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Abstract. A subgroup H of a finite group G is weakly-supplemented in G if there exists
a proper subgroup K of G such that G = HK. In this paper, some interesting results with
weakly-supplemented minimal subgroups to a smaller subgroup of G are obtained.
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1. Introduction

Throughout this article, all groups are finite. A subgroupH of G is complemented

in G if there exists a subgroup K of G such that G = HK and H ∩K = 1. In 1937,

Hall in [2] proved that a finite group is solvable if and only if every Sylow subgroup

of G is complemented. Arad and Ward in [1] proved that a finite group is solvable if

and only if every Sylow 2-subgroup and every Sylow 3-subgroup are complemented.

In particular, Hall in [3] proved that a finite group G is supersolvable with elemen-

tary abelian Sylow subgroups if and only if every subgroup of G is complemented

in G. In a recent paper, the author and Liu studied finite groups for which every

minimal subgroup is weakly-supplemented (see [5]). A subgroup H of G is weakly-

supplemented in G if there exists a proper subgroup K of G such that G = HK.

They proved that every minimal subgroup of G is weakly-supplemented in G if and

only if G is a supersolvable group and all Sylow subgroups of G are elementary

abelian. In addition, we also proved the following result:
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Theorem A. Let R be a formation containing F , the class of supersolvable

groups. Let H be a normal subgroup of a solvable group G such that G/H ∈ R.

If every minimal subgroup of the Fitting subgroup F (G′ ∩H) of G′ ∩H is weakly-

supplemented in G, then G belongs to R.

Recently, Pan in [7] weakened the hypothesis that the group G is solvable in

Theorem A and proved the following:

Theorem B. Let R be a formation containing F , the class of supersolvable

groups. Let H be a solvable normal subgroup of a group G such that G/H ∈ R.

If every minimal subgroup of the Fitting subgroup F (G′ ∩H) of G′ ∩H is weakly-

supplemented in G, then G belongs to R.

In this paper, we further investigate the influence of weakly-supplemented sub-

groups on the structure of finite groups along the above direction. It is significant

to remove the hypothesis that the group G is solvable in Theorem A. However, if

a group G is not solvable, then its Fitting subgroup F (G) will sometimes be a trivial

subgroup, and therefore we could not expect a detailed structure if we only give the

conditions on the minimal subgroups of F (G). However, if we replace the Fitting

subgroup F (G) by the generalized Fitting subgroup F ∗(G), then we are able to get

some interesting results. If the hypothesis that the group G is solvable in Theorem A

is removed, then we can have the following result:

Theorem C. Let R be a saturated formation containing F , the class of super-

solvable groups. Let H be a normal subgroup of a group G such that G/H ∈ R. If

every minimal subgroup of F ∗(H)∩G′ is weakly-supplemented in G, then G belongs

to R.

In order to prove Theorem C, we need the following result:

Theorem D. Let G be a group with a normal subgroup H such that G/H is

supersolvable. If every minimal subgroup of F ∗(H) ∩ G′ is weakly-supplemented

in G, then G is supersolvable.

The following Corollary E follows immediately from Theorem D.

Corollary E. Let G be a group. If every minimal subgroup of F ∗(G) ∩ G′ is

weakly-supplemented in G, then G is supersolvable.
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2. Preliminary results

In this section, we give some results that are needed in this paper.

Lemma 2.1 ([5], Lemma 2.2). Let G be a group and N be a normal subgroup

of G.

(1) If H 6 K 6 G and H is weakly-supplemented in G, then H is weakly-

supplemented in K.

(2) If N is contained in H and H is weakly-supplemented in G, then H/N is

weakly-supplemented in G/N .

(3) Let π be a set of primes. Let N be a π′-subgroup and A be a π-subgroup of G.

If A is weakly-supplemented in G, then AN/N is weakly-supplemented in G/N .

Lemma 2.2 ([4], Chapter X, 13). Let G be a group and M a subgroup of G.

(i) If M is normal in G, then F ∗(M) 6 F ∗(G);

(ii) F ∗(G) 6= 1 if G 6= 1; in fact, F ∗(G)/F (G) = Soc(F (G)CG(F (G))/F (G));

(iii) F ∗(F ∗(G)) = F ∗(G) > F (G); if F ∗(G) is solvable, then F ∗(G) = F (G).

Lemma 2.3 ([5], Lemma 2.5). Every minimal subgroup of G is weakly-supple-

mented in G if and only if G is a supersolvable group and all Sylow subgroups of G

are elementary abelian.

Lemma 2.4 ([6], Lemma 2.6). Let N , N 6= 1 be a solvable normal subgroup of G.

If every minimal normal subgroup of G which is contained in N is not contained

in Φ(G) (the Frattini subgroup of G), then the Fitting subgroup F (N) of N is the

direct product of the minimal normal subgroup of G which is contained in N .

3. The proof of the main result

P r o o f of Theorem D. Suppose that the theorem is false and let G be a coun-

terexample of the smallest order. Then we prove the theorem by the following steps.

Step 1. Every proper normal subgroup of G is supersolvable.

Let L be a maximal normal subgroup of G. Since the class of supersolvable

groups is subgroup-closed and L/(H ∩ L) ≃ HL/H 6 G/H , we see that L/(H ∩ L)

is supersolvable. By Lemma 2.2, F ∗(H ∩ L) is contained in F ∗(H). Thus, L with

normal subgroup L∩H satisfies the hypotheses of the theorem. The minimal choice

of G implies that L is supersolvable.

Step 2. H = G, G′ = G and F ∗(G) = F (G) < G.
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If H < G, then H is supersolvable by Step 1, and therefore, H is solvable, and

F ∗(H) = F (H) by Lemma 2.2. It follows from Theorem B that G is supersolvable,

a contradiction. Thus, H = G.

Since G/G′ is abelian and so supersolvable, it follows that so G/(H ∩G′) is super-

solvable. IfG′ < G, then G′∩H = G′ is supersolvable by Step 1. It is clear that every

minimal subgroup of F (G′)∩G′ 6 F ∗(G)∩G′ = F ∗(H)∩G′ is weakly-supplemented

in G. By Theorem B, G is supersolvable, a contradiction.

If F ∗(G) = G, then every minimal subgroup of G is weakly-supplemented in G

by the hypotheses. Now by Lemma 2.3, G is supersolvable, a contradiction. Hence,

F ∗(G) < G. By Step 1, we see that F ∗(G) is supersolvable, and therefore by

Lemma 2.2, F ∗(G) = F (G).

Step 3. Φ(G) = 1.

In fact, if Φ(G) 6= 1, then there is a minimal subgroup A of G such that A 6 Φ(G).

Noticing that Φ(G) 6 F (G) = F ∗(G) and by Step 2 together with our hypotheses,

we see that we have a subgroup K of G such that G = AK and K < G. It follows

from G = AK and A 6 Φ(G) that G = K, in contradiction to K < G. Thus,

Φ(G) = 1.

Step 4. Final contradiction. In fact, by applying Lemma 2.4, we have

F ∗(G) = F (G) = N1 ×N2 × . . .×Nt,

where Nj , j = 1, 2, . . . , t are minimal normal subgroups of G.

Since every minimal subgroup of Nj is weakly-supplemented in G, Nj is a cyclic

group of prime order (j = 1, 2, . . . , t). It follows that G/CG(Nj) is an abelian group

and therefore G′ 6 CG(Nj). Hence, F
∗(G) = F (G) 6 Z(G). Now by the hypotheses

there is a subgroup Kj of G such that G = NjKj and Kj < G for every Nj . Of

course, we may choose N2, N3, . . . , Nt such that

N1 × . . .×Nj−1 ×Nj+1 × . . .×Nt 6 Kj

for j = 1, 2, . . . , t. Let K =
t⋂

j=1

Kj . Then G = F (G)K and F (G) ∩ K = 1.

Since F (G) 6 Z(G), K is a proper normal subgroup of G. By Step 1, we see

that K is supersolvable. Of course, F (G) itself is supersolvable. It follows that

G ≃ G/(F (G) ∩K) is supersolvable, this arrives at a final contradiction. The proof

of the theorem is complete. �

P r o o f of Theorem C. By the hypotheses and Lemma 2.1, every minimal sub-

group of F ∗(H)∩H ′ 6 F (H)∩G′ is weakly-supplemented in H . Corollary E implies

thatH is supersolvable, and therefore, F ∗(H) = F (H). Thus, G ∈ R by Theorem B,

and therefore, the proof is complete. �
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