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Abstract. We propose a Halpern-type forward-backward splitting with inertial extrapol-
ation step for finding a zero of the sum of accretive operators in Banach spaces. Strong
convergence of the sequence of iterates generated by the method proposed is obtained under
mild assumptions. We give some numerical results in compressed sensing to validate the
theoretical analysis results. Our result is one of the few available inertial-type methods for
zeros of the sum of accretive operators in Banach spaces.
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1. INTRODUCTION

Suppose X is a real Banach space. Assume that A: X — X is an operator and
B: X — 2% aset-valued operator. In this paper, we consider the following inclusion
problem: find & € X such that

(1.1) 0 € A% + Bi.

It is well known that this problem includes, as special cases, nonsmooth convex op-
timization problems, variational inequalities, and convex-concave saddle-point prob-
lem, which have applications in compressed sensing, image processing, computer
vision, machine learning and signal processing to mention but a few.
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A popular method for solving problem (1.1) is the forward-backward splitting
method, which is defined in the following manner: x; € X and

(1.2) Tpy1 = JP (2, —7AZ,), n>1,

where JP := (I+7B)~!, r > 0. The forward-backward splitting method (1.2) (as the
name implies) is based on an explicit forward step with respect to A followed by an
implicit backward step with respect to B. Furthermore, forward-backward splitting
method (1.2) includes, in particular, the proximal point algorithm (see e.g. [8], [11],
[21], [29], [35]) and the gradient method (see e.g. [5], [20]).

Forward-backward splitting method (1.2) has been studied by many authors in
the literature, see, for example, [18], [25], [31], [40]. It has been established in these
papers (see e.g. [31]) that forward-backward splitting method (1.2) converges weakly
to a zero of (1.1) in general.

In [26], Lépez et al. introduced the following Halpern-type forward-backward
method: 27 € X and

(1.3) Tpt1 = apu+ (1 — an)(.],i (X — 1 (Azy, + ap)) + by),

where JZ is the resolvent of B, {r,} C (0,00), {a,} C (0,1] and {a,}, {b,} are error
sequences in X . Ldpez et al. proved in [26] that the sequence {z,} generated by (1.3)
strongly converges to a zero of (1.1) under some appropriate conditions. Several au-
thors have obtained strong convergence results both in Hilbert and Banach spaces for
finding a zero of (1.1), see, for example, [13], [14], [15], [17], [19], [36], [37], [39], [40].

Using the idea in [33], Alvarez and Attouch [1] introduced an inertial proximal
point algorithm for finding a zero of (1.1) when A = 0 and B is the maximal monotone
operator in a real Hilbert space: xg,x1 € H,

(14) {yn :xn"i_ﬂn(xn_xnfl)v

Tn4+1 = Jﬁ(yn), n 21

Alvarez and Attouch [1] obtained weak convergence of (1.4) under appropriate con-
ditions on {3, } and {r,}. Using the ideas in [33] and [1], Lorenz and Pock in [27]
introduced an accelerated iterative method which is a combination of the inertial
extrapolation method and (1.2) for finding a zero of (1.1) in real Hilbert spaces. It
was shown numerically in [27] that (1.2) with inertial extrapolation step (accelerated
version) converges faster than the unaccelerated version. Several other modifications
of (1.2) with inertial extrapolation step have been considered in Hilbert spaces by
many authors (see, for example, [4], [6], [7], [10], [30], [32]).
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Contribution. In this work, our main motivation are the results in [2], [15],
[19], [26]. Our contribution is threefold:

> We extend the forward-backward splitting method with inertial extrapolation step
for solving (1.1) from Hilbert spaces to Banach spaces. The inertial modification
of the forward-backward splitting method has already been suggested in several
papers such as [2], [15], [19]. However, the results presented in [2], [15], [19] are
done in real Hilbert spaces. Furthermore, strong convergence results are presented
in Hilbert spaces in [19] and [15] using Haugazeau approach [23] and Halpern
regularization technique [22] respectively. The authors in [2] presented weak con-
vergence analysis in real Hilbert spaces. In this paper, we present strong conver-
gence analysis of inertial modification using the Halpern regularization approach
in a uniformly convex and g-uniformly smooth Banach space (e.g., L, spaces with
1 < p < o0), which is more general than Hilbert space. Therefore, our results in
this paper extend and complement the recent results in [2], [15], [19].

> We give strong convergence analysis of our proposed accelerated forward-backward
splitting method in uniformly convex and g-uniformly smooth Banach space and
give some applications to inverse problems in signal recovery and nonlinear integro-
differential systems involving the generalized p-Laplacian. These complement the
unaccelerated results of Lépez et al. given in [26].

> We show, using the numerical implementations in compressed sensing and some
constrained convex minimization problem, that our proposed accelerated forward-
backward splitting method outperforms the unaccelerated method proposed in [26]
by Lépez et al.

2. PRELIMINARIES

Let X be a real Banach space. The modulus of convezity of X is defined as the
function 6: (0,2] — [0, 1],

. z+y
@ s =int{i- | ey e X ol =yl =1, e -yl > <}

Here X is said to be uniformly convez if §(¢) > 0 for all € € (0, 2].
The modulus of smoothness of X is the function o: RT — RT defined by

|z + ty|| + ||z — ty
22) ot =sup{IZFEIZ0N e oy = i = 1),

We say X is uniformly smooth if %in(l) o(t)/t = 0 and X is said to be g-uniformly
—
smooth with 1 < ¢ < 2, if there exists a constant k, > 0 such that o(t) < k4t?
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for t > 0. If X is g-uniformly smooth, then it is uniformly smooth (see e.g. [16]).
Suppose that X* is the dual space of X. The generalized duality mapping J; (¢ > 1)
of X is defined by J,(z) := {j,(z) € X*: (z,j,(x)) = 2|9, ||js(x)| = ||=]|9'} for
all z € X, where (-, ) denotes the duality pairing between X and X*. In particular,
we call Jy := J, the normalized duality mapping on X. Furthermore, (see e.g. [42],
pp. 1128)

(2.3) Jy(@) = ]2 (@), @ #0.

It is well known (see, for example, [16]) that X is uniformly smooth if and only if
the duality mapping J, is single-valued and norm-to-norm uniformly continuous on
bounded subsets of X.

Let B: X — 2%. We denote the domain of B by D(B) = {z € X: Bx # (I}
and its range by R(B) = |J{Bz: z € D(B)}. We say that B is accretive if, for each
x,y € D(A), there exists j(z —y) € J(x — y) such that

(2.4) <u—v,j(x—y)> >0, wué€ Bx, ve By.

The operator B is said to be m-accretive if R(I + rB) = X for all r > 0. Given
a >0 and g € (1,00), we say that a single-valued accretive operator A is a-inverse
strongly accretive (a-isa, for short) of order ¢ if, for each z,y € D(A), there exists
Jqg(z —y) € Jy(z — y) such that

(2.5) (Az — Ay, jo(x — y)) = allu — vl

Let  #C C X and let T: C' — C be a nonlinear mapping. The set of fixed points
of T is defined by Fix(T) := {x € C: z =Txz}.

Let C' be a nonempty, closed and convex subset of X and let D C C. A retraction
from C to D is a mapping Q: C' — D such that Qx = z for all z € D. Furthermore,
the retraction @Q is nonezpansive if |Qx — Qy| < ||z — y|| for all z,y € C and sunny
if, for each z € C' and t > 0, we have

(2.6) Qtr + (1 - )Qx) = Q,

whenever tx + (1 — t)Qz € C. The following result gives the information on how
sunny nonexpansive retraction can be constructed.

Theorem 2.1 ([34], Corollary 1). Let X be a uniformly smooth Banach space
and let T: C — C be a nonexpansive mapping with a fixed point. For each fixed
u € C and every t € (0, 1), the unique fixed point x; € C of the contraction C 3 z —
tu + (1 — t)Tz converges strongly as t — 0 to a fixed point of T'. Define Q: C — D
by Qu = tlg% x¢. Then @ is the unique sunny nonexpansive retract from C to D.
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For the rest of this paper, we will adopt the notation
(2.7) TAP = JB(I —rA)= (I +rB) "I -rA), r>0
The following lemmas will be used in the convergence analysis of this paper.

Lemma 2.1 ([24], page 82). If >y > 0 and r > 1, then

(2.8)

Lemma 2.2 ([12], page 33). Let ¢ > 1 and let X be a real normed space with the
generalized duality mapping J,. Then, for any z,y € X, we have

(2.9) [z +yl* < M2l + a(y, jo(z +y))
for all j,(z +y) € Jy(z +y).

Lemma 2.3 ([42], Corollary 1’). Let 1 < ¢ < 2 and let X be a smooth Banach
space. Then the following statements are equivalent:

(i) X is g-uniformly smooth.
(ii) There is a constant kq, > 0 such that for all z,y € X

(2.10) [z +yll” < |21 + q(y, 7 (2)) + Kqlly]*-

The best constant k, will be called the g-uniform smoothness coefficient of X.

Lemma 2.4 ([26], Lemmas 3.1, 3.2). Let X be a Banach space. Let A: X — X
be an a-isa of order ¢ and B: X — 2% an m-accretive operator. Then:

(i) Forr > 0, Fix(TA®) = (A + B)~1(0).
(ii) ForO0<s<randx € X, ||z — TABz| < 2|z — TABx|.

Lemma 2.5 ([26], Lemma 3.3). Let X be a uniformly convex and g-uniformly
smooth Banach space for some q € (1,2]. Assume that A is a single-valued a-isa of
order q in X. Then, given r > 0, there exists a continuous, strictly increasing and
convex function pg: RY — R with ¢,(0) = 0 such that, for all z,y € By,

2.11) TP = THPy||? < o —y)|? = r(ag — r17 "k, )|| Az — Ay||?
— pall(I = JEYI = rA)a — (I — JE)(I =AYy,

where k, is the g-uniform smoothness coefficient of X.
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Lemma 2.6 ([28], Lemma 3.1). Let {a,} and {c,} be sequences of nonnegative
real numbers such that

(2.12) nt1 < (1 —=0n)an +bp+cny, n>=1,
where {6, } is a sequence in (0,1) and {b,} is a real sequence. Assume Y ¢, < cc.
n=1

Then the following results hold:
(i) Ifb, < 9, M for some M > 0, then {a,} is a bounded sequence.
o)
(ii) If > 6, = oo and limsupb, /d, < 0, then lim a, = 0.
n=1 n—oo

n—oo

We will adopt the following notation in this paper:

> x, — « means that x,, — = strongly.

> x, — x means that x, — = weakly.

3. APPROXIMATION METHOD

In this section, we propose our method and state certain conditions under which
we obtain the desired convergence for our proposed method. First, we give the
conditions governing the cost function and the sequence of parameters below.

Assumption 3.1.
(a) Let X be a uniformly convex and g-uniformly smooth Banach space.
(b) Let A: X — X be an a-isa of order g and B: X — 2% an m-accretive operator.
(c) Assume that the solution set satisfies S = (A + B)~1(0) # 0.

Assumption 3.2. Choose sequences {152, C (0,1), {an}52 1, {bn}2; C X,
and {e,}72 1, {rn}52; C (0, 00) such that the following conditions are satisfied:

() tim_flanll/an =0, T [lby]| /o =0,

&)
(ii) lim a, =0, Y a, = o0,
n—oo n=1

(iii) 0 < liminfr, <limsupr, < (ag/k,)"/ (@1,

n—oo n—00

(iv) en = o(aw,), which means lim &,/a;, = 0.
n—oo

We now give our proposed method below.
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Algorithm 3.1

Step 0: Let Assumptions 3.1 and 3.2 hold. Let 8 € [0,1) and zg,21 € X be given
starting points. Set n := 1.

Step 1: Given the iterates x,_; and z,, n > 1, choose 3, such that 0 < 8, < Bn,
where

En

min{ﬂ,i}, T #xnflv
|Zn — Tn-1l|

B, otherwise.

Bn:

Step 2: Compute

(3 1) Yn = Tp + Bn(xn - xnfl)v
’ Tt = an@o + (1= @) (JE (Y — rn(Ayn + an)) +bn), 0> 1,

where JP = (I +r,B)~".
Step 3: Set n < n + 1, and go to Step 1.

Remark 3.1. (a) We remark that Step 1 in our Algorithm 3.1 can be easily
implemented in numerical computation since it involves only the two previous iterates
Zn—1 and z,. Hence, the value of ||, — z,,—1] is a priori known before choosing ,,.
(See [38].)

(b) Observe that Assumption 3.2 and Algorithm 3.1 imply

lim Byl — 2p—1]| =0 and lim ﬂ—””xn —2n 1] =0.
n—oo n—oo an

3.1. Convergence analysis. In this section, we obtain the strong convergence
analysis of our proposed Algorithm 3.1 to a zero of (1.1). To do this, we assume
that Assumptions 3.1 and 3.2 hold for the rest of this paper. We first show that the
generated sequences {z,} and {y,} in Algorithm 3.1 are bounded in the following
lemma.

Lemma 3.1. The sequences {z,} and {y,} generated by Algorithm 3.1 are
bounded.

Proof. Let z = Q(zg), where @ is the sunny nonexpansive retraction of X
onto S. Then z € S. Let T,f‘?‘;B = JTB” (I —rpA). Then we can write JEL (yn — Tn X
(Ayn +an)) + by, = T,ﬁ“n’Byn + e,, where e,, = JTBH (Yn — rn(Ayn +an)) +bp — T,ﬁ“n’Byn.
Hence 41 = anzo + (1 — an)(T;‘}l’Byn + ey,). By Lemma 2.5, T;‘:’B is nonexpansive
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and by Lemma 2.4 (i), Fix(T/2?) = S. It follows that

32) s — 2]l
< anllwo = 2] + (1= an) I T Pyn = T P2l + (1= am)[lenl]
S anllzo = 2l + (1 = an)llyn — 2] + (1 — an)llen]]
= anllzo — zl| + (1 — o) llzn — 2 4 Bu(@n — zn1)[| + (1 — an)len]|
)
)

= anllzo = 2] + (1 — an)|zn — 2||

(
(
(
< anflzo — 2l + (1 = an)[llon — 2l + Bullzn — zaall] + (1 — an)len]|
(
(1—an)B

wlen = sucall | (1= on)leal]
(07% (e7%)

+ an

Since JE is nonexpansive, we obtain

(33) el = 192 (Yn — rn(Ayn + an)) + bn — T Pyn|
< ”Jr]i (Yn — 0 (Ayn + an)) — Jrn (Yn — rnAyn)|| + [[bn ]
< N(Yn = r0(AYn + an)) = (Yn — 0 AYn) | + bnll = rallan]] + [|bn]]

ag\ /(e-1)
(%) laall+ bl

N

which gives |le,||/an — 0 as n — oo by condition (i). So from condition (iv) we get
that

(1 —an)BnllTn — 201 + (1 —an)llenl
Oy Qp

t, = —0

as n — oo. Hence, it is bounded. Put

M= max{||m0 -z, suptn}.
n>1

Then (3.2) becomes
(3.4) lns1 — 2l < (1= @)z — 2] + an M.

Applying Lemma 2.6 (i) in (3.4), we can conclude that {x,} is bounded and so
is {yn}. O

We now give the strong convergence theorem of Algorithm 3.1.

Theorem 3.1. The sequence {z,,} generated by Algorithm 3.1 converges in norm
to z = Q(z0), where @ is the sunny nonexpansive retraction of X onto S.
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Proof. Using Lemma 2.3 (ii) in (3.1), we get

(3:5)  Myn = 2[? = llzn — 2+ Bulzn — zp—1)]?
< ”xn - Z”q + Qﬂn<xn - xnflajq(xn - Z)> + kqﬂ%”xn - xn71||q~

By Lemma 2.3 (ii), we have (y, jy (v) < 2[[l2]}9 + ky[ly|7 — llz — y]}7) for all 2,y € X,
and

—_

(3:6) (@0 =21, Jgl@n = 2)) < “llen = 2" + Kgllon = 2| = fl2n— = 2[|).

Combining (3.5) and (3.6), we get
(3.7) [yn = 217 < ll2n = 2|7 + Bu(llzn — 2l = [J2n-1 = 2]|9)
+ kB (B + Dlzn — 21 ||

Using Lemma 2.2 and Lemma 2.5, we get for some M* > 0,

(3-8)  lzntr — 2|
(1 - O‘n)(T:}L Yn + €n — Z)Hq
(1 = an)(T/2 Py, — 2)||?

2))

)+
—z)+

_|_
Q
—
|
Q
3
N—
—~
[
3
)
)
—~
8
3
+
=

2o = 2) + (1= an) (T2 Pyn = 2)||7 + q(1 — an) M*len||
(1- O‘n)qHTé’Byn — 2|7+ qan(wo — 2, Jg(Tni1 — 2 — (L — an)en))
+q(1 = o) M |len]|
< (L= an)llyn = 2|17 = 7 (1 — an)(agq — 787 kg )| Ayn — A2||
— (1= an)g(I(I = JE)I = raA)yn — (I = J7)(I =10 A)2]))
+ ang(zo — 2, jg(Tnt1 — 2 — (1 — an)en)) + M7 ||en].

|,

Combining (3.7) and (3.8), we get

(3.9) lant1 — 21 < 1 = an)llzn — 2|7+ (1 — an)Ba(llzn — 2] = [|2n—1 — 2[|9)
+ (1 - an)kqﬁn(ﬁz '+ Dlzn — zn—1]|?
— (1= ap)rn(ag — rq_lk )| Ay, — Az||4
— (1= an)q(I(I = TE)UT = rn Ay — (I = T )T = rpA)z])
+ OénQ<$0 - Zvjq(anrl -z = (]- - an)en)> + qM*”en”
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By condition (iii) of Assumption 3.2, there is § > 0 such that 7, (ag—r3"1k,) > 6 > 0
for all n € N. Set I';, = ||z, — 2||¢ for all n € N. Then we obtain from (3.9) that

(310) Thri<(1l—an)ln+ (1 —an)bnTn —Tho1)
+(1- O‘n)kqﬁn(ﬁgfl + Dllzn — zn-1 |7 = (1 — an)d[|Ayn — Az]|?
— (L= an)pg(I(I = JEYI = rnA)yn — (I = J2)(I = rA)2|))
+ ang(zo — 2, Jg(Tnt1 — 2 — (1 — an)en)) + ¢M™[|en .

We next consider the following two cases:
Case 1: Suppose there exists N € N such that I';,y; < T, for all n > N. In this
case, limI',, exists and (3.10) implies that

(3.11) (1 — )i Ay, — Az||4
ST =Tag1) + (1 = an)Bn(Tn = Tnoa)
+(1— O‘n)kqﬂn(ﬂg;l + Dz — zn-1]]?
+ ang(zo = 2, Jg(Tnt1 — 2 — (1 — an)en)) + gM"|len]|

and

(312) (L —an)g(l(I = I = rpA)yn — (I = J7)(I =1 A)z]])
ST —=Thg1) + (1 —an)Bpn(Tn —Tno1)
+(1- an)kqﬁn(ﬂg;1 + Dllzn — zp-al]?
+ anq(®o — 2, jg(Tny1 — 2 — (1 — a)en)) + gM*|en]|.

Note that Assumption 3.2 (i) implies lim |e,|| = 0. So from Assumption 3.2 (ii),
n—oo
the boundedness of {z,}, and B,|zn — 2n—1]] = 0 in (3.11), we get

nlLrI;o(l — an)d|| Ay, — Az||9 = 0.
Hence,
(3.13) lAyn, — Az|| = 0, n — oo.
Also from (3.12), we get
(3.14) @I = TE )T = raAYga — (I = JE )T = 1 A)z]) = 0, 0 oo,
By the continuity of ¢,, we obtain from (3.14) that
(I — J,{i)([ — 1Ay — (I = JBYI —r,A)z]| -0, n— oo
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Expanding and noting that z = me (I —r,A)z, we have
(3.15) i [y — rnAyn — T/ Py +rAz| = 0.

Relations (3.13) and (3.15) imply that

(3.16) Jim [[[ Ay, — Azl + llyn — 0 Ayn — T Fyn + 1 Az]] = 0.
Consequently,
(3.17) lim |77y — yall = 0.

Since liminfr, > 0, there exists € > 0 such that r, > € for all n > 1. Then by

n—oo
Lemma 2.4 (ii), we get

(3.18) lim (|74 Py, — gl <2 lim TPy — gl = 0.

n—o0

Let z; be the unique fixed point of z + tzg + (1 — t)TAB2, t € (0,1). By Reich’s
theorem in [34], we get z; — Qs(zo) = 2, t — 0. By the subdifferential inequality,
we obtain (noting that T*F is nonexpansive)

(3:19) Iz = ynll® = It(x0 — yn) + (1 = )(TP 2 — )|

< (=0T P2 = yall® + 260 — yn, (20 — yn))

< (=022 = TPyl + 1T Py — yal)? + 2t 20 — yal®
+ 2t(z0 — 2,5 (2t — Yn))

< (1= (lze = yall + IT2Pyn = ynl)® + 2t 2 —
+2t{xog — zt,J (2t — Yn))

= L+ )]z —ynll® + 1+ = 20)2) 2 =y IT2Pyn — g
+ HTaA’Byn - ynHQ) + 2t(xo — 2,7 (2t — yn))

< @+ )z = yall® + @llze = yll + 1T Pyn = v DITZ Py — |
+2t{xog — z¢,J (2t — Yn))

(T + )2 = ynll> + M TP yn — yall + 2t (o — 21, 5(20 — yn)),

where M > 0 is a constant such that
M > max{||z; — ynll*, 2012t = ynl + 1T Pyn — wall}, £ €(0,1), neN.

It follows from (3.19) that

. M M
(w0 — 2,3 (ym — 20)) < St + S ITH Py — .
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Taking lim sup yields

limsup(zo — 2¢, j(yn — 2¢)) <

n—oo

My
ot

Then, letting ¢ — 0 and noting that the duality map j is norm-to-norm uniformly
continuous on bounded sets, we get that limsup{zo — 2, j(yn — 2)) < 0. On the other
n—oo

hand, we see that

(3.20) lyn — znll = Bullzn — 201l = 0,

which together with

(3:21) (w0 = z,j(xn = 2)) = (w0 = 2,j(xn = 2) = §(yn = 2)) + (T = 2,j(Yn — 2))

and the fact that j is norm-to-norm uniformly continuous on bounded sets, im-

plies that limsup(xzo — z,j(z, — 2)) < 0. Equivalently, we have limsup(zg — z,
n— oo n— oo

Jq(xn — 2)) < 0. Again from (3.10), we get (since I'y, < T'p—y )

(3.22) Thi1 < (1—an)Th+ (1 —an)fn(Thn —Tho1)
+ (1= an)kqﬁn(ﬁz_l + Dlzn — zp—1 |
+ ang{zo — 2, jg(Tnt1 — 2)) + q(1 — o) M [[en |
< —ap)ln+(1- an)kqﬂn(ﬂgfl + Dz — zn-1]]?
+ ang(zo — 2, jg(Tnt1 — (1 — an)en — 2)) + gM™||en ]

From (3.17) and (3.20), we get

(3.23) llzn — TA’Byn” < yn — zall + ”TA’Byn = Ynl =0,

Tn Tn

as n — oo. Also from Assumption 3.2 (i), (ii), (3.1), and (3.3), we get

(3.24) |Zns1 = TPyl < anllzo = TPyl + llenll = 0,

Tn Tn

as n — oo. Using (3.23) and (3.24), we get

(3.25) 241 = @nll < ll2n = T2 Fyall + llznsr — T Pyall = 0,

Tn Tn
as n — oo. By (3.25) and the norm-to-norm uniform continuity of the duality

mapping, we get

(3.26) limsup(zo — 2, jq(xn+1 — 2)) < 0.

n—oo

420



Let wy, := zp41 — (1 — ay)e,. Then
lwn — pgall = (1 — an)llen]] = 0, n — oco.
Using the norm-to-norm uniform continuity of duality mapping again, we get

(3.27) limsup(zo — 2, jg(Tn+1 — (1 — an)en — 2)) = limsup(zg — 2, jq(wy, — 2)) < 0.
n—00 n—00
Using Lemma 2.6 (ii) and (3.27) in (3.22), we get z, — z.

Case 2: Assume that there is no N € N such that {I',}7° 5 is decreasing. Let
7: N — N be a mapping defined for all n > N (for some N large enough) by
7(n) := max{k € N: k < n, Ty < T'p41}. In other words, 7(n) is the largest
number k in {1,2,...,n} such that I'; increases at kK = 7(n). Observe that in view
of Case 2, 7(n) is well-defined for all sufficiently large n. Also, it is easy to see that 7
is a nondecreasing sequence such that 7(n) — co asn — oo and 0 < I'7(y) < Trpny41
for all n > N.

By ideas similar to (3.11) and (3.12) (noting that {x,} is bounded, B, ) ||z+(n) —
Trmy—1|l = 0, ar(ny — 0 and |le; (|| — 0), we can show that nILH;OHAyT(”) —Az||=0

and
W oy ([T = T2, )T = 2oty Aoy — (T = T2 ()T = 7)) = 0

which consequently shows that lim HTEA’ByT(n) — Yr(mll = 0, by ideas in (3.18).
n—oo

Furthermore, as in Case 1, we can obtain lim sup{u—z, j(y,(xn)—2)) <0, lim 1Yr(n)—
n— oo

Tyl =0, hm 1T+ (m)+1 — Tr(myll = 0 and hmsup(u — 2, Jq(Tr(n) — z)> < 0. By
exploiting the argurnents when obtaining (3. 25) and (3.27), we can show that

(3.28) limsup(zo — 2, jg(Zr(n)+1 — 2)) <0
n—oo
and
(3.29) lim sup(zo — 2, Jq(Tr(n)+1 — (1 = Qrn))er(n) — 2)) < 0.
n—oo

From (3.10), we get

(3.30) Lrmy+1 < (1= azm)lrm) + (1= arm)Brm) (Crn) = Tr(n)-1)
+ (1 = arm))keBr n)(ﬁT(n) + Dllzrn) = Trmy—1l|?
+ ar(m)@{@o — 2, Jq(Tr(n)+1 — (1 — ar(n))er(n) — 2))
+qM*|lern)l-
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This implies that (since 'z () <T';(5)41)

(3.31) ary)lrm) < Trm) = Tryr + (1= ar(n) Br) Trn) = Drgny—1)
+ (1= ar() kaBrny (B + Dl () = Tyl
+ oy @m0 = 2, Jq(Tr(ny+1 — (1 = () Jer(n) — 2))
—|—qM*||eT n)”
< Brn)(Trm) = Trgny—1) + kgBrn) (BY T(n + D27 () = Zr(n)—1ll?
+ ar(m)@{@o — 2, Jq(Tr(n)+1 — (1 — Qr(n))er(n) — 2))
+aM*[|les -

Using Lemma 2.1, we have

(3'32) F‘r(n) - F‘r(n)fl < qu‘r (n) — ZHq_l(Hx‘r(n) - ZH - Hx‘r(n)fl - Z”)
X qnxT(n) - Z”q ”xT(n) - xT(n)—l”
< @7 (n) = r(n)-1l|Ma,

where M := gsup ||z, () — 2]|?"*. Using (3.32) in (3.31), we get
n>1

(3.33) armlrn) < Brm[%7(m) = Ty -1/ M2
+ kg Br(m) (B2 + DIz (n) = ey
+ ar () 8{T0 — 2, Jq(Tr(n)+1 — (1 = @z () )er(n) — 2))
+ M |lermyll-

Since o,y € (0,1), we have

BT 57'
Lrny < i:) 17 ) = ) - | Mo + iy = (ﬁq () T D7) = 7y ]|
. * He‘r(n)H
+ q<$0 - Za]q(l“r(n)Jrl - (1 - a‘r(n))eT(n) - Z)> + qM - -
7 (n)
Thus,
limsup ',y < 0.
n—oo
Hence, lim T';,) = 0. It follows that lim |z, — 2|| = 0. Subsequently, we
n—oo n—roo
get lim |z;()41 — 2|| = 0. This means lim I';(,)41 = 0. For all n > N, it is
n—oo n—oo

easy to see that I', < I'z(,)41. Therefore, we obtain for all sufficiently large n that

0 < T, <T';(n)41 and this implies that lim T', = 0. Hence, {x,} converges strongly
n—oo

to z. U
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4. APPLICATIONS

4.1. Application to signal recovery. In this subsection, we give some applica-
tions of our results to inverse problems in signal recovery in real Hilbert spaces H.
These inverse problems are formulated as the problem of minimizing the sum of two
convex functions.

Let f: H — (—o0,00] and g: H — R be two proper lower semicontinuous convex
functions such that ¢ is differentiable on H with a %—Lipschitz continuous gradient
for some L € (0,00). Let us consider the following minimization problem:

(4.1) min f(z) + g(2).

We denote the set of solutions to (4.1) by S. It was established in Proposi-
tion 3.1 (iii)(b) of [18] that
x € H solves (4.1) & 0€ 0f(x) + Vyg(z) & x = prox,s(z —vVyg(x)), v € (0,00),
where
- ; il _ 2
prox, ¢(z) 1= argggg{f(u)—f— ||luw— z| }
Combettes and Wajs in [18] proved the following strong convergence result for prob-

lem (4.1).

Theorem 4.1. Suppose that S # (). Let {~v,} be a sequence in (0, 00) such that
0< 1r;f1 Yn < SUp Yy < 2L, let {\,} be a sequence in (0, 1] such that 1r;f1 An > 0, and
n> n>1 n>
[ee] (o]
let {a,} and {b,} be sequences in H such that . |a,| < co and Y ||bn|l < oo.
n=1 n=1

Fix x1 € H and, for every n > 1, set

Tpi1 = Tn + A (Prox, ¢ (Tn — Y (Vg(zn) + an)) + by — ).

Then {x,} converges strongly to x € S if and only if liminfdg(x,) = 0, where
n—oo

ds(zy) := Snelg ||xr, — s||. In particular, strong convergence occurs if int S # .

It is known from the Baillon-Haddad theorem [3] that Vg is inverse strongly mono-
tone and Of is a maximal monotone operator (see [35]). Therefore, problem (4.1)
is a special case of problem (1.1) when A := Vg and B := Jf. Hence, our Theo-
rem 3.1 can be applied to solve problem (4.1). Modifying Algorithm 3.1 and applying
Theorem 3.1, we obtain the following result for solving problem (4.1).
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Theorem 4.2. Suppose that S # (). Let {v,} be a sequence in (0, 00) such that
0 < 1r;f1 Yo < supy, < 2L, let {a,} be a sequence in (0,1) such that lima, =0,
nz

n>1
>y = o0, and let {a,} and {b,} be sequences in H such that lim |ay||/an, =0
n—oo

n=1
and lim ||b,||/an = 0. Fix xg,21 € H and, for every n > 1, set
n—oo

(4 2) yn:xn+/8n(xn_xn—l)a
' Tnt1 = anZo + (1 — an)(proxynf(yn =1 (Vg(yn) +an)) +bn), n=1,

where 3 € [0,1) and f3,, is chosen such that 0 < 3, < fBn,

) €
_ mm{ﬁ, L

B, = |m—%nﬁ’“¢“*

B, otherwise.

Then {x,,} converges strongly to z = Ps(x), where Ps is called the metric projection
of H onto S, which is the unique point Ps(x¢) € S such that

[xo — Ps(zo)|| < llzo —yll VyeS.

Remark 4.1. We remark here that Theorem 4.1 proved in [18] cannot be ap-
plied to solve problem (4.1) in the case where liminf dg(z,) # 0. Our Theorem 4.2
n— oo

(even with inertial extrapolation step) can be applied without any restriction on S,
as long as S # 0.

As a particular case of problem (4.1), we consider the standard linear data for-
mation model in signal and image restoration, in which signal z € H, is related to
signal x € H; via the model

z= AT + w,

where Ay: Hy — Hs is a linear operator and w € Hs stands for an additive noise
perturbation. The problem is described as

1
4. in h(A —[| Aoz — z||?
(43) min h(412) + 5] Az — 2|,
where
(i) As: Hy — Hs is a nonzero bounded linear operator;
(ii) Ay: Hy — Hjz is a bijective bounded linear operator such that A;' = A¥ (A*
is the dual of A;) and Hj is a real Hilbert space;
(iii) h: Hs — (—00,00] is a proper lower semicontinuous convex function.
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The term %||Azz — z||? is the so-called data fidelity term which attempts to reflect
the contribution of the data formation model, while the term h(A;x) promotes prior
knowledge about the original signal.

Taking f(z) = h(Aiz), g(z) = 3|42z — 2||* and L = 1/||As||?, we see that
problem (4.3) reduces to (4.1). Using Lemma 2.8 of [18], we obtain that

prox; = Ajoprox,04;.

Furthermore, Vg(z) = A5(Asx — z) and we have the following result regarding the
accelerated inexact, relaxed proximal Landweber method for solving problem (4.3).

Theorem 4.3. Suppose that S # (). Let {v,} be a sequence in (0, 00) such that
0< 1I;f1 Y < sUp Y, < 2/||A2||?, let {aw,} be a sequence in (0,1) such that lim a,, = 0,
nz ?’L>1

o0
>y, = 00, and let {a,} and {b,} be sequences in Hy such that lim |la,||/cn =0
n=1 n—o0
and lim ||b,||/an = 0. Fix z,21 € H; and, for every n > 1, set
n— oo

Yn = Tn + /Bn(xn - xn—l);
Tp41 = QnTo + (1 - an)((ATOPTOX%hOAl)(yn - 'Yn(AS (AQyn - Z) + an)) + bn)-
Here 3, is chosen such that 0 < 8, < B,, where

En

min{ﬂ,i}, Ty #xnflv
[ |

B, otherwise,

Bn:

and B € 1[0,1), €, = o(ap). Then {z,} converges strongly to z = Ps(x).

4.2. Integro-differential equation. We will give an application of (1.1) to solv-
ing nonlinear integro-differential equations involving the generalized p-Laplacian,
which have been studied in [41]. Consider the nonlinear integro-differential equa-

tion
w — div[(C(z,t) + |Vu?)P~2/2Tu] 4 e|u]""2u
(4.4) +g(x,u, Vu) + ag/ udz = f(x,t), (z,t) € 2 x(0,7),
: ot Jo
— (9, (C(x,t) + |Vu|)P~2/2Vu) € B, (u), (z,t) €T x (0,T),
u(z,0) =u(z,T), x €,
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where  is a bounded conical domain of the Euclidean space RY (N > 1), T is
the boundary of 2 € C! and ¥ denotes the exterior normal derivative to I'. The
symbols (-,-) and || denote the Euclidean inner-product and the Euclidean norm
in RY, respectively, T is a positive constant,

Ju Ou ou
Vi (2L O o
Ox1 0o orN
and ¢ = (x1,22,...,25) € . Furthermore S, is the subdifferential of ¢,
where ¢, = p(z,:): R — R for ¢ € T, a and ¢ are nonnegative constants,

0< Cla,t) €V i=LP(0,T;WP(Q)), f(a,t) € W = Lm0, T; Lmex{pr'} ()
and g: Q x RN*! — R are given functions.
Just like in [41], we need the following assumptions to discuss (4.4).

Assumption 4.1. p € R with 2N/(N+1) < p < oo, a € (0,1] and r € R
satisfies 2N/(N 4+ 1) < r < min{p, p’'} < oo, where 1/p+1/p’ =1land 1/r+1/r' = 1.

Assumption 4.2. Green’s formula is available.

Assumption 4.3. Foreach z €T, p, = ¢(z,-): R — R is a proper, convex and
lower-semicontinuous function and ¢4 (0) = 0.

Assumption 4.4. 0 € (,(0) and for each ¢t € R, the function z € T' — (I 4+
ABz)~1(t) € R is measurable for A > 0.

Assumption 4.5. Suppose that g: Q x RVT! — R satisfies the following con-
ditions:

(a) Carathéodory’s conditions;
(b) Growth condition:

lg(z,71,. .. ,TN+1)|max{p’pl} < |h(z, t)|P + bl |P,

where (11,79,...,7n41) € RNTL h(x,t) € W and b is a positive constant;
(c) Monotone condition: g is monotone in the following sense:

(g(xvrlv" '77AN+1) _g(xatla' <. atNJrl)) 2 (Tl _tl)
for all z € Q and (r1,...,7541), (t1,...,tx41) € RVFL

Assumption 4.6. Let V* denote the dual space of V. Then the norm in V,
Ilv, is defined by

1/p

T
fute 0l = ([ w0y dt) e ev.
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Definition 4.1 ([41]). Define an operator K: V — V* by

T T
(w, Ku) ://<(C(x,t)+ |Vul?)P=2/2Ty, Vw) dxdt—i—z—:// Ju|" " 2uw da dt
0Jo 0Ja

for u,w € V.

Definition 4.2 ([41]). Define a function ®: V — R by

T
D(u) = / / o (ulr (2, 1)) dT () dt

for u(x,t) € V.

Definition 4.3 ([41]). Define S: D(S) = {u(z,t) € V: du/0t € V*, u(z,0) =
u(z, T)} — V* by

Lemma 4.1 ([41]). Define a mapping B: W — 2V as follows:
D(B) = {u € W; there exists an f € W such that f € Ku+ 0®(u) + Su},

where 0®: V — V* is the subdifferential of ®. For u € D(B), we set Bu = {f € W ;
f € Ku+0®(u) + Su}. Then B: W — 2% is m-accretive.

Lemma 4.2 ([41]). Define
A: D(A) = Lraxter} o, 7, whmader Q) c W — W
by
(Au)(x,t) = g(xa U, Vu) - f(:[:,t)

for all u(x,t) € D(A) and f(x,t) is the same as that in (4.4). Then A: D(A) C
W — W is continuous and strongly accretive. If we further assume that g(x,rq,...,
rN+1) = r1, then A is a-inverse strongly accretive of order p.

Lemma 4.3 ([41]). For f(z,t) € W, the integro-differential equation (4.4) has
a unique solution u(z,t) € W.

Lemma 4.4 (41)). If e =0, g(z,71,...,7N41) = r1 and f(x,t) = k, where k is
a constant, then u(x,t) = k is the unique solution of the integro-differential equa-
tion (4.4). Moreover, {u(z,t) € W; u(x,t) = k satisfies (4.4)} = (A + B)~1(0).

Let operators B and A be as in Lemma 4.1 and Lemma 4.2 respectively. Then
we can apply our proposed Algorithm 3.1 to solve the nonlinear integro-differential
equation (4.4) in the following theorem:
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Theorem 4.4. Suppose Assumptions 4.1-4.6 hold. Let {«,} be a sequence in
(0,1) such that lima, =0, Y «a, = oo, and let {a,} and {b,} be sequences in D
n=1
such that lim ||an||/on =0 and lim ||b,||/on = 0. Assume that
n—oo n— oo

0 < liminfr, < limsupr, <
n—0o0 n—o00

(2—5)1/(;’)1)-

Given ug(x,t),u1(z,t) € D, for every n > 1, compute
{ yn(x,t) :un(xvt)+ﬂn[un(xvt) _unfl(xvt)]v

un+1(x,t) = anuo(xvt) + (1 - an)(‘]ﬁ (yn(xat) - Tn(Ayn(xvt) + a"ﬂ)) + bn)v

where 8 € [0,1) and 3, is chosen such that 0 < 8, < 8,

i n(@,t) # tn (2,1
mln {67 Hun(x,t) Un—1 37 t HD} " (E #u 1(1‘ )

B, otherwise,

Bn:

where €, = o(aw,). Suppose in the nonlinear integro-differential equation (4.4), € = 0,
g(z,m1,...,rn+1) = m and f(z,t) = k, where k is a constant. Then {u,(z,t)}
converges strongly to the unique solution u(z,t) of (4.4), where

’U,(J?, f,) = Q(A-l—B)*l(O) (UO(J?, t))

5. NUMERICAL EXAMPLE

In this section, we give some numerical examples to the signal recovery in com-
pressed sensing. We aim at providing a comparison between our Algorithm 3.1 with
and without inertial terms which is the algorithm (1.3) of Lépez et al. [26]. Com-
pressed sensing can be modeled as the underdeterminated linear equation

(5.1) y=Cz+e¢,

where 2 € R is a vector with m nonzero components to be recovered, y € RM is the
observed or measured data with noise ¢, and C: RY — RM™ (M < N) is a bounded
linear operator. It is known that to solve (5.1) can be seen as solving the LASSO
problem

1
5.2 in =|ly — Cz||% + \|z||1,
(5.2) ;élu%h”y ]|z + Allzllx
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where A > 0. Hence we can apply our method for solving (5.2). In this case, we set
A =V the gradient of f where f(z) = 3|ly — Cz||3 and B = g the subdifferential
of g where g(x) = M|z|;. It is well-known that Vf(z) = C*(Cz — y) and it is
1/]|C|*-isa [9]. Moreover, dg is maximal monotone [35].

In our experiment, the sparse vector z € R is generated from the uniform dis-
tribution in the interval [—2,2] with m nonzero elements. The matrix C' € RM*V is
generated from a normal distribution with mean zero and variance one. The obser-
vation y is generated by white Gaussian noise with signal-to-noise ratio SNR = 40.
The restoration accuracy is measured by the error

Ep = |lzn —xf2 <,

where ¢ is a given tolerance and z,, is an estimated signal of x.

In what follows, let r, = 0.5/||C|?, a, = 1072/n, &, = 1/n'! and B, = B, with
B = 0.5. The error sequences {a,} and {b,} are null sequences in RY. The initial
points are given by xg = ones([N, 1]) and z1 = zeros([N, 1]). We denote by “CPU”
the CPU time and by “Iter” the number of iterations. The stopping criterion is given
by € = 107°. The numerical results are reported as follows:

N =512, M =256 N =1024, M =512
m-sparse signal  Algorithm 3.1 ’ ’

CPU Iter CPU Iter

m =10 B=0 3.4125 1020 13.6435 1523
8=0.5 1.4217 623 6.3521 824

m =20 5=0 8.1457 1736 20.4127 1834
B8 =0.5 4.3251 1136 10.1458 1214

m = 30 B=0 17.6321 2412 47.2568 2835
B=0.5 9.1025 1732 22.3215 1911

m =40 5=0 31.3258 3214 75.3968 3536
B8=05 17.5032 2313 43.8457 2712

m = 50 B=0 47.3625 3982 117.6321 4498
B=0.5 17.6512 2996 49.7121 3485

Table 1. Computational results for solving the LASSO problem.

From Table 1 we observe that iterations increase as m increases and it takes time
to recover the signal. Also, for a given tolerance, our algorithms can be used to solve
the LASSO problem in compressed sensing as well. However, it was revealed that
our Algorithm 3.1 with inertial extrapolation takes significantly smaller number of
iterations and less CPU time compared to Algorithm 3.1 without inertial extrapol-
ation.

429



We next discuss the optimal choice of the parameter S on the convergence behavior

of the proposed Algorithm 3.1. In this case, all assumptions are given as above with

m = 50 and then numerical results which are averaged 10 times in terms of CPU

and Iter are obtained as follows:

N =512, M = 256

N =1024, M =512

CPU Iter CPU Tter
5=0 0.095124 1825.2 0.356312 2566.7
5=0.1 0.080124 1651.8 0.321257 2013.5
5=0.2 0.077256 1456.2 0.301452 1947.4
5 =0.3 0.074965 1372.7 0.282541 1825.3
5 =04 0.071968 1235.5 0.263692 1636.4
B=0.5 0.069124 1138.7 0.245869  1457.2
B=0.6 0.067369 1059.5 0.223687  1236.2
B8 =0.7 0.065125 936.1 0.212574 1120.6
5 =0.8 0.062358 847.2 0.201247 1021.5
B8=0.9 0.059135 796.3 0.200147 978.5

Table 2. Computational results for choices of 3.

From Table 2 it is observed that the choice of § affects the number of iterations

and the CPU time of our algorithm. To be more precise, Iter and CPU have a small

number when the values of 3 tend to 1 and the worst case occurs when 5 = 0, i.e.,

without the inertial term.

Objective function value

— Algorithm 3.3 with 8 =0.5
---- Algorithm 3.3 with 8 =0 7

1 1 e it

500

1000

1500 2000 2500 3000 3500 4000
Number of Iteration

Figure 1. The objective function value versus the number of iterations in the case N = 512,

M = 256.

430



We next provide some numerical experiments to illustrate the convergence behav-
ior of all algorithms in comparison. We plot the number of iterations versus the
objective function value and errors.

Figures 1 and 3 show the objective function values of Algorithm 3.1 with 5 = 0 and
B = 0.5. From Table 1 we can see that for different choices of m = 10, 20, 30, 40, 50;
N =512, M = 256 and N = 1024, M = 512; the objective function values decrease
faster when 8 = 0.5 than in the case when 8 = 0 (see the values of CPU and Iter
in Table 1). Figures 2 and 4 compare the performance of the two versions of the

algorithm in terms of errors.

0-12 T T T T T T T
E, — Algorithm 3.3 with 5 =0.5
01k ---- Algorithm 3.3 with 8 =0
0.08 | |

0.06

0.04

0.02

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Iteration

Figure 2. The errors versus the number of iterations in the case N = 512, M = 256.

—_
Ut

4 — Algorithm 3.3 with 8 =0.5

I ---- Algorithm 3.3 with 3 =0 ]|
£ 35f ]
g
R ]
ks
E 2.5 R
£z 2 1
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=
o

—

0.5 ) 1 1 s ettt O 1
500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Iteration

Figure 3. The objective function value versus the number of iterations in the case N = 1024,
M = 512.
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0~07 T T T T T T T T
E, — Algorithm 3.3 with 8 = 0.5
0.06 | ---- Algorithm 3.3 with 8 =0 -

0.04 R

0.03

0.02

0.01

O 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Iteration

Figure 4. The errors versus the number of iterations in the case N = 1024, M = 512.

Next, we give another example in L2[0, 2] which is an infinite dimensional space
with the norm ||z| = ( 02’1 z(t)?dt)'/? and inner product (z,y) = fOQT[ x(t)y(t) dt
for all z,y € L?0,2n]. Let C = {z € L?[0,2n]: fOQreta: dt < 1}. Define A:
L2[0,27] — L2[0,27] by Az(t) = z(¢)/2. In this case, we aim at minimizing the
objective function f + g where g(z) = 3||Az — b||?, b(t) = z(t) and f(z) = () is
the indicator function of C. Take a,, = 0 = b,,. The iterations are terminated when
|Tns1 — 20| < 1075, where 107° is the tolerance. Then, using Algorithm 3.1, we

obtain the following numerical results in Table 3:

zo = 11¢2, z = 7t3 xo =12, m =23+

CPU Tter CPU Tter

8=0 113.730573 199 139.126471 162
5 =0.2 59.799427 160 85.415347 134
8=04 41.389116 119 65.401940 104
B8=0.6 22.841785 69 38.475059 63
5 =0.8 22.761412 67 36.607044 53
To = t2, 21 = 3sin(t) xo =13, 11 = 2¢!

CPU Iter CPU Iter

8=0 182.406959 130 658.656476 195
5 =0.2 173.177190 118 571.352958 163
8=04 168.465893 96 442.208329 125
B8=0.6 121.344645 61 271.401659 75
5 =0.8 117.308429 59 232.989213 63

Table 3. Computational results in La-space.
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From Table 3 we see that our proposed Algorithm 3.1 still works in this example
and its convergence behavior becomes better when the value of 5 approaches 1 as in
Table 2.

Remark 5.1. Our numerical examples on LASSO and constrained convex min-
imization problems show that our proposed Algorithm 3.1 can be implemented. In
these numerical experiments, it is shown that Algorithm 3.1 outperforms its unac-
celerated version. From Tables 2 and 3, it is reported that the number of iterations
and the CPU time depend on the choice of the inertial factor 8. In fact, Iter and
CPU decrease as 3 is close to 1.

Acknowledgments. We are sincerely grateful to the Editor and the anony-
mous reviewer for comments and suggestions which have improved the original man-
uscript greatly.
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