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K Y B E R N E T I K A — V O L U M E 5 5 ( 2 0 1 9 ) , N U M B E R 1 , P A G E S 1 5 2 – 1 6 5

NASH ε-EQUILIBRIA FOR STOCHASTIC GAMES WITH
TOTAL REWARD FUNCTIONS: AN APPROACH THROUGH
MARKOV DECISION PROCESSES

Francisco J. González-Padilla and Raúl Montes-de-Oca

The main objective of this paper is to find structural conditions under which a stochastic
game between two players with total reward functions has an ε-equilibrium. To reach this goal,
the results of Markov decision processes are used to find ε-optimal strategies for each player and
then the correspondence of a better answer as well as a more general version of Kakutani’s Fixed
Point Theorem to obtain the ε-equilibrium mentioned. Moreover, two examples to illustrate
the theory developed are presented.
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1. INTRODUCTION

This article presents a model of a stochastic game between two players who seek to
maximize their total rewards with an infinite horizon and a numerable state space. The
objective of this paper is to provide structural conditions under which an ε-equilibrium
between the players exists. The main tool to achieve this is Kakutani–Fan–Glicksberg’s
Fixed Point Theorem (see [1]) (for the original version of Kakutani’s Fixed Point Theo-
rem, see [10] and [16]) which allows the authors to find, as the name suggests, the fixed
points of a particular correspondence, called correspondence of a better answer which
will turn out to be ε-equilibria. These fixed points will be comprised of pairs of ε-optimal
strategies obtained through the theory of Markov decision processes (MDPs, MDP in
singular) (see [13]).

Total reward problems usually require a few more assumptions than those with dis-
counted or average rewards since the last two have a degree of control over the objective
functions involved. A way in which this problem is addressed is by using a boundedness
condition of the series of utilities (see Assumption 2 and Lemma 3.2 below). Along with
this condition, there are structural ones which are more common in previous works such
as [13], like compactness of the sets of restrictions and concavity of the utility functions.

The development of stochastic games found in the literature is usually in regard to the
games with discounted or average rewards functions. There are, however, those works
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which deal with the total reward case, such as [5], which presents this type of games
and a relation to the average case with, among other things, numerable states and finite
action sets. Hence, to the best of the authors’ knowledge, the results of the games with
a total reward criterion and compact convex actions sets in Euclidean spaces are novel
and there is no previous work on this topic.

In Section 2 the basic concepts of the paper are presented which include the elements
of the game and the definitions used such as total reward function and, of course, the
definition of ε-equilibrium. In Section 3, Lemma 3.2 is provided which consists of a
very useful result regarding double sequences. This lemma is the main reason for the
boundedness condition mentioned above. Moreover, since Kakutani–Fan–Glicksberg’s
Fixed Point Theorem requires to work with sequences of strategies, a product space is
constructed in which all the measures involved could be unified in different expectations
in order to use both Lemma 3.2 and the Dominated Convergence Theorem. In Section 4
the main result of the paper is presented which shows the general conditions sufficient for
the existence of an ε-equilibrium in Theorem 4.1. Finally, in Sections 5 and 6 a couple of
examples are given showing how an ε-equilibrium exists under the assumptions given in
Section 2 along with some general conclusions in which some of the problems for future
work are mentioned.

2. STOCHASTIC GAMES WITH TOTAL REWARD

In this section the basic definitions are given which constitute a stochastic game between
two players in which they take actions independently from each other and simultaneously.
The model presented here is commonly used in works such as [9] and [15] which are based
on the framework of [14], as well as the definition of a strategy for both players and when
such strategies are an ε-equilibrium for a particular game. Now, the model is provided
which describes stochastic games in a framework presented for Markov decision processes
in [13], p. 28.

A stochastic game between two players is a tuple {X,A, {A(x) : x ∈ X}, B, {B(x) :
x ∈ X}, Q, u1, u2}, where

• X is the Borel space (i. e. a Borel subset of a complete separable metric space) of
all the states that the game can take,

• A and B are Borel spaces of all possible actions available for players 1 and 2,
respectively. The non-empty measurable sets A(x) ⊆ A and B(x) ⊆ B are the
actions available to the players when the game is at state x, and also the set

K = {(x, a, b)|x ∈ X, a ∈ A(x), b ∈ B(x)}

is a measurable subset of X ×A×B,

• Q(·|x, a, b), a ∈ A(x), b ∈ B(x), x ∈ X, is the transition law in every turn, and

• u1 : X × A× B → R and u2 : X × A× B → R are measurable functions used for
the players’ utilities.
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In addition to the previous model, the following specific assumptions will be made in
this article:

Assumption 1. (a) X is a numerable space endowed with the discrete topology.

(b) Both A and B are measurable subsets of the Euclidean spaces A and B, respec-
tively. Moreover, it is assumed that both sets A(x) and B(x) are compact and
convex for all x ∈ X.

(c) u1(x, a, b) is concave on a for all x ∈ X and b ∈ B(x), and u2(x, a, b) is concave on
b, for all x ∈ X and a ∈ A(x).

(d) u1 and u2 are non-negative, bounded and continuous.

2.1. Strategies

Let x0 = x be a fixed initial condition and define the sets of feasible histories up to time
t ≥ 0 as H0 = X and Ht = Kt × X = K × Ht−1, t ≥ 1. Each element ht ∈ Ht is a
feasible history the game can take and is of the form ht = (x, a0, b0, x1, . . . , at−1, bt−1, xt)
and the set of all feasible histories is H = K∞. There exist several kinds of strategies
for player 1 such as:

• A randomized strategy is a sequence of stochastic kernels on A given Ht for t ≥ 1
{kt} such that kt(A(xt)|ht) = 1 for all t ≥ 1.

• A deterministic strategy is a sequence of measurable functions {ft}, with
ft : Ht → A, such that ft(ht) ∈ A(xt) for all t ≥ 1.

There are also two special types of deterministic strategies that will be used.

• When ft : X → A for all t ≥ 1, it is called a Markov strategy.

• When ft ≡ f for all t ≥ 1, it is called a stationary strategy and the sequence {ft}
is denoted simply as f .

The strategies for player 2 are defined in a similar way. Now, the set of all (determin-
istic, Markov, stationary) strategies for player 1 and 2 will be denoted as Π1 and Π2,
respectively. Finally, it is necessary to have a convex structure to work with, so consider
the set of all convex combinations of strategies for player 1 (and player 2 respectively),
that is,

F =

{
n∑
i=1

λifi|
n∑
i=1

λi = 1, λi ≥ 0, fi ∈ Π1, n ≥ 1

}
,

where F is called the set of all mixed strategies for player 1. The set G of mixed
strategies for player 2 is defined in a similar way. From this point on, whenever a
strategy is mentioned, it will always mean a mixed strategy.
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Remark 2.1.

(a) It is important to notice that since X is numerable and is endowed with the
discrete topology, it is obtained that F =

∏
x∈X A(x) which shows that F is in

fact compact (because of the compactness of A(x) for all x) with the product
topology (also known as Tychonoff’s topology, see Section 7, p. 93 in [11]) induced
by the space A. It is also noticed that the convergence in this topology coincides
with the pointwise convergence (see Definition A3.1 and Theorem A3.2, pp. 376–
377 in [2] or p. 92 in [11]); this will be very useful later on when the authors
will work with sequences of elements in F , that is, sequences of strategies which
converge pointwise to another element in F .

(b) Observe that, since A and B (see Assumption 1 (b)) are locally convex (the rea-
son of this is that A and B are normed spaces, with the usual norms in the Eu-
clidean spaces), by Result (5), Section 3, p. 207 in [12] it is obtained that

∏
x∈X Ax

and
∏
x∈X Bx, where Ax ≡ A and Bx ≡ B, are also locally convex as well as∏

x∈X (A×B)x, where (A×B)x ≡ A×B. Now, as A ⊆ A and B ⊆ B it follows
that

∏
x∈X (A×B)x contains the set F × G. This fact jointly with the locally

convexity of
∏
x∈X (A×B)x will be relevant in the proof of Theorem 4.1.

2.2. Single player

Later in this paper the authors will find it useful to treat the previous stochastic games
as convenient MDPs, in order to find ε-optimal strategies using the framework found in
[13]. Let us see how this works: both players choose their actions independently of each
other, however, a player, let’s say player 1, can assume the actions the other player will
take. This way, once player 2’s actions (or strategy) are fixed, it is possible to consider
the stochastic game with a single player, that is, an MDP (for player 1) in which:

• The state space X remains the same as in Assumption 1(a).

• A(x) are the actions available to player 1 when the game is in state x ∈ X.

• The transition Q(·|x, a, b) and the utility function u1(x, a, b) with x ∈ X and
a ∈ A(x) are well defined since b ∈ B(x) is fixed (and will be of the form b = g(x)
for some strategy g).

And, this is similar for player 2.

Remark 2.2. The main idea behind fixing the actions of one player is to work individ-
ually with each player, find their own ε-optimal strategies using tools from MDPs, such
as [9] and [15] and then obtain a pair of strategies which will constitute an ε-equilibrium
with an appropriate correspondence.
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2.3. Total reward

During the game, the players will receive a utility according to the action that they
choose at each turn, that is, the total reward will be obtained by player 1 when x0 = x ∈
X and player 1 and 2 will choose the mixed strategies f and g in F and G, respectively,
so:

V1(x, f, g) = Ef,gx

[ ∞∑
t=0

u1 (xt, f (xt) , g (xt))

]
.

The function V2(x, f, g) for player 2 is also defined in a similar way.

Remark 2.3. Notice that the expectation Ef,gx is taken with respect to the canonical
product measure % obtained with the initial state x0 = x and the strategies f and g
according to the Ionescu Tulcea Theorem (see Proposition C.10, p. 178 in [7]).

In this paper the following assumption will also be made:

Assumption 2. supH
∑∞
t=0 u1(xt, at, bt) and supH

∑∞
t=0 u2(xt, at, bt) are finite.

Remark 2.4. It is relevant to note that the previous assumption is also true for models
with discounted rewards, see [13], Chapter 6.

2.4. Playing the simultaneous game

The game plays out as follows. Given an initial condition x0 ∈ X, both players choose
an action a0 ∈ A(x0) and b0 ∈ B(x0) according to their strategies f and g, then each
player receives an expected reward Ef,gx0

[u1(x0, a0, b0)] and Ef,gx0
[u2(x0, a0, b0)], respec-

tively. The game then changes to a new state x1 ∈ X according to the transition
Q(·|x0, a0, b0) and then the process repeats. In time, both players will receive the total
of their expected profits for each action taken during the game, that is, they will receive

∞∑
t=0

Ef,gx0
[u1(xt, at, bt)] and

∞∑
t=0

Ef,gx0
[u2(xt, at, bt)],

respectively.

Remark 2.5. The previous series are well-defined thanks to Assumption 2.

2.5. ε-equilibrium between the players

Throughout this paper a fixed ε > 0 will be considered.

Now, a special kind of strategies will be defined induced by the concept of ε-optimality
in MDPs. Given x0 = x ∈ X, a pair of strategies (f, g) is called an ε-equilibrium if

V1(x, f, g) ≥ sup
f ′∈F

V1(x, f ′, g)− ε

and
V2(x, f, g) ≥ sup

g′∈G
V2(x, f, g′)− ε.
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3. PRELIMINARIES

3.1. Limit results

The main result of this paper will require the use of a series when a sequence of strategies
is presented.

In the following Lemma the theorem from [6] given in Remark 3.1 will be used. The
proof of this theorem in [6] although detailed is direct.

Remark 3.1. [Theorem 6.8 in Habil [6]]
Let {s(n,m)} be a bounded double sequence of complex numbers and let a ∈ C have

the property that every convergent subsequence of {s(n,m)} converges to a. Then the
sequence {s(n,m)} converges to a.

Lemma 3.2. (a) Let {fn} be a sequence of strategies for player 1 which converges
pointwise to the strategy f and assume that the strategy g for player 2 is fixed. If
Assumptions 1 and 2 hold, then

lim
n→∞

∞∑
t=1

u1(xt, fn(xt), g(xt)) =

∞∑
t=1

u1(xt, f(xt), g(xt)).

(b) Let {gn} be a sequence of strategies for player 2 which converges pointwise to the
strategy g and assume that the strategy f for player 1 is fixed. If Assumption 1 and 2
hold, then

lim
n→∞

∞∑
t=1

u2(xt, f(xt), gn(xt)) =

∞∑
t=1

u2(xt, f(xt), g(xt)).

P r o o f . (a) Consider the double sequence with terms

s(m,n) =

m∑
t=1

u1(xt, fn(xt), g(xt))

and let

s(mk, nk) =

mk∑
t=1

u1(xt, fnk
(xt), g(xt))

be any convergent subsequence. Let L be the double limit of this subsequence. The
limits limnk→∞ s(mk, nk) and limmk→∞ s(mk, nk) exist for all mk and nk, respectively,
that is,

lim
nk→∞

mk∑
t=1

u1(xt, fnk
(xt), g(xt)) =

mk∑
t=1

u1(xt, f(xt), g(xt))

and

lim
mk→∞

mk∑
t=1

u1(xt, fnk
(xt), g(xt)) =

∞∑
t=1

u1(xt, fnk
(xt), g(xt)),
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then it follows, from Assumption 2 and Theorem 14.11, p. 141 in [3], that both iterated
limits exist and are equal to the double limit L =

∑∞
t=1 u1(xt, f(xt), g(xt)). This means

that every convergent subsequence of the bounded sequence {s(m,n)} converges to the
same limit. By Theorem 6.8 in [6] (see Remark 3.1) the sequence {s(m,n)} also converges
to the limit L, that is,

lim
n,k→∞

k∑
t=1

u1(xt, fn(xt), g(xt)) = lim
n→∞

∞∑
t=1

u1(xt, fn(xt), g(xt)) =

∞∑
t=1

u1(xt, f(xt), g(xt)).

The proof for part (b) is analogous. �

3.2. Bigger spaces

Later in the paper it will be useful to work with a product space induced by a set of
strategies; this way there will be a single probability and expectation that can be used
for all the strategies.

Let x ∈ X be the initial state and {(fn, gn)} be a numerable set of pairs of strategies,
that is, a set of paired sequences of functions defined as above and each identified as fn
and gn. Each pair induces a probability measure P fn,gnx obtained through the Ionescu
Tulcea Theorem (see Proposition C10, p. 178 in [7]). This probability measure is the one
used for the expectation Efn,gnx in a similar way as the expectation Ef,gx is taken with
respect to the canonical product measure % in Section 2.3. Now, a new space is defined,
which is obtained once again using the Ionescu Tulcea Theorem (see Proposition C10,
p. 178 in [7]), ΩP ,FP , P in which

• ΩP = H∞

• FP =
∏∞
n=1 F fn,gn

x

• P =
∏∞
n=1 P

fn,gn
x ,

where F fn,gn
x and P fn,gnx are the σ-algebras and probability measures of the games

induced by the individual pairs (fn, gn).

In order to better understand what the goal of this bigger space is, let us consider a
special case. Let {(fn, gn)} be a sequence of strategies which converges to the pair (f, g).
Each pair (fn, gn) and (f, g) have a product space associated with them, which are the
spaces in which each game played is well-defined, namely (Hfn,gn

x ,F fn,gn
x , P fn,gnx ) and

(Hf,g
x ,F f,g

x , P f,gx ), respectively. The next step is to construct the product space and
measure induced by all these spaces given the initial state x and the transition Q. This
way it is possible to consider the following:

• ΩP = Hf,g
x ×Hf1,g1

x ×Hf2,g2
x . . .

• FP = F f,g
x ×F f1,g1

x ×F f2,g2
x . . .

• P = P f,gx × P f1,g1x × P f2,g2x . . .,
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where the space corresponding to the limit (f, g) is written at the beginning of the
product but it can in fact be written anywhere with the same result.

This product measure P induces the expectation EP which has the property that for
all n,

EP

[ ∞∑
t=0

u1 (xt, fn (xt) , gn (xt))

]
= Efn,gnx

[ ∞∑
t=0

u1 (xt, fn (xt) , gn (xt))

]
,

as well as for the limit (f, g). This follows directly from the the Ionescu Tulcea Theorem
(see Proposition C.10, p. 178 in [7]) since the previous expectation is obtained by inte-
grating over a finite number of spaces involved, namely the space (Hfn,gn

x ,F fn,gn
x , P fn,gnx )

for each individual n or the space associated to the limit (f, g). The idea behind this
bigger space comes when it is necessary to work with sequences of strategies that con-
verge and it also induces a sequence of expectations, that is, let {fn} be a sequence of
strategies which converges to f , when g is a fixed strategy and x is the initial state, then
the following sequence of expectations is obtained:

Efn,gx

[ ∞∑
t=0

u1 (xt, fn (xt) , g (xt))

]
.

When the limit is considered as n→∞, it is convenient to introduce the limit into the
expectation, but the problem is that the probability measure used to obtain Efn,gx also
depends on n. In order to solve this issue, the authors work with the product measure
P which “covers” all the probability measures involved: this way it is possible to use
results such as the Dominated Convergence Theorem (see [2]) to obtain the result needed
in Theorem 4.1.

The previous construction considers a convergent sequence {(fn, gn)} to (f, g) but
the same construction can be easily adapted to consider different kinds of numerable
sets. For example, if there are two sequences of strategies {(fn, gn)} and {(f ′n, g′n)} each
with their limits (f, g) and (f ′, g′), then the construction can consider a finite set of
strategies involved. These cases will arise in Theorem 4.1 but the process to obtain the
product spaces is very similar.

4. RESULTS: EXISTENCE OF AN ε-EQUILIBRIUM

In this section the main result of the paper is shown and structural conditions are given
under which an ε-equilibrium can be guaranteed to exist in the sets of mixed strategies.

The following notation will be used for correspondences, that is, mappings from one
set W to another set Z in which the image of each point x in W is a subset Γ(x) of Z
(for more information about correspondences see [1]). A correspondence T from W to
Z is denoted by T : W ⇒ Z.

Theorem 4.1. Let x0 = x ∈ X. Under the conditions of Assumptions 1 and 2, there
exists an ε-equilibrium for the stochastic game with total rewards on the sets of mixed
strategies.
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P r o o f . The goal is to use Kakutani–Fan–Glicksberg’s Fixed Point Theorem (see Corol-
lary 17.55 in [1] p. 583), to guarantee the existence of an ε-equilibrium. Let us assume
that player 2 will choose a fixed strategy g regardless of the strategy f chosen by player
1; this transforms the two player game into a single player game in which player 1 tries
to maximize a total reward MDP. This MDP will have at least one ε-optimal strategy
according to Theorem 7.2.7 and Corollary 7.2.8 pp. 291–292 of [13] when Assumptions
1 and 2 hold. Let Mg be the set of all such ε-optimal strategies.

Then the previous process is repeated but now fixing a strategy f for player 1 and
finding the set Mf of ε-optimal strategies for player 2. Using this fact, for each pair of
strategies (f, g) there exists a pair of nonempty sets (Mg,Mf ) of ε-optimal strategies for
both players. Let us define a correspondence T : F ×G⇒ F ×G as

T (f, g) = {(f ′, g′)|f ′ ∈Mg, g
′ ∈Mf} .

Theorem 7.2.7 and Corollary 7.2.8 in [13] guarantee that there exists at least one f ′ ∈Mg

and g′ ∈Mf and therefore T (f, g) 6= ∅. It is also obtained that the set F ×G is a subset
of a locally convex space, see Remark 2.1 (b). Now, it is necessary to show that the
correspondence T indeed has a fixed point. It is easy to verify that both sets F and G
are convex because of the definition of mixed strategies. To check that they are compact,
it is enough to notice that F = Πx∈XA(x) and G = Πx∈XB(x), since, from Assumption
1, A(x) and B(x) are compact for all x in X, so are F and G in the product topology
using Tychonoff’s Theorem (see p. 143 in [11]).

It is now shown that the correspondence T is convex, upper hemicontinuous and
has compact images. All of the following steps must be verified for player 2 as well
but, since the proof is analogous, the authors shall mainly focus on player 1. For the
compactness of T (f, g) a sequence {(fn, gn)} ⊂ T (f, g) is taken which converges to some
pair of strategies (f ′, g′), so it is necessary to show that (f ′, g′) ∈ T (f, g). Let EP
be the expectation obtained from the product measure as constructed above using the
strategies fn, f

′, gn, g, g
′ with n = 1, 2, ..., and x ∈ X (see Subsection 3.2).

Since (fn, gn) ∈ T (f, g), it is obtained that

EP

[ ∞∑
t=0

u1 (xt, fn (xt) , g (xt))

]
= Efn,gx

[ ∞∑
t=0

u1 (xt, fn (xt) , g (xt))

]
≥ sup
f̂∈F

V1(x, f̂ , g)−ε,

for all n, which implies that

lim
n→∞

EP

[ ∞∑
t=0

u1 (xt, fn (xt) , g (xt))

]
≥ sup
f̂∈F

V1(x, f̂ , g)− ε.

On the left hand side, by the Dominated Convergence Theorem (see [2]), it is obtained
that

lim
n→∞

EP

[ ∞∑
t=0

u1 (xt, fn (xt) , g (xt))

]
= EP

[
lim
n→∞

∞∑
t=0

u1 (xt, fn (xt) , g (xt))

]
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and by Lemma 3.2 (a), using the limit on n and the series itself as a double limit, it
follows that

EP

[
lim
n→∞

∞∑
t=0

u1 (xt, fn (xt) , g (xt))

]
= EP

[ ∞∑
t=0

lim
n→∞

u1 (xt, fn (xt) , g (xt))

]
.

Finally, by the continuity of u1 it is obtained that

EP

[ ∞∑
t=0

lim
n→∞

u1 (xt, fn (xt) , g (xt))

]
= EP

[ ∞∑
t=0

u1

(
xt, lim

n→∞
fn (xt) , g (xt)

)]
,

and so

EP

[ ∞∑
t=0

u1 (xt, f
′ (xt) , g (xt))

]
≥ sup
f̂∈F

V1(x, f̂ , g)− ε.

Next, in order to show that T (f, g) is convex, consider λ, 0 < λ < 1 and two pairs,

(f ′, g′) and (f̂ , ĝ) in T (f, g); it will be shown that the pair (λf ′ + (1 − λ)f̂ , g) belongs
to T (f, g).

Then, it is obtained that

EP ′

[ ∞∑
t=0

u1(xt, c(xt), g(xt))

]
≥ λEP ′

[ ∞∑
t=0

u1(xt, f
′(xt), g(xt))

]

+(1− λ)EP ′

[ ∞∑
t=0

u1(xt, f̂(xt), g(xt))

]

= λEf
′,g
x

[ ∞∑
t=0

u1(xt, f
′(xt), g(xt))

]
+ (1− λ)Ef̂ ,gx

[ ∞∑
t=0

u1(xt, f̂(xt), g(xt))

]

≥ sup
f∗∈F

V1(x, f∗, g)− ε,

where, in this part, EP ′ is the expectation obtained from the product measure as con-
structed above using the strategies f ′, f̂ , g, λf ′ + (1 − λ)f̂ and x ∈ X (see Subsection
3.2). Therefore T (f, g) is convex.

Now, it is necessary to show that T is upper hemicontinuous. To do so, consider
a convergent sequence, (fn, gn) → (f, g) and another sequence {(f ′n, g′n)} such that
(f ′n, g

′
n) ∈ T (fn, gn) for all n. It will be concluded that (f ′n, g

′
n) has a limit point in

T (f, g). Since {(f ′n, g′n)} ⊂ F × G and F × G is compact, there exists a subsequence
{(f ′nk

, g′nk
)} which converges to the pair of strategies (f ′, g′). Now it will be proved

that (f ′, g′) ∈ T (f, g) as follows (here, as above, EP ′′ is the expectation obtained from
the product measure using the strategies fn, f

′
n, f, f

′, gn, g
′
n, g, g

′ with n = 1, 2, ... and
x ∈ X):
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EP ′′

[ ∞∑
t=0

u1
(
xt, f

′
nk

(xt) , gn (xt)
)]

= E
f ′nk

,gn
x

[ ∞∑
t=0

u1
(
xt, f

′
nk

(xt) , gn (xt)
)]

≥ sup
f̂∈F

V1(x, f̂ , gn)− ε,

for all n.

This implies that

EP ′′

[ ∞∑
t=0

u1(xt, f
′
nk

(xt), gn(xt))

]
≥ V1(x, f̂ , gn)− ε , for all n ≥ 1, f̂ ∈ F.

Then,

lim
nk→∞

EP ′′

[ ∞∑
t=0

u1(xt, f
′
nk

(xt), gnk
(xt))

]
≥ lim
nk→∞

V1(x, f̂ , gnk
)− ε , for all f̂ ∈ F.

Using arguments similar to those from the previous part, it is obtained that

EP ′′

[ ∞∑
t=0

u1(xt, f
′(xt), g(xt))

]
≥ V1(x, f̂ , g)− ε , for all f̂ ∈ F,

which, in turn, implies that

V1(x, f ′, g) ≥ sup
f̂∈F

V1(x, f̂ , g)− ε.

Now, using Theorem 17.11 in [1] p. 561, it follows that T has a closed graph since
it has been showed that it has compact, and therefore closed images and it is upper
hemicontinuous. Note that Theorem 17.11 also requires the range space F × G of the
correspondence T to be compact and Hausdorff, this is easily verified considering that
its compactness has been proved and F ×G is the product of metric spaces and therefore
Hausdorff. This completes the proof of Theorem 4.1. �

Remark 4.2. The previous result makes heavy use of the existence of an ε-optimal
strategy when the other player’s own strategy is kept fixed. This approach allows to
consider MDPs (single player games) and apply existing results on ε-optimal strategies
such as their characterization as presented in works like [8] and [13], in which they give
additional information regarding the strategies of the players.

5. EXAMPLES

5.1. A deterministic example

Consider two players who will have some kind of resource available to them at each
period of time; they will both receive a profit depending on the amount of resource
consumed. Using this information, the following game can be obtained:
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• X = {xt} ⊂ R+ are the amounts available to the players at each time t. Assume
also that

∑∞
t=0 xt <∞.

• A(x) = B(x) = [0, x] with x ∈ X.

• u1(x, a, b) = aα1 and u2(x, a, b) = bα2 with 0 < α1, α2 < 1, so that u1 and u2 are
non-negative, concave and continuous.

• Q({xt+1}|xt, at, bt) = 1 for all t,

where at and bt are the actions taken by players 1 and 2, respectively. Now, if a strategy
g for player 2 is considered to be fixed, it is possible to obtain an MDP for player 1 with
the same elements. Likewise, by fixing a strategy f for player 1 it is possible to obtain
an MDP for player 2 in the same way.

Let us see that it is possible to find an ε-equilibrium. The aim is to find a strategy
f such that V1(x0, f, g) ≥ supf ′∈F V1(x0, f

′, g)− ε. Let δ1 be such that (1− δα1
1 ) < ε/Λ

where Λ =
∑∞
t=0 (xt)

α1 < ∞ and consider the function f(x) = δ1x, x ∈ X. This
strategy holds that

sup
f ′∈F

V1(x0, f
′, g)− V1(x0, f, g) =

∞∑
t=0

(xt)
α1 −

∞∑
t=0

f(xt)
α1

=

∞∑
t=0

xα1
t −

∞∑
t=0

(δ1xt)
α1 =

∞∑
t=0

xα1
t − δ

α1
1 xα1

t = (1− δα1
1 )

∞∑
t=0

xα1
t = (1− δα1

1 )Λ < ε.

Following the same process for player 2, the strategy g(x) = δ2x, x ∈ X with (1−δα2
2 ) <

ε/Λ, is obtained. When the correspondence T is used, the couple of strategies which are
ε-equilibria are obtained, one of which is the pair

f(x) = g(x) = δ
x

2
,

x ∈ X, where δ is such that 1− δαi < ε/Λ, i = 1, 2.

5.2. A stochastic example

Now, consider a game similar to the previous one but, instead of going in a fixed sequence
of states, there will be a random jump from one state to another.

Let {ξt} be a sequence of independent random variables where ξt ∼ Bin(1, 12 ) for all
t (i. e. P [ξt = 0] = P [ξt = 1] = 1

2 , for all t). The game will be played the same way
as above, but in this case a state space Y will be considered in which y0 = x0 and the
transition yt = xS where S =

∑t
i=1 ξi + t will be taken into account. What this means

is that the game will move along the sequence {xt} at either one or two steps at a time,
at random. This way, all the series

∞∑
t=0

Ef,gx0
[u1(xt, at, bt)] and

∞∑
t=0

Ef,gx0
[u2(xt, at, bt)]
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are bounded above by
∑∞
t=0 x

αi
t , therefore Assumption 2 holds, and even in the worst

case scenario all the states will still be visited. It then follows that an ε-equilibrium
exists, in fact it is not unique, and one of them is still obtained like in the previous
subsection, that is, one of these ε-equilibria is

f(x) = g(x) = δ
x

2
, x ∈ X.

6. CONCLUDING REMARKS

The main result obtained in this paper is the existence of an ε-equilibrium between the
players under general structural conditions, some of which follow from the framework of
Puterman [13] such as the numerability of the state space. The characterization of such
ε-equilibria follows simply from results found in [13] since the strategies themselves are
obtained through results on MDPs, a technique employed in works such as [9] and [15].
Other tools that were extremely helpful were those regarding double sequences found
in [6] and also constructing an appropriate product space which allowed to unify the
probability measures induced by all the strategies involved in the game.

Notice that the framework of the paper involves games with two players, however,
the extension to consider more players is not difficult and it is straightforward.

On the other hand, some limitations still remain in the results obtained here: there
are plenty of examples and applications in which the state space X is not numerable.
The compactness of the restrictions is a fairly common assumption but it is possible to
find examples in which an ε-equilibrium exists and the restrictions are not compact, so
there may be work to be done in that direction. And, of course, the assumption on the
supremum of the series (see Assumption 2) is indeed helpful but also a restrictive one
which could be relaxed to include a wider range of examples and applications.

An additional approach which is being considered is in regard of results similar to
those found in [4], which uses a risk-sensitive framework and also the objective functions
associated to the total rewards used in this paper. This way the existence of an ε-
equilibrium could also be proven under certain structural conditions for risk-sensitive
games.
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