

tP
k on Γ1,

g2(x, r) = T0 − τ
T0 − TΓ1

tM
k on Γ6.

We get the stationary heat source in the region ΩGl in accordance with (2.9). We

substitute this numerical solution at the last time layer to the formula

(4.1) f(x, r) =
c1
tP

(T0 − ϑNA

A (x, r)) [W/kg],

where c1 = 796 [J/(kg·K)] is the specific heat of glass.

Subsequently, this source was used in all 99 iterations of the optimization problem.

4.3. Determining the velocity of the cooling water. In each iteration of

the optimization process we first rotate the eleven points Bi to the points B̃i, then

construct the boundary Γ̃e
B as a natural cubic spline with the eleven control points

B̃i and rotate it back to the boundary Γe
B. We start with the points

[0.015, 0], [0.020, 0.010], [0.030, 0.016], [0.044, 0.018], [0.060, 0.020], [0.085, 0.022],

[0.118, 0.024], [0.152, 0.025], [0.188, 0.025], [0.226, 0.025], [0.267, 0.025]

in the initial iteration.

After we had constructed the plunger cavity Ωe
Ca in the current iteration, we solved

the Neumann problem (Pf ) to compute the potential of the velocity field of the cool-

ing water. The problem was solved again by FEM using the software FreeFem++.

In the initial iteration, the mesh with 853 nodes and 1469 triangles was generated

automatically and the continuous piecewise quadratic Lagrangian elements P2 were

used.

The FreeFem++ code for the weak formulation of the problem (Pf ) has the form

problemPotential(Φ, ϕ) = int2d(Ωe
Ca)((dx(Φ) ∗ dx(ϕ) + dy(Φ) ∗ dy(ϕ)) ∗ y)

− int1d(Γin)(h
in
velo ∗ ϕ ∗ y)− int1d(Γe

out)(h
out
velo ∗ ϕ ∗ y),

where

hinvelo = −
V

π ∗ 60 ∗ a2
, houtvelo =

V

π ∗ 60 ∗ (y(10)2 − a2)
,
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V = 0.001 [m3/min] is the volume of cooling water at the entrance, a = 0.006 [m] is

the radius of the filling tube and y(10) is the second coordinate of the last control

point B10.

We get the velocity field of the flowing water according to (2.4) by putting this

numerical solution into the following formulas:

w1 =





∂Φ

∂x
in Ωe

Ca,

0 in Ω− Ωe
Ca,

(4.2)

w2 =





∂Φ

∂r
in Ωe

Ca,

0 in Ω− Ωe
Ca.

(4.3)

4.4. Determining the distribution of temperature in the system. Both

the stationary heat source f from (4.1) and the components of the velocity field of

the flowing water w1, w2 from (4.2), (4.3) were subsequently substituted into the

state problem (Ph).

The problem was solved again by FEM using the software FreeFem++. In the

initial iteration, the mesh with 121 586 nodes and 242 425 triangles was generated

automatically and the continuous piecewise linear Lagrangian elements P1 were used.

The FreeFem++ code for the state problem (2.18), (2.19) has the form

problemThermic(ϑ, ψ) = int2d(Ω)(((k ∗ (dx(ϑ) ∗ dx(ψ) + dy(ϑ) ∗ dy(ψ)))

+ c2 ∗ ̺2 ∗ (w1 ∗ dx(ϑ) ∗ ψ + w2 ∗ dy(ϑ) ∗ ψ)) ∗ y)

− int2d(Ω)(̺1 ∗ f ∗ ψ ∗ y) + int1d(Γ7)(α ∗ ϑ ∗ ψ ∗ y)

− int1d(Γ7)(α ∗ ϑext ∗ ψ ∗ y) + on(Γin, ϑ = ϑin).

R em a r k 4.1. Numerical computation performed with the actual water conduc-

tivity value k2 = 0.6 [W/(m·K)], using a potential cooling water flow model in the

plunger cavity, shows a completely unrealistic temperature distribution in the direc-

tion of the r-axis. In the thin layer at the barrier surface, the water temperature is

close to the high barrier temperature and decreases after several millimetres to 18 ◦C.

The cooling water in the rest of the cavity has the temperature approximately 15 ◦C.

This points to the fact that the model of the potential flow of cooling water does not

correspond to the physical reality, however, the flow has only an auxiliary character

in the plunger cavity, which prefers one direction for the dissipation of heat energy.

The introduction of a real model, respecting the change of state of boiling water at

the surface of the barrier, would greatly increase the computational difficulty and its

effect on the optimization problem would be negligible. The easiest removal of this

discrepancy with reality, while maintaining the potential flow model, is a significant
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increase in water conductivity, thereby achieving a more natural distribution of tem-

perature in the direction of the r-axis in the plunger cavity. Therefore, we increased

the water conductivity ten times and we chose k2 = 6 [W/(m·K)].

4.5. Determining of the new control points’ positions. Sensitivity analysis

with respect to the temperature along the boundary Γ1 was implemented in each

iteration. We have nine control points Bi
j ∈ Γe

B from the previous jth iteration

and nine shadow points Ai
j ∈ Γ2 as the intersections of the temperature gradient

lines derived from the control points Bi
j . In the shadow points A

i
j we computed

the temperatures and compared them with the target temperature required on the

outward boundary of the plunger, i.e. TΓ1
= 1073 [K] (= 800 ◦C). If the current

temperature in the given shadow point Ai
j was higher than the target temperature,

we moved the control point Bi
j in the direction of the temperature gradient to the

region Ωe
Ba (barrier); in the opposite case we moved it to the region Ω

e
Ca (cavity). The

magnitude of this shift was chosen in proportion to the amount of energy we had to

take more or less to achieve the target temperature TΓ1
= 1073 [K]. Analogously, we

moved the first control point B0
j along the x-axis or the last control point B

10
j along

the line x = 0.267 [m]. The displacement size was chosen according to the assumption

of an “almost” linear dependence of the temperature drop on the insulation barrier

thickness (see also (3.13)). In each iteration ((j +1)th iteration) the new position of

the control points Bi
j+1 was calculated according to the formula

Bi
j+1 = Bi

j +
1

2
(Ai

j −Bi
j)

×

(
rBi

j
·
√
(xBi

jR
− xBi

jL
)2 + (rBi

jR
− rBi

jL
)2

f2(xAi
j
)·
√
(xAi

jR
− xAi

jL
)2 + (f2(xAi

jR
)− f2(xAi

jL
))2

·
TΓ1

− ϑ̃4(B
i
j)

ϑ̃4(Ai
j)− TΓ1

+ 1

)−1

i = 0, 1, . . . , 10,

where ϑ̃4(A
i
j) and ϑ̃4(B

i
j) denote the solutions of the state problem (2.18)–(2.19)

in Ai
j and B

i
j .

The curvilinear integral in the cost functional JB was computed numerically with

equidistant division into 1000 intervals along the length of the curve representing the

boundary Γ1.

4.6. Results of the iteration process. In the initial iteration the insulation

barrier was too thick, causing the value of the cost functional J B
0 = 168 334.33.

In the subsequent iterations the insulation barrier was significantly thinned, which

led to a sharp decline of the cost functional value. In the 10th iteration the value of
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the cost functional was JB
10 = 1 140.44, the temperature distribution in the system

can be seen in Figure 4.

IsoValue
317.726
377.914
438.103
498.291
558.48
618.668
678.857
739.045
799.233
859.422
919.61
979.799
1039.99
1100.18
1160.36
1220.55
1280.74
1340.93
1401.12
1461.31

Figure 4. Distribution of temperatures in the 10th iteration.

In the 20th iteration the value of the cost functional was JB
20 = 117.49, in the

60th iteration the value of the cost functional was J B
60 = 2.992 and in the last

99th iteration the value of the cost functional was J B
99 = 1.122. We computed only

99 iterations. The temperature distribution in the system in the 99th iteration is

shown in Figure 5.

IsoValue
312.803
363.509
414.215
464.921
515.627
566.333
617.039
667.744
718.45
769.156
819.862
870.568
921.274
971.98
1022.69
1073.39
1124.1
1174.8
1225.51
1276.22

Figure 5. Distribution of temperatures in the 99th iteration.

The following graphs in Figure 6 show the distribution of temperatures measured

from the lowest plunger point [xL, 0] ∈ Γ1 to the point [xH , 0.055] ∈ Γ1 along the

outward plunger surface Γ1 in the initial iteration, in the 10th, 20th, 60th, 99th

iterations and the target temperature TΓ1
= 1073 [K].
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Figure 6. Distribution of temperatures along the outward plunger surface Γ1.

The graph in Figure 7 has a changed temperature range to highlight the temper-

ature course of the last iterations.
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Figure 7. Distribution of temperatures along the outward plunger surface Γ1 with changed
temperature range on the temperature axis.

5. Conclusion

Numerical results show that the proposed algorithm effectively minimizes the value

of the cost functional and balances the temperature of the plunger outward surface

to the desired value in the considered model.

The laboratory experiment which would verify the degree of compliance of the

proposed model for the shape optimization of the insulation barrier with reality, was
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not performed. The agreement of the model and reality can only be inferred from an

analogy with the similar experimental verification of the model described in [6], in

which the optimized shape of the plunger cavity with the application of a regulation

current body was considered.

The model should contribute to streamlining the introduction of a new assortment

into the production. The original construction of the plunger cavity had been formed

by drilling holes of different diameters and depths, where the ceramic rings had been

inserted. The design had been based on the observed deficiencies on the surface of

the glass pieces from the test series.
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