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Abstract. We are interested in the numerical solution of a two-dimensional fluid-structure
interaction problem. A special attention is paid to the choice of physically relevant inlet
boundary conditions for the case of channel closing. Three types of the inlet boundary
conditions are considered. Beside the classical Dirichlet and the do-nothing boundary con-
ditions also a generalized boundary condition motivated by the penalization prescription
of the Dirichlet boundary condition is applied. The fluid flow is described by the incom-
pressible Navier-Stokes equations in the arbitrary Lagrangian-Eulerian (ALE) form and the
elastic body creating a part of the channel wall is modelled with the aid of linear elasticity.
Both models are coupled with the boundary conditions prescribed at the common interface.
The elastic and the fluid flow problems are approximated by the finite element method.

The detailed derivation of the weak formulation including the boundary conditions is pre-
sented. The pseudo-elastic approach for construction of the ALE mapping is used. Results
of numerical simulations for three considered inlet boundary conditions are compared. The
flutter velocity is determined for a specific model problem and it is shown that the bound-
ary condition with the penalization approach is suitable for the case of the fluid flow in a
channel with vibrating walls.

Keywords: flow-induced vibration; 2D incompressible Navier-Stokes equations; linear
elasticity; inlet boundary conditions; flutter instability
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1. Introduction

The fluid-structure interaction (FSI) problems need to be taken into account in

many technical applications, see e.g. [7]. Classical examples are the bridge or the
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airfoil design, [8]. Another important application is for example the liquid packing

system, see [11], or the paper transport in printing machines, see [23]. The aim of this

paper is to investigate the problem of FSI simulation in a channel with flexible walls.

Such problems can be found besides technical applications also in biomechanical

applications, see e.g. [2].

The presented FSI problem is the non-linear problem consisting of two time de-

pendent subproblems, the fluid flow problem and the elastic structure deformation

problem, which are coupled by the boundary conditions at the common interface.

Further, due to the considered geometry the flow accelerates at the channel con-

striction. Consequently, the fluid flow behind the channel constriction has usually

quite complex structure, but still the peak velocities are usually lower than 0.3Mach.

Therefore, the fluid flow in this channel can be modelled as incompressible. How-

ever, the changes of the flow domain in time cannot be neglected, and mesh moving

methods based on the arbitrary Lagrangian-Eulerian (ALE) method, the immersed

boundary method or the overset method based on projection between the local fine

and the global coarse grids are inevitably used, see e.g. [27], [22] or [21], respectively.

Due to the coupled nature of the FSI problem the fluid flow and elastic subprob-

lems need to be solved simultaneously with strong coupling procedure in order to

obtain more accurate and robust numerical method, see [19]. This results in high

computational costs.

The FSI systems are sensitive to setup of many input parameters. Beside the

dependence on the fluid and structure material parameters and the geometry of the

problem, it can be a less expected dependence on the length of the inflow chan-

nel, see [5], [26]. Further, it was shown that the system behaviour also principally

depends on the artificially chosen boundary conditions at the inlet and outlet, see

e.g. [25], [26].

Let us emphasize that the influence of the inlet boundary conditions for the in-

compressible flow is even more important during the periodic closure of the channel.

The two frequently used possibilities are to prescribe the inlet velocity or the inlet

pressure, see [13]. In the finite element (FE) context these boundary conditions are

realized by the Dirichlet boundary condition or a suitable modification of the do-

nothing boundary condition, see [3]. For the incompressible flow model the use of

the Dirichlet boundary condition leads to high, unphysical oscillations of the inlet

pressure values during the channel closing phase, see [30]. On the other hand the

prescription of the inlet pressure (i.e. pressure gradient between inlet and outlet)

results in significant oscillations of the inlet velocity keeping the pressure gradient

constant, which was not observed experimentally, see e.g. [14]. A remedy for this

situation seems to be newly proposed penalization approach published in [26] for

a simplified FSI problem.
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This approach is similar to the weakly enforced Dirichlet boundary condition often

used in the discontinuous-Galerkin method, see e.g. [9]. It also reminds the realization

of the Dirichlet boundary condition for a scalar problem in [1]. It can be seen as

a generalization between the velocity and the pressure driven FSI problem. The

choice of the parameter ε ∈ (0,∞) switches between the two limit cases of the system

behaviour given by the Dirichlet and do-nothing boundary conditions. A similar

approach is used in [15], where the switching between the computed pressure and the

prescribed nominal pressure is realized during the channel closure in a substantially

simplified model.

The aim of the present paper is to extend the solution of the FSI problem studied

in [26], where the structure is modelled as an elastically supported solid body with

two degrees of freedom (2DOF). Here, the two-dimensional (2D) Navier-Stokes equa-

tions are coupled with a structure modelled with the aid of the continuum model.

This substantially complicates the numerical solution, but affords better approxima-

tion of the structure interface deformation, allowing to determine more precisely the

whole numerical solution of FSI (since it depends on the interface position itself)

and to capture such phenomena like flow separation point and mucosal waves, which

cannot be obtained by the simplified model of the solid body. On the other hand,

a more general and robust moving mesh algorithm is needed.

The second important extension of the results obtained in [26] is the parametric

study of FSI simulation behaviour with the inlet boundary condition implemented

by the penalization approach. The dependence of the inlet pressure and the inlet

flow rate on the penalization parameter ε and the minimal half-gap of the channel

is studied in the present paper.

For the numerical approximation of both subproblems the finite element method

(FEM) is used. The elastic deformation is for simplicity described by the linear elas-

ticity theory. Further, to address all problems associated with the numerical sim-

ulations of viscous, incompressible, high Reynolds number flows the FEM with the

streamline-upwind/Petrov-Galerkin (SUPG), pressure-stabilization/Petrov-Galerkin

(PSPG) and ‘div-div’ stabilization procedures are applied, see [12], [10]. In order to

reduce the computational costs and to simplify the problem the symmetric config-

uration of the channel is considered. The ALE method is applied, where for the

ALE mapping the pseudo-elastic approach instead of other possibilities like linear

interpolation or elliptic smoothing is chosen, see e.g. [20]. The main advantages of

this approach are robustness, easy implementation and the possibility to easily tune

the pseudo-elastic parameters controlling deformations of the FE mesh.

The paper is structured as follows. The mathematical description of FSI problem

including all the considered boundary conditions is given in the first section. The

second section contains the detailed description of the numerical scheme, particularly
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the implementation of the inlet boundary conditions and the stabilization of the fluid

flow. In the third section the numerical results are presented and the behaviour of

the studied system in dependence of the boundary conditions used are discussed.

2. Mathematical model

The considered configuration of a two-dimensional FSI model problem is shown in

Figure 1. It consists of the fluid (Ωf) and the structure (Ωs) domains in the reference

and deformed states. The domain Ωs
ref denotes the reference state of the elastic

structure. The domain Ωf
ref represents the reference fluid domain, i.e. the domain at

the time instant t = 0. The common interface between the fluid and the structure

domain is denoted as ΓWref
= ΓW0

.

Reference state

Ωf
ref

Γf
in

Γf
out

Deformed state

Ωf
t

Γf
in

Γf
out

Γf
sym Γf

sym

Γf
dir

ΓWref
Γs
dir Γf

dir
ΓWt

Γs
dir

Ωs
tΩs := Ωs

ref

Figure 1. Scheme of FSI configuration in the reference state on the left and after undergoing
a deformation at arbitrary time t on the right. The FSI domain is composed of the
elastic structure domain Ωs and the fluid domain Ωft together with the boundaries:
inlet Γfin, outlet Γ

f
out, boundary of symmetry Γ

f
sym, wall Γ

f
dir and interface ΓWt

.

For the description of the elastic structure deformation the Lagrange coordinates

are used, i.e. the computational domain at arbitrary time t is set to Ωs = Ωs
ref . The

change of the fluid reference domain Ωf
ref with the reference interface ΓWref

to the

domain Ωf
t and to the interface ΓWt

at any time instant t is determined by the motion

of the elastic structure Ωs (and the interface ΓWref
) and treated with the aid of the

ALE method.

2.1. Elastic body. The deformation of the elastic body Ωs is described with the

aid of a displacement u(X, t) = (u1, u2) of a point X ∈ Ωs. The structure motion is

then modelled by the partial differential equation

(2.1) ̺s
∂2ui

∂t2
−

∂τ sij(u)

∂Xj

= f s
i in Ωs × (0, T ),

where the symbol ̺s denotes the structure density, the tensor τ sij is the Cauchy

stress tensor, the vector f s = (f s
1 , f

s
2) describes the density of the volume force and

X = (X1, X2) are the reference coordinates.
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Assuming that the stress is substantially lower than the yield strength the Cauchy

stress tensor can be expressed with help of the generalized Hook law, see e.g. [24].

For the isotropic structure it has the form

(2.2) τ sij = λs(divu)δij + 2µsesij ,

where λs, µs are Lamé constants depending on the Young modulus of elasticity Es

and the Poisson ratio σs. The tensor δij is the Kronecker delta and the tensor

es = (esij) is the strain tensor, which for the assumption of small displacements

simplifies to the form

(2.3) esij =
1

2

( ∂ui

∂Xj

+
∂uj

∂Xi

)
.

The elastic problem (2.1) is supplied with the initial and boundary conditions

a) u(X, 0) = u0(X) for X ∈ Ωs,(2.4)

b)
∂u

∂t
(X, 0) = u1(X) for X ∈ Ωs,

c) u(X, t) = udir(X, t) for X ∈ Γs
dir, t ∈ (0,T),

d) τ sij(X, t)ns
j(X) = qsi (X, t) for X ∈ ΓWref

, t ∈ (0,T),

where the ΓWref
,Γs

dir are mutually disjoint parts of the boundary, i.e. ∂Ω
s = ΓWref

∪

Γs
dir (see Figure 1) and ns

j(X) are the components of the unit outer normal to ∂Ωs.

The vector qs = (q1, q2) represents the aerodynamic forces acting on the inter-

face ΓWref
.

2.2. ALE method. The ALE method enables to treat the fluid domain changes.

The cornerstone of this method is the assumed existence of a diffeomorphism At

which maps the reference (undistorted) domain Ωf
ref onto the domain Ωf

t at any

instant time t ∈ (0, T ), i.e. x = At(X). The mapping At is desired to fulfil the

conditions

(2.5)
∂At

∂t
∈ C1(Ωf

ref), At(∂Ω
f
ref) = ∂Ωf

t, t ∈ (0, T ).

Particularly it means that the boundary ∂Ωf
t \ ΓWt

is fixed and At(ΓWref
) = ΓWt

,

where the location of the interface ΓWt
is given by the deformation u at time instant t.

Let us use the following notation: for an arbitrary function f(x, t) defined for x ∈ Ωf
t

the function f̂(X, t) is defined for any X ∈ Ωf
ref as f̂(X, t) = f(At(X), t).

229



The ALE domain velocity wD is given as

(2.6) wD(x, t) = ŵD(X, t) =
∂

∂t
At(X), t ∈ (0, T ), X ∈ Ωf

ref .

The time derivative of an arbitrary continuous function f(x, t) = f(At(X), t) with

respect to a fixed point X ∈ Ωf
ref is defined as the ALE derivative. It can be shown

that it satisfies

(2.7)
DA

Dt
f(x, t) =

∂f

∂t
(At(X), t) =

∂f

∂t
(x, t) +wD(x, t) · ∇f(x, t).

More details can be found e.g. in [27] or [10].

2.3. Fluid flow. The flow of the viscous incompressible fluid in Ωf
t is modelled

by the Navier-Stokes equations in the ALE form

(2.8)
DAv

Dt
+ ((v −wD) · ∇)v − νf∆v +∇p = 0, div v = 0 in Ωf

t,

where v(x, t) denotes the fluid velocity, p(x, t) is the kinematic pressure (i.e. the

pressure divided by the constant density ̺f) and νf is the kinematic fluid viscosity,

see [10].

Equations (2.8) are completed by the initial condition v(x, 0) = v0(x) and the

boundary conditions for any t ∈ (0, T )

a) v(x, t) = 0 for x ∈ Γf
dir,(2.9)

b) v(x, t) = wD(x, t) for x ∈ ΓWt
,

c) 1) v(x, t) · nf = 0

2)
∂(v · tf)

∂nf
= 0,

for x ∈ Γf
sym,

d) (p(x, t)− pref)n
f = νf

∂v

∂nf
−

1

2
v(v · nf)− for x ∈ Γf

out,

where vectors nf and tf are the unit outer normal and the unit tangent to the bound-

ary ∂Ωf
t, respectively. Symbol (α)

− denotes the negative part of any real number α

defined as α− = min{0, α} and pref is the reference pressure. The symmetry bound-

ary condition in the considered case of Γf
sym = {x1 ∈ [xmin, xmax], x2 = 0} has the

form v2(x, t) = 0, ∂v1/∂x2 = 0.

The pref is set as zero at the outlet Γ
f
out. The outlet boundary condition (2.9) d) is

a modified formulation of the do-nothing boundary condition and suppresses a poss-

ible backward inlet through the outlet boundary according to the analysis given in [3]

or see its application in [29].
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The inlet part of the boundary is formally divided into three disjoint parts: Γf
in =

Γf
in,dir ∪ Γf

in,p ∪ Γf
in,ε. The following boundary conditions are considered:

a) v(x, t) = vdir(x, t) for x ∈ Γf
in,dir,(2.10)

b) (p(x, t) − pin)n
f − νf

∂v

∂nf
(x, t) = −

1

2
v(v · nf)− for x ∈ Γf

in,p,

c) (p(x, t) − pin)n
f − νf

∂v

∂nf
(x, t)

= −
1

2
v(v · nf)− +

1

ε
(v − vdir) for x ∈ Γf

in,ε.

The choice of the inlet boundary condition is done by e.g. Γf
in = Γf

in,dir and Γf
in,p =

Γf
in,ε = ∅. This notation facilitates the explanation of the weak formulation in the

next section.

The conditions (2.10) represent three different mechanisms how the FSI is driven.

The first is the classical Dirichlet boundary condition for inlet velocity. The second

source of excitation can be given by the prescribed pressure difference∆p between the

inlet Γf
in and the outlet Γ

f
out given by ∆p = pin−pref . The third boundary condition

(2.10) c) is analogous to the first, i.e., it prescribes the inlet velocity vdir using the

penalization approach, see [26]. In the presented study in condition (2.10) c) the inlet

pressure pin is taken as zero and ε is a suitable penalization parameter. The value

of the parameter ε controls the switching between the Dirichlet boundary condition

(limit ε → 0+) and the pressure drop boundary condition (limit ε → ∞).

2.4. Coupling conditions. The fluid model (2.8) is coupled to the structure

model (2.1) by using the kinematic and the dynamic boundary conditions prescribed

at the common interface. Let us emphasize that the location of the common interface,

which depends on the balance between the aerodynamic and the elastic forces, needs

to be determined. Formally, the location is given with the use of the displacement u

as

(2.11) ΓWt
= {x ∈ R

2 ; x = X + u(X, t), X ∈ ΓWref
}.

For the fluid flow the boundary condition follows from the continuity of the fluid

and the structural velocities on the interface ΓWt
. Since the structure velocity ∂u/∂t

on the interface ΓWt
is equal to the domain velocity wD, it has the form of the

Dirichlet boundary condition (2.9) b).

For the elastic body the boundary condition is derived from the requirement of the

stress continuity across the interface ΓWt
in the normal direction. The prescribed
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Neumann type of boundary condition has the form (2.4) d), where the vector qs

reads

(2.12) qsi(X, t) = −
2∑

j=1

σf
ij(x, t)n

f
j(x, t), x = X + u(X, t), X ∈ ΓWref

,

and

σf
ij = −̺fpδij + ̺fνf

( ∂vi
∂xj

+
∂vj
∂xi

)

are the components of the fluid stress tensor.

3. Numerical model

Both subproblems (2.1) and (2.8) are discretized in space by the FEM and in time

by the finite difference method. For the time discretization the time interval (0, T ) is

divided into n time steps tn = n∆t. For the purpose of FEM the weak formulations

of problems (2.1) and (2.8) are derived.

3.1. Elastic body. To achieve weak formulation the equation (2.1) is multiplied

by a test function ψ and integrated over the whole domain Ωs. The use of the Green

theorem together with the boundary conditions (2.4) d) and the Hooke law (2.2)

leads to the weak formulation

(3.1)
(
̺s
∂2u

∂t2
,ψ

)
Ωs

+ (λs(divu)I+ 2µses(u), es(ψ))Ωs = (f s,ψ)Ωs + (qs,ψ)ΓWref
,

where the notation (·, ·)D means the dot product in the Lebesque spaces L2(D) or

L2(D) and the symbol I denotes the identity.

We say that u ∈ H1(Ωs) is a weak solution of equation (2.1) if it satisfies the

boundary condition (2.4) c) and equation (3.1) holds for any test function ψ ∈ V,

where V = {f ∈ H1(Ωs) ; f = 0 on Γs
dir} and H1(Ωs) is the vector Sobolev space.

The solution u ∈ V is then approximated by uh using the finite dimensional subspace

Vh of V, i.e. uh ∈ Vh. Using the standard base of the piecewise linear finite element

space, the system (3.1) is transformed to the system

(3.2) Mα̈+ Cα̇+Kα = b(t),

whereM denotes the mass matrix, K denotes the stiffness matrix, C is the artificially

added damping matrix, see e.g. [28], further b(t) denotes the load vector and the

vector α consists of the displacements of the mesh vertices for the used P1-finite

element space.
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For the structure model the proportional damping is used, i.e. the matrix C is

chosen in the form C = c1M + c2K, where the parameters c1, c2 are chosen in such

a way that the whole elastic system is relatively weakly damped (for frequencies in

the neighbourhood of the first two eigenfrequencies), see [16] or [32].

System (3.2) is time discretized with the aid of the Newmark method, see e.g. [4]

or [10].

3.2. Fluid flow. The procedure for numerical solution of the fluid flow problem

is more difficult. First the problem (2.8) is discretized in time by the backward

difference formula of the second order (BDF2)

(3.3)
DAv

Dt
(tn+1) ≈

3vn+1 − 4vn + vn−1

2∆t
,

where for a fixed time instant tn+1 we denote v
i(x) = vi(x̃) for x̃ = Ati(A

−1
tn+1

(x)),

i ∈ {n− 1, n} and x ∈ Ωf
tn+1
. For the sake of simplicity in the next sections we omit

the time index n+ 1, set Ωf := Ωf
tn+1

and use the notation Γf
in,p∪ε = Γf

in,p ∪ Γf
in,ε.

First the space X = X1 × X2 is defined as X1 = X = {f ∈ H1(Ωf) ; f = 0 on

Γf
dir ∪ Γf

in,dir ∪ Γf
Wtn+1

} ⊂ H1(Ωf), X2 = {f ∈ X ; f = 0 on Γf
sym} and M = L2(Ωf).

Next, in order to obtain the weak formulation of the flow problem in space the two

equations of (2.8) are multiplied by test functions ϕ ∈ X and q ∈ M , respectively,

integrated over the whole fluid domain Ωf , summed up, and the Green theorem is

applied to pressure and viscous terms. This leads to the equation

(3.4)
( 3v

2∆t
,ϕ

)
Ωf

+ (((v −wD) · ∇)v,ϕ)Ωf + νf(∇v,∇ϕ)Ωf − (p, divϕ)Ωf

+ (q, div v)Ωf =
(4vn − vn−1

2∆t
,ϕ

)
Ωf

+
(
νf

∂v

∂nf
− pnf ,ϕ

)
∂Ωf

Let us mention that the classical do-nothing boundary condition follows from

setting the last term of (3.4) equal to a constant, see e.g. [13]. In order to avoid the

possible instability due to the back inflow at the outlet part of the boundary, the

convective term is further reformulated as

(3.5) (((v −wD) · ∇)v,ϕ)Ωf =
1

2
(((v − 2wD) · ∇)v,ϕ)Ωf −

1

2
((v · ∇)ϕ,v)Ωf

+
1

2
((v · n)+v,ϕ)∂Ωf +

1

2
((v · n)−v,ϕ)∂Ωf ,

where (α)+ denotes the positive part of a real number α, defined as (α)+ =

max{0, α}. The last two terms of (3.5) and the last term of (3.4) are nonzero only

at the boundaries Γf
out, Γ

f
in,p and Γf

in,ε due to the definition of the space X.
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The boundary terms over Γf
out in equations (3.4) and (3.5) motivate the specifi-

cation of the outlet boundary condition (2.9) d), where pref is the reference pressure

prescribed at Γf
out.

The inlet boundary condition prescribed at Γf
in,p is derived in the same way except

denoting the pressure constant by pin, which leads to boundary condition (2.10) b).

The formulation of boundary condition (2.10) c) on Γf
in,ε follows the same procedure

with the reference pressure set pin = 0 and the added term 1
ε
(v − vdir,ϕ)Γf

in,ε
.

Finally, we introduce a trilinear form a(·; ·, ·) with arguments V ∗ = (v∗, p∗), V =

(v, p) and Φ = (ϕ, q) by

a(V ∗;V,Φ) =
( 3v

2∆t
,ϕ

)
Ωf

+
1

2
(((v∗ − 2wD) · ∇)v,ϕ)Ωf −

1

2
((v∗ · ∇)ϕ,v)Ωf(3.6)

+
1

2
((v∗ · n)+v,ϕ)Γf

out
+ νf(∇v,∇ϕ)Ωf − (p, divϕ)Ωf

+ (q, div v)Ωf +
1

2
((v∗ · n)+v,ϕ)Γf

in,p∪ε
+

1

ε
(v,ϕ)Γf

in,ε

and a linear functional f(·) by

(3.7) f(Φ) =
(4vn − vn−1

2∆t
,ϕ

)
Ωf

+ (prefn
f ,ϕ)Γf

out

+ (pinn
f ,ϕ)Γf

in,p∪ε
+

1

ε
(vdir,ϕ)Γf

in,ε
.

In practice only one of the sets Γf
in,dir, Γ

f
in,p, Γ

f
in,ε is allowed to be nonempty leading

to significant reduction of boundary terms in (3.6) and (3.7).

Then the weak formulation of equation (2.8) at time tn+1 can be defined as the

problem to find V = (v, p) ∈ H1(Ωf)×M such that v satisfies boundary conditions

(2.9) a), b), c1) and (2.10) a) and equation

(3.8) a(V ;V,Φ) = f(Φ)

holds for any Φ = (ϕ, q) ∈ X×M .

3.2.1. Numerical approximation and stabilization. In order to approx-

imate the solution V , the velocity and the pressure spaces X and M are ap-

proximated by the FE subspaces Xh = Wh ∩ X and Mh ⊂ M , which sat-

isfy the Babuška–Brezzi inf-sup condition, see e.g. [13]. For practical computa-

tion the P1-bubble/P1 finite elements were chosen, see [13], which means that

Wh = {fi ∈ C(Ωf); f = 0 on Γf
dir, fi|K ∈ Pbub

1 (K) for all K ∈ T f
h} and

Mh = {f ∈ C(Ωf) ; f |K ∈ P1(K) for all K ∈ T f
h}, where T f

h is a regular, ad-

missible triangulation of the domain Ωf , P1(K) is the space of polynomials of the
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first order on the set K and the space Pbub
1 (K) = P1(K) ∪ {ϕbub} is the P1 space

enriched by the cubic bubble function ϕbub.

The FE solution can be numerically unstable in the case of high Reynolds number

flows, when the convection dominates. This is principally caused by the unresolved

velocity gradients due to a too coarse grid. The regions with unresolved high velocity

gradients can be characterized by high values of local Reynold number ReK , defined

later.

The applied residual based stabilization consists in the additional testing of equa-

tions (2.8) by gradients of test functions in the streamline direction. This approach

in comparison with other methods like e.g. artificial diffusion or local projection

methods enables to achieve stable discretization, which is consistent, high-order and

introduces less numerical diffusion, see e.g. [18], [12].

The stabilization is realized by adding stabilizing terms to the equation (3.8).

These terms are defined for any V ∗ = (v∗, p∗) ∈ Wh ×Mh, V = (v, p) ∈ Wh ×Mh

and Φ = (ϕ, q) ∈ Xh ×Mh as

(3.9) Lh(V
∗;V,Φ) =

∑

K∈Th

δK

( 3v

2∆t
+ ((v∗ −wD) · ∇)v

+∇p− νf∆v, ((v∗ −wD) · ∇)ϕ
)
K
,

Ph(V
∗;V,Φ) =

∑

K∈Th

δK

( 3v

2∆t
+ ((v∗ −wD) · ∇)v +∇p− νf∆v,∇q

)
K
,

Dh(V,Φ) =
∑

K∈Th

τK(div v, divϕ)K

and

Fh(V
∗; Φ) =

∑

K∈Th

δK

(4vn − vn−1

2∆t
, ((v∗ −wD) · ∇)ϕ

)
K
,(3.10)

Gh(Φ) =
∑

K∈Th

δK

(4vn − vn−1

2∆t
,∇q

)
K
,

where the parameters τK = τK(V ∗) and δK = δK(V ∗) are locally defined by

(3.11) τK = νf
(
1 + ReK + 2

h2
K

νf∆t

)
, δK =

h2
K

τK
.

The local Reynold number ReK is set to ReK = (hK‖v∗ −wD‖K)/2νf and the local

element length hK is taken as square root of the triangle area K, see [10].
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The stabilized problem (3.8) reads: Find a function pair Vh = (vh, ph) ∈ Wh×Mh

such that vh satisfies the boundary conditions (2.9) a), b), c) and (2.10) a), and

(3.12) a(Vh;Vh,Φh) + Lh(Vh;Vh,Φh) + Ph(Vh;Vh,Φh) +Dh(Vh,Φh)

= f(Φh) + Fh(Vh; Φh) +Gh(Φh),

holds for any test functions Φh = (ϕh, qh) ∈ Xh ×Mh.

The used stabilization combines the SUPG, the PSPG and ‘div-div’ stabilization

methods. The SUPG method corresponds to forms Lh and Fh, the PSPG method is

realized through the form Ph and the functional Gh and finally the so-called ‘div-div’

stabilization enforces (better) fulfilment of continuity equation by the inclusion of

the additional form Dh into equation (3.12).

3.2.2. Linearization. The system of equations (3.12) is nonlinear and is solved

by fixed point iteration. Starting from an initial estimate V 0
h and for j = 0, 1, 2, . . .

we seek V j+1
h = (v•,j+1

h , p•,j+1
h ) ∈ Wh ×Mh such that v

•,j+1
h satisfies the boundary

conditions (2.9) a), b), c1) and (2.10) a), and the equation

(3.13) a(V j
h ;V

j+1
h ,Φh) + Lh(V

j
h ;V

j+1
h ,Φh) + Ph(V

j
h ;V

j+1
h ,Φh) +Dh(V

j+1
h ,Φh)

= f(Φh) + Fh(V
j
h ; Φh) +Gh(Φh)

holds for any Φh ∈ Xh×Mh. The process is repeated until the convergence criterion

‖V j+1
h − V j

h ‖ < εf is reached. For the solution of the linear system (3.13) the

mathematical library UMFPACK is employed, see [6].

3.3. Construction of ALE mapping. The ALE mapping At should provide

a smooth mapping Ωf
ref onto Ωf

t for any t ∈ (0, T ), which is quite robust, easy

to implement and capable of handling very complex domain deformation. These

requirements are fulfilled by the pseudo-elastic approach, see e.g. [20]. Here, the

approximation of the ALE mapping is constructed at time instant tn.

The pseudo-elastic approach seeks the solution of an artificial stationary elastic-

ity problem on Ωf
ref with known deformation of the boundary ∂Ωf

ref . The sought

displacement d = (d1, d2) describes the displacement of any point X ∈ Ωf
ref and

similarly to problem (2.1) we solve the equation

(3.14)
∂τaleij

∂Xj

= 0

in Ωf
ref together with the boundary conditions

d = 0 on Γf
dir ∪ Γf

in ∪ Γf
out, d = u(tn) on Γf

Wtn
,(3.15)

d · nf = 0, tf · τ ale · nf = 0 on Γf
sym.
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Here, τaleij = λale(div d)δij +2µaleesij(d) and λ
ale, µale are artificial Lamé coefficients.

Let us emphasize that for the boundary Γf
sym it was found to be of significant ad-

vantage to prescribe only the normal component of the displacement and to keep the

tangential one free. This condition allows to handle substantially larger fluid mesh

deformation introduced by large elastic body displacements.

Similarly to paragraph 3.1 the system of equations (3.14) is weakly formulated

and the displacement d is approximated by dh taken as a linear combination of the

basis functions. The same discretization procedure based on the FEM as described

in paragraph 3.1 leads to the system

(3.16) K
aleαale = 0,

where Kale is the stiffness matrix and the components of the vector αale are the

values of the displacement d at mesh vertices (for the used first order Lagrange

finite elements). The domain velocity wD,h(tn) is approximated by using the BDF2

formula, see [10].

3.4. Coupling algorithm. The strong coupling algorithm is applied to the so-

lution of the FSI problem, see [10]. It means that for each time step we solve the

flow and structure problems iteratively, see Figure 2, until the convergence criterion

(3.17) ‖qs,l+1 − qs,l‖ < εFSI,

is met where the upper index l denotes the inner iteration number; for more details

see [28]. The algorithm performs usually 3–8 inner loops for chosen εFSI = 10−3.

Figure 2. Diagram showing the consequent steps of FSI algorithm with inner cycles and
implemented strong coupling.
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4. Numerical results

All results of numerical simulation are achieved with the following setting. The

constant time step ∆t was chosen as 2.5 ·10−5 s. The densities ̺s = 1000 kg/m
3
, ̺f =

1.185 kg/m3 and the kinematic viscosity νf = 1.47 · 10−5m2/s were set. The Young

modulus and the Poisson ratio were chosen as Es = 8kPa and σs = 0.4, respectively.

The damping parameters were determined as c1 = 5 s−1, c2 = 2.0 · 10−5 s.

The reference shape of the elastic body depicted in Figure 3 was taken from the

article [26], where the body is a simplified model of the human vocal fold in a glottal

channel, see [15], [16], [17]. The FSI model was for the sake of simplicity considered

as symmetric with symmetry axis y = 0. The half-gap g0(t), which denotes the

distance between the top of the elastic body and the symmetry axis of the channel,

was initially set as ginit = 0.4mm. Further, at the top of the elastic body the sensor S

is located having the coordinates [4.99,−0.505] mm in the reference domain.

Γf
in Γf

out

Γf
sym

ΓWt

H1 H2

g0(t)S

L1 L2 L3

xy

Figure 3. The FSI domains with marked boundaries and half-gap distance g0(t) and
point S. The considered highlighted dimensions are: H1 = 5.8mm, H2 = 5.4mm,
g0(0) = 0.4mm, L1 = 6.8mm, L2 = 6.8mm and L3 = 23.8mm.

The results of numerical simulations are divided into two sections. In the first

section the influence of inlet boundary conditions on the pressure and velocity fluc-

tuations at the channel inlet is investigated and the parametric study, studying the

influence of the penalization parameter on the FSI process, is performed. In the

second section the flow-induced vocal folds vibrations in the unstable regime are

shown.

4.1. Effect of the inlet boundary conditions on flow characteristics. This

section consists of three paragraphs. In the first the prescribed periodic motion of

the elastic wall is studied. The second paragraph is devoted to the parametric study,

while in the third the full FSI interaction is simulated.

4.1.1. Prescribed motion of structure. First, the performance of the consid-

ered boundary condition was tested for the case of prescribed vibrations of the vocal
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fold model. The displacement of the point [x, y] ∈ Ωs of the elastic body Ωs at time

t ∈ [0, T ] was prescribed as

(4.1) u1(x, y, t) = 0, u2(x, y, t) =
Cdriven

100
· (y + g0 +H2) · sin(2πfdrivent),

where Cdriven, fdriven are given parameters and g0+H2 = 0.0058m. The influence of

the vibrating elastic body with fdriven = 100Hz on the flow field without any inter-

action was considered. This prescribed motion of the elastic body enables to close

the channel up to the minimal half-gap gmin = 0.0114mm for setting Cdriven = 7.2,

in what follows denoted as the reference driven mode.

Three different scenarios with different inlet boundary conditions were simulated:

the Dirichlet boundary condition (2.10) a) with prescribed inlet velocity referenced

as “vel”, the case with the prescribed pressure drop by condition (2.10) b) labeled as

“pres” and the case of penalization boundary condition (2.10) c) denoted as “pen”.

The used parameters were vdir = (1.7, 0)m/s, ε = 1
2000
s/m and ∆p = 400Pa.

The results in terms of the inlet quantities are shown in Figure 4. The time

behaviour of the average inlet flow velocity reveals the expected different behaviour in

three studied cases, the inlet velocity being constant for the case “vel” and oscillating

for the case “pres” around its mean value (approximately the same as for “vel”). In

the “pen” case the inlet velocity for the maximally open channel is almost the same

as for the case “vel”, but during the channel closing it rapidly drops near to zero

(similarly to the “pres” case).

In the case “pres” the pressure drop is almost constant, while for the case “vel” the

pressure grows fast during the channel closing. For the limit case of the completely

closed channel, the theoretical value of pressure drop will reach infinity. In the

case “pen” pressure drop remains bounded with reasonable amplitude comparable

with experiments, see [14]. The maximal value of pressure drop is below referred as

pressure peak.

In the case “pen” the velocity magnitude distribution is shown in Figure 5. It

can be noticed that during the channel closing the velocity magnitude is decreasing,

which is in contrary to the behaviour in the case “vel”, where based on the continuity

equation the local velocity theoretically tends to infinity. In the case “pen”, the

maximal velocity in the narrowest part of the channel for the time instant of minimal

half-gap g0 = gmin equals 25.0 m/s which is comparable with the maximal velocity

28.9 m/s for the time instant when the half-gap g0(t) equals the initial half-gap

gini = 0.4mm. On the other hand, for the case “vel” the maximal velocity in the

narrowest part of the channel for the time instant of minimal half-gap exceeds an

unreal value of cca 300m/s.
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Figure 4. The top figure shows the prescribed half-gap in dependence on time t with its
minimum gmin, the middle figure shows the inlet velocity in dependence on time
for the three types of the used inlet boundary conditions. The bottom figure
presents a detail of the pressure drop during two periods of the prescribed motion.

4.1.2. Parametric study of an optimal value of the penalty parameter.

First, the sensitivity of the flow field characteristics to the changes of the penaliza-

tion parameter were tested for the reference prescribed motion of the structure as in

paragraph 4.1.1. The dependence of the pressure peaks on the penalization param-

eter ε is shown in Figure 6, which presents also the dependence of the maximal, the
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1mm

Velocity magnitude

0.0e+00 2.5e+012 4 6 8 10 12 14 16 18 20 22

Figure 5. The magnitude of the flow velocity distribution around the vibrating structure
at three time instants for the case “pen”. Left picture shows the moment with
minimal half-gap gmin, middle one with the initial (mean) half-gap and the right
picture depicts the moment with maximally open channel. The scale of velocity
contours is common for all three pictures.

average and the minimal flow rate Q on the parameter ε. The most rapid changes

occur for the penalization parameter in the range 10−6 s/m– 10−4 s/m, where the

pressure peaks demonstrate a steep decrease from its maximum to minimum and the

average flow rate is still close to its maximum.
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Figure 6. The dependence of pressure peaks and the inlet flow rate on the penalization
parameter ε is plotted at the top and at the bottom, respectively.
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The flow characteristics are quite sensitive to the prescribed minimal half-gap, as

expected. The sensitivity of the flow field in the channel was tested on a series of

simulations with the prescribed motion of the structure given by the formula (4.1)

with the values of Cdriven ∈ {6.0, 7.0, 7.2, 7.28}. The top graph in Figure 7 shows the

dependence of the maximal pressure peaks (compare with Figure 4) on the gradually

decreasing minimal value of the half-gap to g0(tmin) = 0.0071mm corresponding to

Cdriven = 7.28. The bottom graph reports the dependence of the average flow rate

evaluated in the channel inlet on the minimal half-gap. In both the graphs, the

results obtained for the same value of the penalization parameter ε and connected

with a line represent actually ε-isocurves. The interesting part is near g0 → 0, where

the line of the maximal pressure difference decreases gradually, i.e. the pressure peaks

grow faster for small values of ε, imitating the Dirichlet boundary condition, while

the average flow rate does not depend on the minimal half-gap in this range of the

parameter ε.
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Figure 7. Computed isocurves of ε for penalty approach together with results for two cases
of classic inlet boundary conditions shown in the graphs, where the dependence
of pressure peaks and average flow rate on the minimal half-gap is plotted.
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The graphs in Figures 6 and 7 allow to estimate the suitable value of penalization

parameter according to measured or expected pressure and flow rate values relevant

to similar FSI problems. The described technique how to choose the penalization

parameter ε is applicable in a more general case.

4.1.3. Fluid-structure interaction. From this point further the full FSI prob-

lem is numerically solved. In order to ensure the half-gap between the channel walls

to be consistent and comparable with the previous numerical results [26] or [17], the

static force supporting the elastic structure is eliminated from the dynamic response

of the structure. The static force qs
stat is computed from the numerical solution of the

flow field qs
stat(X) := qs(X, trelease) at the chosen time instant trelease > 0 using the

static channel configuration. Here, trelease is chosen to be such a time that the fluid

transitional effects almost completely disappear. Then for t > trelease the interaction

is switched on with the modified aerodynamic force

(4.2) qs
mod(X, t) = qs(X, t)− qs

stat(X).

The modified aerodynamic force qs
mod has actually the meaning of force fluctuations

around the new equilibrium position equal to the original initial half-gap position.

If the static force were not imposed, the equilibrium half-gap would be different and

results would not be comparable with the reference results.

The influence of the inlet boundary conditions (2.10) in the case of full interac-

tion is studied for inlet velocity prescribed by the condition (2.10) a) or (2.10) c)

denoted further as “vel” or “pen” case, respectively. The case of the applied con-

dition (2.10) b) is labeled again as “pres”. The inlet velocity was given as vdir =

(1.9, 0.0)m/s and the penalization parameter was set to ε = 10−5 s/m as in the sim-

ulation considered in [26]. The chosen pressure drop ∆p = pref − 0 = 450Pa in the

“pres” case slightly overestimates the computed pressure difference in the “vel” case.

The elastic channel walls were released for the interaction after 0.035 s of the

simulation, when the flow field was already fully developed and the static force qs
stat

was determined. Then the full interaction procedure started.

Figure 8 shows the different behaviour of the airflow velocity at the inlet bound-

ary Γf
in. The classic Dirichlet boundary conditions (2.10) a) keep the inlet velocity

constant, while the pressure difference prescribed by condition (2.10) c) leads to os-

cillating inlet velocity with fast growing of the amplitude. The inlet velocity in the

case of penalization approach given by (2.10) b) has an oscillating character with

small amplitudes around a slightly lower average value than in the case with the

Dirichlet condition.
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Figure 8. Average inlet velocity for cases “vel”, “pen” and “pres”.

The corresponding results computed for the pressure difference ∆p between the

inlet Γf
in and the outlet Γ

f
out are displayed in Figure 9. The pressure difference in

the case “pres” is almost constant. For the prescribed inlet velocity in cases “vel”

and “pen” the pressure difference shows significant oscillating behaviour connected

with the increasing channel walls vibration amplitude, see Figure 10. For the pe-

nalization approach the pressure drop oscillation is delayed similarly to the channel

walls vibration. Neither the boundary condition (2.10) a) nor the boundary con-

dition (2.10) b) correspond to reality, because both the inlet flow velocity and the

inlet pressure should fluctuate as it was observed in the measurements [14]. Such

a behaviour is nicely recovered using the penalization approach, see Figures 8 and 9.
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Figure 9. Pressure difference between inlet and outlet part of boundary in cases “vel”,
“pen” and “pres”.
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Figure 10. Time development of half-gap plotted for cases “vel”, “pen” and “pres”.

Figures 8–10 document that the penalization approach is a generalization of the

Dirichlet boundary condition and the prescribed pressure drop boundary condition.

They support the characteristic behaviour in the form of switching between these

two types of boundary conditions in accordance to the chosen parameter ε.

Let us explain that in all three cases the considered inlet flow velocity exceeds

the stability limit given by the critical flutter velocity, see [25]. Consequently, the

magnitude of structural vibration amplitudes are exponentially increasing and the

simulation in all three cases ends by the fluid flow solver failure. This is caused by

a too distorted fluid computational mesh near the top of the elastic body although

the considered half-gap is still large enough. This is partly due to the fact that here

a more general motion of the structure is regarded.

4.2. The boundary of the flutter instability. Here, the self-induced vibrations

of the vocal folds model were studied for prescribed penalization inflow boundary

conditions (2.10) c) with penalization parameter ε = 10−5 s/m. The displacement

of the point S on the top of the vocal fold surface is plotted in Figure 11 for three

different inlet flow velocities leading to three different types of behaviour of the FSI

system.

For the inlet velocity vdir,1 = 1.7m/s (case C) the vibrations are damped and after

a short transition regime the amplitudes decrease to a very low level of stationary

vibrations. For the inlet velocity vdir,1 = 1.77m/s (case B) the displacements of the

point S remained irregular but with limited maximal vibration amplitudes. This is

quite typical response of FSI systems close to the aeroelastic stability boundary, see

e.g. the so-called intermittent regimes in [31]. For the inlet velocity vdir,1 = 1.79m/s

(case A) the magnitude of the vibrations is exponentially growing. We note that the

vibration amplitudes in y-direction were of about one order less than in x-direction
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Figure 11. The time development of u1 (x-component of displacement) for point S is shown
in the case of three different inlet velocities: A) 1.79m/s, B) 1.77m/s, and
C) 1.7m/s, all prescribed by penalization approach. Note the different scaling
of axes for the top and the bottom figure.

but with the same behaviour in the time domain as shown in Figure 11. Therefore,

the critical flutter velocity is determined as vflutter ≈ 1.78m/s for this model setting,

which corresponds approximately to the results in [25], where vflutter ≈ 1.85m/s was

obtained for the simplified 2DOF vocal fold model.

Further, in the case of inlet velocity vdir,1 = 1.79m/s (case A) above the critical

flutter velocity the unstable vibrations can be also illustrated by the energy of elastic

body Es approximated as

(4.3) Es = Es
kin + Es

pot =
1

2

∫

Ωs

̺su̇2 dx

+
1

2

∫

Ωs

(λs divuδij + 2µsesij(u))e
s
ij(u) dx ≈

1

2
u̇T

Mu̇+
1

2
uT

Ku,
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see Figure 12. The total energy Es of the vibrating vocal folds model increases

rapidly in the time domain.
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Figure 12. The time evolution of total energy of the elastic body Ωs for flutter instability
given by the inlet flow velocity 1.79m/s (case A).

The flutter vibration has dominant frequency at about 169 Hz as seen from the

Fourier transform of x- and y-displacement of the point S in Figure 13. The domi-

nant frequency corresponds to a frequency between the second and the third eigen-

frequency of the elastic body, see Figure 14.
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Figure 13. On the top—left: the displacement in x direction of point S, right: its the
(normalized) Fourier transform. On the bottom—left: the displacement in y
direction of point S, right: its the (normalized) Fourier transform. The all
graphs are related to the prescribed inlet velocity vdir,1 = 1.79m/s (case A).
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Figure 14. Modal analysis of the vibrating structure showing eigenmode shapes of vibration
for first four eigenfrequencies 76.5 Hz, 156.1 Hz, 180.5 Hz and 276.6 Hz.

5. Conclusion

The mathematical problem of the fluid-structure interaction was described with

special attention paid to the inlet boundary conditions. The penalization approach

was introduced in detail as a generalization of the Dirichlet and the do-nothing

boundary condition. The fluid flow was described by Navier-Stokes equations in the

ALE form, where for modelling of the elastic body the linear elasticity was used.

The elasticity as well as fluid flow problem was numerically solved by the finite

element method. The derivation of weak formulation was performed in details for

different boundary conditions. Especially the SUPG, PSPG and ‘div-div’ stabiliza-

tion was used for the flow solver. The ALE mapping was constructed with an aid

of pseudo-elastic approach, where along the symmetry boundary the tangential dis-

placement was kept free.
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The numerical results achieved with the in-house developed program showed that

the penalization approach is promising for FSI simulations of flow in cases of a pe-

riodical closing of the channel. This approach allows to relax the exact value of the

inlet velocity on the boundary together with controlling the upper bound of the pres-

sure drop between the inlet and outlet during channel closing phase. The performed

parametric study gives approximate relations helping with the choice of a suitable

magnitude of the penalization parameter for different FSI configurations. Finally,

the flutter velocity for given settings was determined in a good correspondence to

the reference results, i.e., the penalization approach did not change the aeroelastic

stability boundary of the system. Next investigation could consist in introducing the

time variation of the penalization parameter ε in relation to the time variation of

the channel closing.
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