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Abstract. We consider the Laplace operator in a planar waveguide, i.e. an infinite two-
dimensional straight strip of constant width, with Robin boundary conditions. We study the
essential spectrum of the corresponding Laplacian when the boundary coupling function has
a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete
spectrum.
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1. Introduction

There are different ways of confining a quantum particle in long and thin struc-

tures, the so-called quantum waveguides in suitable subsets Ω of the space R3 or the

plane R2 [6], [7], [12], [15]. A usual possibility, in two dimensions, is to model the

waveguide by a curved strip of constant width which is squeezed between two curves;

in this region one considers the Laplacian subject to Dirichlet [8], [10], and combined

Dirichlet-Neumann [2], [14] or Robin boundary conditions [11], [13], [16].

Our main interest in this paper is to describe the precise location of the essential

spectrum of Robin Laplacian −∆Ω
α , and study the existence of eigenvalues below the

essential spectrum, in a straight quantum waveguide Ω; see [4] for related references.

The description of the here studied model is as follows. Given a positive number ε,

consider the infinite straight strip Ω = R× I, where I = (0, ε) is a bounded interval.

It should be noted that the boundary of Ω is sufficiently regular (e.g., Ω satisfies the

segment condition, see [1], Chap. III) and therefore we can verify that the opera-

tor −∆Ω
α acts as the Laplacian in the Hilbert space L

2(Ω) with Robin conditions at
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the boundary ∂Ω; see Theorem 3.1. More specifically, given a bounded real-valued

function on ∂Ω,

(1.1) α(x, y) =

{
α0(x) in R× {0},
α1(x) in R× {ε},

the functions ψ ∈ dom(−∆Ω
α) from the domain of −∆Ω

α satisfy, in an appropriate

sense, Robin boundary conditions

(1.2)





−∂ψ
∂y

(x, 0) + α0(x)ψ(x, 0) = 0,

∂ψ

∂y
(x, ε) + α1(x)ψ(x, ε) = 0.

A related type of boundary conditions has been considered in [13]; there the au-

thor has investigated spectral properties of the Laplacian by imposing (usual) Robin

conditions, i.e.

(1.3)





−∂ψ
∂y

(x, 0) + α(x)ψ(x, 0) = 0,

∂ψ

∂y
(x, ε) + α(x)ψ(x, ε) = 0,

where the Robin parameter α(x) > 0 is a real-valued positive bounded function.

Considering this case and under the hypothesis that α tends to a constant at infinity,

the essential spectrum of the Laplacian was determined and a sufficient condition

for the existence of discrete spectrum was given. The strategy in [13] to prove

the existence of at least one isolated eigenvalue below the threshold of the essential

spectrum, was a variational one based on [8], and the method of Neumann Bracketing

was employed to find the location of the essential spectrum.

It is a question whether there are any similar results when one chooses our bound-

ary conditions (1.2). More precisely, under our assumptions on the Robin parame-

ter α(x, y) we get similar results as in [13]. However, the location of the essential

spectrum was obtained using similar ideas as in [3].

Let −∆Ω
α denote the Laplacian with dom(−∆Ω

α) = {ψ ∈ H2(Ω): ψ satisfies (1.2)}.
Concerning the questions of interest presented in this paper, we stress here that in

the case of constant boundary conditions, the straight strip has spectrum starting

from the first eigenvalue λ0 = λ0(α0, α1) ∈ R of the transversal Laplacian −∆I

in L2(I) with ψ(y) ∈ dom(−∆I) if ψ ∈ H2(I) and satisfying

(1.4)

{
−ψ′(0) + α0ψ(0) = 0,

ψ′(ε) + α1ψ(ε) = 0,
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where α0 and α1 are real constants. In what follows we are going to show, under

some conditions as

lim
|x|→∞

(αi(x)− αi) = 0, i ∈ {0, 1},

that

σess(−∆Ω
α) = σess(−∆I) = [λ0,∞)

and

σ(−∆Ω
α) ∩ (−∞, λ0) 6= ∅.

The operators are introduced as the unique self-adjoint operators associated with

appropriate quadratic forms and the boundary conditions should be understood in

the sense of traces (see more details in Sections 2 and 3).

The paper is organized as follow. In Section 2 we introduce Robin Laplacian in

a bounded interval (transversal section), show that its essential spectrum is empty.

In Section 3 we pass to the corresponding study in an infinite straight strip. We show,

via quadratic forms, that the operator −∆Ω
α is self-adjoint (Theorem 3.1). Finally,

in Section 4, we find the essential spectrum of such Robin Laplacian operator and

give sufficient conditions for the existence of discrete spectrum.

2. Transversal Robin Laplacian

Initially, some results will be presented for our Robin Laplacian in the interval I

(transversal section); they will be important later. We find that the Laplacian oper-

ator −∆I (classic) in L2(I) is self-adjoint by using the theory of quadratic forms.

Consider the operator

−∆I : dom(−∆I) → L2(I)

with dom(−∆I) = {ψ ∈ H2(I) : ψ satisfies (1.4)}. By bI denote the corresponding
closed and lower bounded sesquilinear form bI > λ (with λ dependent on the set

{α0, α1} ⊂ R). In (2.1) we have the action of bI on its domain dom bI = H1(I),

(2.1) bI(φ, ψ) =

∫

I

φ′(y)ψ′(y) dy + α1φ(ε)ψ(ε) + α0φ(0)ψ(0).

Theorem 2.1. Let α0 and α1 belong to R. Then the Laplacian operator −∆I is

the unique self-adjoint operator associated with the sesquilinear form bI , i.e.

bI(φ, ψ) = (φ,−∆Iψ)

for each φ ∈ dom bI and ψ ∈ dom(−∆I).
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P r o o f. We will first prove that bI is lower bounded and we refer the reader

to ([5], Section 4.2) to details of how to conclude that bI is closed. Denote by ‖ ‖ the
norm in L2(I); we have that

bI(φ) > −|α0 + α1|
a2ε−1

2a− 1
‖φ‖2 ∀φ ∈ dom bI ,

where a is large enough. Indeed, first note that for all a > 1 we have

εaφ(ε) =

∫

I

yaφ′(y) dy +

∫

I

aya−1φ(y) dy,

εaφ(0) =

∫

I

−(ε− ya)φ′(y) dy +

∫

I

a(ε− y)a−1φ(y) dy.

Then by Cauchy-Schwarz

bI(φ) >
(
1− ε|α0 + α1|

2a+ 1

)
‖φ′‖2 − |α0 + α1|

a2ε−1

2a− 1
‖φ‖2

and thus, it suffices to take a large enough so that the coefficient of ‖φ′‖2 becomes
positive, consequently we have

bI(φ) > −|α0 + α1|
a2ε−1

2a− 1
‖φ‖2.

�

2.1. Absence of essential spectrum. In this section, we discuss the essential

spectrum of the Laplace operator −∆I in L2(I) subject to Robin boundary condi-

tions. It is appointed here that σess(−∆I) = ∅.
Indeed, suppose that σess(−∆I) 6= ∅. Let λ ∈ σess(−∆I), it follows that there exists

a normalized sequence (ψn) in dom(−∆I
α) (i.e. ‖ψn‖L2(I) = 1) such that ψn

w−→ 0

in L2(I); in particular, ψn
w−→ 0 in H1(I). By recalling the compacteness of the

embedding H1(I) →֒ L2(I), there exists a subsequence (ψnk
) such that ψnk

→ 0

in L2(I). This is absurd since ‖ψn‖L2(I) = 1. The result of the present section reads

as follows:

Theorem 2.2. Let α0 and α1 belong to R. Then the transversal Robin

Laplacian −∆I has purely discrete spectrum and it is the essential spectrum

σess(−∆I) = ∅.
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2.2. Point spectrum of the transversal Laplacian. We now investigate the

point spectrum of −∆I , with Robin boundary conditions. Let us determine λ ∈ R

for which there exists 0 6= ψ in H2(I), normalized in L2(I), satisfying

(2.2) −ψ′′ = λψ, in I = (0, ε)

and satisfying the boundary conditions (1.4). Initially, consider that α0 6= −α1.

If λ is an eigenvalue with λ > 0, we already know that the general solution (classic)

of (2.2) is given by

(2.3) ψ(y) = A sin
(√
λy

)
+B cos

(√
λy

)

with A,B ∈ C determined by the Robin conditions and the normalization condi-

tion. Thus, by imposing the Robin conditions on the general solution we obtain the

following system:

(2.4)

[ −
√
λ α0√

λ cos
(√
λε

)
+ α1 sin

(√
λε

)
α1 cos

(√
λε

)
−
√
λ sin

(√
λε

)
] [

A

B

]
= 0.

Since we are interested in nonzero solutions, we must impose that the determinant

of the above matrix is zero. This requirement enables us to obtain λ by means of

implicit equation:

(2.5) f(λ) = sin
(√
λε

)
(λ− α0α1)− (α0 + α1)

√
λ cos

(√
λε

)
= 0.

In order to check that equation (2.5) has a solution, it is sufficient to note that f is

a continuous function with

f
(

π
2

ε2

)
· f

(4π
2

ε2

)
< 0.

Equation (2.4) is equivalent to

√
λA+ α0B = 0,

so A is given in terms of B, i.e. A = −
(
α0/

√
λ
)
B. The normalization condition

of ψ in particular allows one to choose B ∈ R and positive. In this case, one has

|ψ(ε)|2 + |ψ(0)|2 > B > 0.

In particular, if we have α0 = −α1, then (2.5) is reduced to

(α2
0 + λ) sin

(√
λε

)
= 0 and λ =

n2
π
2

ε2
, n ∈ Z \ {0}.
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Therefore the corresponding eigenfunction to λ = n2
π
2/ε2, n > 1, is given by

ψn(y) =
nπ

(n2
π
2 + α2

0ε
2)1/2

(
ψN
n (y)− α0ε

nπ

ψD
n (y)

)

with ψN
n =

√
2/ε cos(nπy/ε) and ψD

n =
√
2/ε sin(nπy/ε), n > 1, where ψN

n and ψ
D
n

are the eigenfunctions of −∆I
N and −∆I

D, where −∆I
N and −∆I

D are Laplace oper-

ators with Neumann and Dirichlet boundary condition, respectively.

Assume now λ < 0 and set µ = −λ, then a classical solution of (2.2) is given by
the formula

ψ(y) = Ae
√
µy +Be−

√
µy.

In order to satisfy the boundary condition we obtain the system

(2.6)

[
α0 −√

µ α0 +
√
µ√

µe
√
µε + α1e

√
µε α1e

−√
µε −√

µe−
√
µε

] [
A

B

]
= 0.

This system admits a nontrivial solution if and only if

(2.7) f(µ) = (µ+ α0α1)(e
−√

µε − e
√
µε)−√

µ(α0 + α1)(e
−√

µε + e
√
µε) = 0.

In particular, if α0 + α1 = 0, then (2.7) is reduced to

(α2
0 − µ)(e−

√
µε − e

√
µε) = 0,

and since µ 6= 0, one has µ = α2
0, i.e. λ = −α2

0. It follows from ψ′(0) + α0ψ(0) = 0

that the eigenfunction associated with the negative eigenvalue λ = −α2
0 is

ψ(y) = ce−α0y with c−1 = ‖e−α0y‖L2(I) > 0.

To summarize this discussion we find that if α0 = −α1 6= 0, the first eigenvalue is

negative and equal to −α2
0 and all the others are positive.

If λ = 0, then the general solution is ψ(y) = Ay + B and from the boundary

conditions it follows that A = B = 0. Therefore λ = 0 is not an eigenvalue.

Returning to (2.6) with α0 + α1 6= 0, we have that (2.6) is equivalent to

(
α0 −

√
µ
)
A+

(
α0 +

√
µ
)
B = 0,

so A is given, in terms of B, by A =
(
α0 +

√
µ
)
/
(√
µ− α0

)
B. Note that f(α2

0) =

2eα0ε(α0 + α1)|α0|, so f(α2
0) = 0 if and only if α0 = 0, since µ > 0, the value

of the expressions between A and B is well defined. The normalization condition
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of ψ in particular allows one to choose B ∈ R and positive. In this case, one has

|ψ(ε)|2 + |ψ(0)|2 > B > 0.

Throughout this paper, we denote by λ0 the first eigenvalue of the Robin Laplacian

on I (recall the self-adjointness of −∆I) associated with the normalized eigenfunc-

tion φ0(y).

3. Infinite and straight planar strips

The purpose of this section is to show that the classic Laplacian −∆Ω
α in L

2(Ω),

with a suitable domain, is self-adjoint. For this purpose a convenient sesquilinear

form bΩα will be introduced, whose definition will be made precise later.

Under certain conditions on α = (α0(x), α1(x)) at infinity, it is possible to prove

the existence of isolated bound states, i.e. the existence of eigenvalues (of finite

multiplicity) below the essential spectrum σess(−∆Ω
α) of the Laplacian. For this

purpose, we follow some ideas in [3], [12], [13].

The densely defined closed quadratic form of interest is bΩα(φ), dom bΩα =

H1(Ω) ⊂ L2(Ω),

bΩα(φ) =

∫

Ω

|∇φ(x, y)|2 dxdy +
∫

R

α1(x)|tr(φ)(x, ε)|2 + α0(x)|tr(φ)(x, 0)|2 dx,

where tr(φ) denotes the range of trace operator tr : H1(Ω) → L2(∂Ω) and α0(x) and

α1(x) are two given positive functions. A lower bound for b
Ω
α is initially obtained

for φ|Ω with φ ∈ C∞
0 (R2) and, by density (see [1], Theorem 18), for each φ ∈ H1(Ω).

Note that tr(φ|Ω) = φ|Ω in L2(∂Ω), consequently

bΩ(φ) >

∫

R

[∫

I

∣∣∣
∂φ

∂y

∣∣∣
2

dy − α1(x)|φ(x, ε)|2 − α0(x)|φ(x, 0)|2
]
dx

since φ(x, ·) ∈ H1(I) for a.e. x ∈ R. By the argument in Theorem 2.1 we obtain

(3.1) bΩ(φ) > −(‖α0 + α1‖∞)
a2ε−1

2a− 1
‖φ‖2L2(Ω)

for each φ|Ω with φ ∈ C∞
0 (R2). By standard arguments we can verify that bΩα is

closed.

We consider the operator−∆Ω
α on L

2(Ω) which acts as the Laplacian on the domain

consisting of functions ψ from the Sobolev space H2(Ω) satisfying the boundary

conditions (1.2), i.e. with dom(−∆Ω
α) = {ψ ∈ H2(Ω): ψ satisfies (1.2)}, here we

require α0(x), α1(x) ∈ W 1,∞(R).
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In the next theorem we show the self-adjointness of −∆Ω
α , where this is the Robin

operator associated with the form bΩα .

Theorem 3.1. Suppose α0(x) and α1(x) in W
1,∞(R). Then the Laplacian −∆Ω

α

is the (unique) self-adjoint operator associated with the sesquilinear form bΩα , that is,

bΩα(φ, ψ) = (φ,−∆Ω
αψ)L2(Ω)

for φ ∈ dom bΩα and ψ ∈ dom(−∆Ω
α).

The proof is presented through Lemmas 3.1 and 3.2. The first lemma gives some

information on the domain of TbΩα , associated with b
Ω
α . It is shown actually that

domTbΩα ⊂ dom(−∆Ω
α). The second one concludes that TbΩα is an extension of −∆Ω

α .

Therefore we obtain the equality TbΩα = −∆Ω
α .

Lemma 3.1. Suppose α0(x) and α1(x) in W
1,∞(R). For each F ∈ L2(Ω), every

solution ψ ∈ H1(Ω) of the problem

(3.2) bΩα(φ, ψ) = (φ, F )L2(Ω) ∀φ ∈ dom bΩα = H1(Ω),

belongs to dom(−∆Ω
α). Consequently, domTbΩα ⊂ dom(−∆Ω

α).

P r o o f. For ψ ∈ H1(Ω) let us introduce the quotient of Newton

ψδ(x, y) :=
ψ(x + δ, y)− ψ(x, y)

δ
, 0 6= δ ∈ R.

Since

|ψ(x+ δ, y)− ψ(x, y)| =
∣∣∣∣
∫ 1

0

∂ψ

∂x
(x+ δt, y)δ dt

∣∣∣∣ 6 |δ|
∫ 1

0

∣∣∣
∂ψ

∂x
(x+ δt, y)

∣∣∣dt,

we have

∫

Ω

|ψδ|2 dxdy 6

∫ 1

0

[∫

Ω

∣∣∣
∂ψ

∂x
(x+ δt, y)

∣∣∣
2

dxdy

]
dt =

∫

Ω

∣∣∣
∂ψ

∂x
(x, y)

∣∣∣
2

dxdy.

Therefore

(3.3)

∫

Ω

|ψδ|2 dxdy 6 ‖ψ‖21,2 ∀ 0 6= δ ∈ R.

If ψ ∈ H1(Ω) is a solution of (3.2), then ψδ is a solution of the problem

bΩα(φ, ψδ) = − (φ−δ, F )L2(Ω)

−
∫

R

(α1)δ(x)φ(x, ε)ψ(x+ δ, ε) + (α0)δ(x)φ(x, 0)ψ(x+ δ, 0) dx
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for each φ ∈ H1(Ω). By choosing φ = ψδ we obtain

(3.4) bΩα(ψδ) = − ((ψδ)−δ, F )L2(Ω)

−
∫

R

(α1)δ(x)ψδ(x, ε)ψ(x + δ, ε) + (α0)δ(x)ψδ(x, 0)ψ(x+ δ, 0) dx.

For simplicity we write bΩα(ψδ) = bΩ1 (ψδ) + bΩ2 (ψδ) with

bΩ1 (ψδ) =

∫

Ω

|∇ψδ|2 dxdy and bΩ2 (ψδ) =

∫

R

α1(x)|ψδ(x, ε)|2 + α0(x)|ψδ(x, 0)|2 dx.

By Schwarz inequality, Cauchy inequality, estimate (3.3) and the embedding of

H1(Ω) in L2(∂Ω), we can produce the following estimates for t > 0:

|((ψδ)−δ, F )L2(Ω)| 6 2‖F‖L2(Ω)‖(ψδ)−δ‖L2(Ω) 6 t−1‖F‖2L2(Ω) + t‖ψδ‖21,2,∣∣∣∣
∫

R

(α1)δ(x)ψδ(x, ε)ψ(x+ δ, ε) + (α0)δ(x)ψδ(x, 0)ψ(x+ δ, 0) dx

∣∣∣∣
6 C1‖ψδ‖L2(∂Ω)‖ψ‖L2(∂Ω) 6 C‖ψδ‖1,2‖ψ‖1,2

with C = C(‖α0‖W 1,∞ , ‖α1‖W 1,∞) > 0 independent of δ,

|bΩ2 (ψδ)| 6 t−1‖ψ‖21,2 + tbΩ1 (ψδ)

for t > 0 small enough. On one hand, one has

bΩα(ψδ) > (1− t)bΩ1 (ψδ)− t−1‖ψ‖21,2.

On the other hand, the identity (3.4) produces

|bΩα(ψδ)| 6 C‖ψδ‖1,2‖ψ‖1,2 + (t−1‖F‖2L2(Ω) + t‖ψδ‖21,2).

So, we have the following estimate:

(1− t)bΩ1 (ψδ)− t−1‖ψ‖21,2 6 C‖ψδ‖1,2‖ψ‖1,2 + (t−1‖F‖2L2(Ω) + t‖ψδ‖21,2).

Now, suppose that 0 < t < 1 and add (1 − t)‖ψδ‖22 to both sides of the above
inequality to obtain

0 6 (2t− 1)‖ψδ‖21,2 + C‖ψδ‖1,2‖ψ‖1,2 + (t−1‖F‖2L2(Ω) + t−1‖ψ‖21,2 + (1 − t)‖ψ‖21,2).

Thus, we assume that 0 < t < 1/2, so the dominant term of the quadratic function is

negative and we get ‖ψδ‖21,2 6 C̃ with C̃ independent of δ. But this estimate implies

sup
δ

‖ψδ‖1,2 <∞
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and since H1(Ω) is reflexive, every bounded sequence has a weakly convergent sub-

sequence, then there is v ∈ H1(Ω) and a subsequence δk → 0 such that ψ−δk
w−→ v

in H1(Ω). Hence,

∫

Ω

ψ∂xφdxdy =

∫

Ω

ψ lim
δk→0

φδk dxdy = lim
δk→0

∫

Ω

ψφδk dxdy

= − lim
δk→0

∫

Ω

ψ−δkφdxdy = −
∫

Ω

vφdxdy.

Therefore ∂xψ = v in the weak sense, and so ∂xψ ∈ H1(Ω). Consequently, ∂xxψ ∈
L2(Ω) and ∂yxψ ∈ L2(Ω). It follows from the standard elliptic regularity theorems

(see [9], Theorem 1, Section 6.3.1) that ψ ∈ H2
loc(Ω), so −∆ψ = F a.e. in Ω. Hence,

∂yyψ = −(F + ∂xxψ) ∈ L2(Ω) and therefore ψ ∈ H2(Ω).

Finally, it remains to verify that ψ satisfies the boundary conditions. After inte-

gration by parts,

(φ, F )L2(Ω) = bΩα(φ, ψ) = (φ,−∆ψ)L2(Ω) +

∫

R

φ(x, 0)[−∂yψ(x, 0) + α0(x)ψ(x, 0)] dx

+

∫

R

φ(x, ε)[∂yψ(x, ε) + α1(x)ψ(x, ε)] dx

for each φ ∈ H1(Ω). This implies the boundary conditions, because −∆ψ = F

a.e. in Ω and φ is arbitrary. �

Lemma 3.2. Suppose α0(x) and α1(x) in W
1,∞(R). Then TbΩα = −∆Ω

α .

P r o o f. Let ψ ∈ dom(−∆Ω
α), then ψ ∈ H2(Ω) and it satisfies the boundary

conditions (1.2). By integration by parts and (1.2) we obtain for each φ ∈ dom bΩα
the identity

bΩα(φ, ψ) =

∫

R

φ(x, ε)∂yψ(x, ε) dx−
∫

R

φ(x, 0)∂yψ(x, 0) dx−
∫

Ω

φ(x, y)∆ψ(x, y) dxdy

+

∫

R

α1(x)φ(x, ε)ψ(x, ε) dx+

∫

R

α0(x)φ(x, 0)ψ(x, 0) dx

= (φ,−∆ψ)L2(Ω).

Thus, ψ ∈ domTbΩα , and it follows that TbΩα is an extension of −∆Ω
α . Lemma 3.1

yields the desired equality. �

494



4. The spectrum of the Robin Laplacian in Ω

Here we investigate the spectrum of the operator −∆Ω
α when the Robin parameter

(function) α(x, y) = (α0(x), α1(x)) ∈W 1,∞(R)×W 1,∞(R) satisfies the condition

(4.1) lim
|x|→∞

(α0(x) − α0) = 0 and lim
|x|→∞

(α1(x) − α1) = 0.

In the case that (4.1) holds we prove that the essential part σess(−∆Ω
α) of the

spectrum of −∆Ω
α is the interval [λ0,∞), where λ0 is the first Robin transversal

eigenvalue. This statement is contained in Theorem 4.1, whose proof is performed

in two steps, that is, Propositions 4.1 and 4.2, whose proofs were inspired in [3]. The

proof of Proposition 4.1 makes use of the so-called Weyl criterion for the essential

spectrum, which we recall in Lemma 4.1 (see [5], Theorem 11.2.7).

Lemma 4.1 (Weyl criterion). Let T be a self-adjoint operator in a complex

Hilbert space H. Then λ ∈ σess(T ) if and only if there exists a sequence {ψn}∞n=1 ⊂
domT such that

(1) ‖ψn‖ = 1 for all n ∈ N \ {0};
(2) ψn

w−→ 0 as n→ ∞ in H;

(3) (T − λ)ψn → 0 as n→ ∞.

Such a sequence is called a singular Weyl sequence for T at λ.

Initially, we verify by means of Lemma 4.2 that for the operator Tα = −∆, that

is, the operator associated with the form

tΩα(φ) =

∫

Ω

|∇φ|2 dxdy +
∫

R

α1|tr(φ)(x, ε)|2 + α0|tr(φ)(x, 0)|2 dx

which is a special case of bΩα with α = (α0(x), α1(x)) constant and equal to (α0, α1),

there is no discrete eigenvalue in its spectrum.

Lemma 4.2. If α(x) = (α0, α1) is a constant function with {α0, α1} ⊂ R, then

[λ0,∞) ⊂ σess(Tα).

P r o o f. Let λ ∈ [λ0,∞). So, one can write λ = λ0+t with t ∈ [0,∞). Let us intro-

duce the Laplacian operator−∆R in L2(R). It is well known that the essential spec-

trum σess(−∆R) of operator −∆R is the set [0,∞). Hence, there is a singular Weyl se-

quence {φn}∞n=1 for −∆R at t. Define the sequence {ψn}∞n=1 as ψn(x, y) = φn(x)φ0(y)
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with φ0 the eigenfunction (normalized) of self-adjoint transversal operator −∆I , as-

sociated with the first eigenvalue λ0. Note that {ψn}∞n=1 ⊂ dom(Tα). It is easy to

check that ‖ψn‖L2(Ω) = 1 for each n > 1, and ψn
w−→ 0 weakly in L2(Ω), and also

that (Tα − λ)ψn → 0 in L2(Ω)-norm because we have

(Tα − λ)ψn = [(−∆R − t)φn]φ0 + [(−∆I − λ0)φ0]φn.

Hence, {ψn}∞n=1 is a singularWeyl sequence for Tα at λ. Then by virtue of Lemma 4.1,

λ ∈ σess(Tα). �

Proposition 4.1. If α(x) = (α0, α1) is a constant function with {α0, α1} ⊂ R,

then

σess(Tα) = [λ0,∞).

P r o o f. To prove the inverse inclusion it is enough to show that tΩα(φ) > λ0‖φ‖2
for each φ in H1(Ω). Since the spectrum of −∆I starts by λ0, we can write for all

ξ ∈ H1(I)

(4.2) bI(ξ) =

∫

I

|ξ|2 dy + α1ξ(ε) + α0ξ(0) > λ0‖ξ‖2.

Using this inequality together with Fubini’s theorem, we get for all φ|Ω with
φ ∈ C∞

0 (R2), and by density (see [1], Theorem 3.18) for each φ ∈ H1(Ω),

tΩα(φ) >

∫

R

[∫

I

∣∣∣
∂φ

∂y

∣∣∣
2

dy + α1|φ(x, ε)|2 + α0|φ(x, 0)|2 dx
]
> λ0‖φ‖2.

It follows that σess(Tα) ⊆ [λ0,∞). Note that we have used the fact that φ(x, ·)
belongs to H1(I) for a.e. x ∈ R. �

Next we prove Proposition 4.2 with the help of technical estimate in Lemma 4.3

(see [3], Lemma 5.1). Let us introduce βi(x) := (αi(x) − αi) with i ∈ {0, 1} and the
functions

(4.3) βm(x, y) =






β0(x) if |x| < m, y = 0,

β1(x) if |x| < m, y = ε,

0 if |x| > m

and

(4.4) β(x, y) =

{
β0(x) in R× {0},
β1(x) in R× {ε}.
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By (4.1)–(4.4) we have that for each integer m the function βm is bounded with

compact support and the sequence {βm} converges in L∞(R) to β, because given

δ > 0 there exists a > 0 such that |αi(x) − αi| < δ whenever |x| > a with i ∈ {0, 1}.

Lemma 4.3. Let α0, α1 ∈ R and ϕ ∈ L2(∂Ω). Then there exist positive con-

stants c and C, depending on ε and |α0 + α1|, such that any solution ψ ∈ H2(Ω) of

the boundary value problem

(4.5)






(−∆− λ)ψ = 0 in Ω,

−∂ψ
∂y

(x, 0) + α0ψ(x, 0) = ϕ(x, 0),

∂ψ

∂y
(x, ε) + α1ψ(x, ε) = ϕ(x, ε)

with any λ < −c, satisfies the estimate

(4.6) ‖ψ‖1,2 6 C‖ϕ‖L2(∂Ω).

P r o o f. Multiplying the first equation of (4.5) by ψ and integrating by parts, one

can produce the identity
∫

Ω

|∇ψ|2 dxdy+α0

∫

R×{0}
|ψ|2 dx+α1

∫

R×{ε}
|ψ|2 dx−λ

∫

Ω

|ψ|2 dxdy =

∫

∂Ω

ϕψ dσ.

Using the Schwarz and Cauchy inequalities and the embedding of H1(Ω) in L2(∂Ω),

we have for t ∈ (0, 1),
∣∣∣∣α0

∫

R×{0}
|ψ|2 dx+ α1

∫

R×{ε}
|ψ|2 dx

∣∣∣∣

6

∣∣∣∣
∫

∂Ω

(α1 + α0)|ψ|2 dσ
∣∣∣∣ 6 |α0 + α1|‖ψ‖2L2(∂Ω)

6 t−1‖ψ‖2L2(∂Ω)|α0 + α1|2 + t‖ψ‖2L2(∂Ω)

6 t−1|α0 + α1|2‖ψ‖21,2 + tC̃‖ψ‖21,2,∣∣∣∣
∫

∂Ω

ϕψ dσ

∣∣∣∣ 6 ‖ψ‖L2(∂Ω)‖ϕ‖L2(∂Ω) 6 t−1‖ϕ‖2L2(∂Ω) + t‖ψ‖2L2(∂Ω)

6 t−1‖ϕ‖2L2(∂Ω) + tC̃‖ψ‖21,2,

where C̃ is the constant from the embedding of H1(Ω) in L2(∂Ω). By the above

estimates, we obtain

(1− λ− t−1|α0 + α1|2 − 2tC̃)‖ψ‖21,2 6 t−1‖ϕ‖2L2(∂Ω).

The desired conclusion follows by choosing t > 0 small enough and sufficiently large

negative λ such that the coefficient of ‖ψ‖21,2 becomes positive. �
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Proposition 4.2. Suppose that (α0(x), α1(x)) ∈ W 1,∞(R) ×W 1,∞(R). In addi-

tion, if the difference αi(x) − αi vanishes at infinity, i.e. lim
|x|→∞

(αi(x) − αi) = 0 for

each i ∈ {0, 1}, then for each λ ∈ ̺(−∆Ω
α) ∩ ̺(Tα) the operator

(−∆Ω
α − λ)−1 − (Tα − λ)−1

is compact in L2(Ω).

P r o o f. Due to the first resolvent identity, it is enough to prove the result for

a negative λ in the intersection of the respective resolvent sets. Consider a sequence

{φj}∞j=1 ⊂ L2(Ω) bounded and let ψj = (−∆Ω
α −λ)−1φj−(Tα−λ)−1φj ; note that ψj

satisfies the first equation in (4.5). Moreover, inserting ψj into the second or third

equation we obtain

∂ψj

∂~n
+ βψj =

( ∂

∂~n
+ β

)
((−∆Ω

α − λ)−1φj − (Tα − λ)−1φj) = β tr(−∆Ω
α − λ)−1φj

so we now take ϕ = β tr(−∆Ω
α − λ)−1φj and by Lemma 4.3 we have

‖ψj − ψk‖1,2 6 C‖(β tr(−∆Ω
α − λ)−1)(φj − φk)‖L2(∂Ω),

where tr denotes the trace operator from H1(Ω) ⊃ dom(−∆Ω
α) to L

2(∂Ω).

Under the assumption that β tr(−∆Ω
α −λ)−1 is a compact operator, it follows that

the sequence {ψj}∞j=1 is precompact in the topology of H
1(Ω), and with the help of

the above inequality one can establish that (−∆Ω
α − λ)−1 − (Tα − λ)−1 is a compact

operator in L2(Ω).

Let us verify the compactness of the operator β tr(−∆Ω
α − λ)−1. One can show

that the sequence of operators βm tr(−∆Ω
α − λ)−1 converges to β tr(−∆Ω

α − λ)−1 in

L2(∂Ω)-norm, because we have ‖βm − β‖L∞(R) → 0 in L∞(R). On the other hand,

we shall prove that each operator βm tr(−∆Ω
α − λ)−1 is compact. Indeed, given

the sequence {un}∞n=1 bounded in L
2(Ω) one has vn = (−∆Ω

α − λ)−1un bounded

inH1(Ω), then there exists a subsequence, which we still denote by vn, and a function

v ∈ H1(Ω) such that vn → v weakly in H1(Ω). Since H1(Ω) is compactly embedded

in L2(Ωm), where Ωm = (−m,m) × (0, ε) ⊂ Ω, due to the Rellich-Kondrachov

theorem (see [1], Section VI.) we get vn → v in L2(Ωm). Since βm vanishes identically

outside Ωm, and β on Ωm, we have

‖βm tr(vn)− βm tr(vl)‖L2(∂Ω) = ‖β(tr(vn)− tr(vl))‖L2(∂Ωm)

6 Cm‖β‖L∞(R)‖vn − vl‖L2(Ωm),

where Cm > 0 comes from the fact that the operator tr from H1(Ωm) onto L2(∂Ωm)

is bounded.
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It follows that βm tr(vn) is a Cauchy sequence and thus lim
n→∞

βm tr(vn) exists for

each positive integerm. Therefore the operators βm tr(−∆Ω
α−λ)−1 are compact. �

With the results presented up to now we can prove the following theorem:

Theorem 4.1. Let α0(x), α1(x) ∈W 1,∞(R). If lim
|x|→∞

(αi(x)−αi) = 0, i ∈ {0, 1},
then

σess(−∆Ω
α) = [λ0,∞).

P r o o f. Proposition 4.2 implies that (−∆Ω
α − λ)−1 − (Tα − λ)−1 is a compact

operator in L2(Ω); so the essential spectra of −∆Ω
α and Tα are identical by Theo-

rem XIII.14 in [17]. �

4.1. Existence of discrete spectrum. Now, based on [12], [13], [15] and un-

der appropriate conditions, we shall give a variational argument to conclude that

σ(−∆Ω
α) ∩ (−∞, λ0) 6= ∅. This, together with Theorem 4.2, implies that the spec-

trum below −α2
0 is nonempty and formed by isolated eigenvalues of finite multiplicity,

i.e. σdisc(−∆Ω
α) 6= ∅; see Corollary 4.1.

Theorem 4.2. Let (αi(x)−αi) ∈ W 1,∞(R) with i ∈ {0, 1}. In addition, suppose
that the the difference (αi(x)−αi) is integrable with

∫
R
(αi(x)−αi) dx < 0 for some

i ∈ {0, 1} and
∫
R
(αj(x)− αj) dx 6 0 for j 6= i. Then

inf σ(−∆Ω
α) < λ0.

P r o o f. Following [12] we wish to obtain a trial function ψ from the form domain

of −∆Ω
α such that the quadratic form QΩ

α(ψ) < 0, where

QΩ
α(φ) = bΩα(φ) − λ0‖φ‖22, domQΩ

α = dom bΩα .

Let ζ be a cut-off function, that is, we fix a function ζ ∈ C∞
0 (R) with 0 6 ζ 6 1, and

ζ ≡ 1 on (−1/4, 1/4), ζ ≡ 0 on R \ (−1/2, 1/2) and ‖ζ‖2 = 1. Given φ0 as defined

in the proof of Lemma 4.2, consider the sequence {un}∞n=1 of functions into dom bΩα ,

defined by un(x, y) = fn(x)φ0(y), where fn(x) = ζ(x/n). By integration by parts

and using the boundary conditions of φ0, we obtain

QΩ
α(un) = n−1‖ζ′‖22 + ‖fn‖22

∫

I

(|∂yφ0|2 − λ0|φ0|2) dy

+

∫

R

|fn|2(α1(x)|φ0(ε)|2 + α0(x)|φ0(0)|2) dx.
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Since ∫

I

(|∂yφ0|2 − λ0|φ0|2) dy = −α1|φ0(ε)|2 − α0|φ0(0)|2,

we have

QΩ
α(un) = n−1‖ζ′‖22 + (|φ0(ε)|2 + |φ0(0)|2)

1∑

i=0

∫

R

(αi(x)− αi)|fn|2 dx,

where |φ0(ε)|2 + |φ0(0)|2 > 0 according to Section 2.2. Taking into account the

estimate |fn(x)(αi(x)− α0)| 6 |αi(x)− α0| ∈ L1(R) and the fact that fn(x) → 1 as

n→ ∞, we can apply the dominated convergence theorem to get

lim
n→∞

QΩ
α(un) = (|φ0(ε)|2 + |φ0(0)|2)

1∑

i=0

∫

R

(αi(x)− αi) dx < 0.

It is therefore justified to write that there exists some uN ∈ dom bΩα such that

bΩα(uN ) < λ0. Therefore, by invoking Rayleigh-Ritz Theorem, we can state that

inf σ(−∆Ω
α) < λ0. �

Corollary 4.1. Under the assumptions of Theorem 4.2, if condition (4.1) holds

true, then

σdisc(−∆Ω
α) ∩ (−∞, λ0) 6= ∅.
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