
Applications of Mathematics

Filippo Domma; Abbas Eftekharian; Mostafa Razmkhah
Stress-strength based on m-generalized order statistics and concomitant for dependent
families

Applications of Mathematics, Vol. 64 (2019), No. 4, 437–467

Persistent URL: http://dml.cz/dmlcz/147799

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147799
http://dml.cz


64 (2019) APPLICATIONS OF MATHEMATICS No. 4, 437–467

STRESS-STRENGTH BASED ON m-GENERALIZED ORDER

STATISTICS AND CONCOMITANT FOR DEPENDENT FAMILIES

Filippo Domma, Arcavacata di Rende,

Abbas Eftekharian, Bandar Abbas,

Mostafa Razmkhah, Mashhad

Received October 16, 2018. Published online June 21, 2019.

Abstract. The stress-strength model is proposed based on the m-generalized order statis-
tics and the corresponding concomitant. For the dependency between m-generalized order
statistics and its concomitant, a bivariate copula expansion is considered and the stress-
strength model is obtained for two special cases of order statistics and upper record values.
In the particular case of copula function, the generalized Farlie-Gumbel-Morgenstern bi-
variate distribution function is considered with proportional reversed hazard functions as
marginal functions. Based on the order statistics and record values, two estimators of
stress-strength are presented using a procedure similar to the inference functions for mar-
gins. Finally, a simulation study is carried out which shows the good performance of the
proposed estimators for a finite sample.
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1. Introduction

In the stress-strength reliability, one usually considers two random variables such

that one of them is denoted as stress (X) and the other is called strength (Y ) of

a component or a system. If the stress exceeds the strength the component fails,

while the component works whenever the stress does not exceed the strength. The

reliability is defined as the probability that the component works, i.e. R = P (Y > X).

Using different specifications of the model and alternative estimation methods, the

stress-strength problem has been widely discussed in the literature by many authors.

Most of the literature has developed under the assumption of independence between
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stress and strength, by focusing on different specifications of the distribution func-

tions of the random variables X and Y and using different types of data. The book

[26] has provided an excellent review of the studies of the stress-strength model until

2003. Given the vast amount of papers published after 2003, we can only mention

a few of the most recent contributions: [36], [38], [42], [2] and [40], to name but a few.

Certainly, a much smaller number of papers addressed the stress-strength problem

when the random variables are dependent. The evaluation and the estimation of R

were discussed in the literature when (X,Y ) follows the bivariate normal distribution

by Gupta and Subramanian [20], the bivariate Pareto distribution by Hanagal [21],

the bivariate beta distribution by Nadarajah [30]. Recently, the stress-strength model

in the case of dependence using the copula approach was considered by Domma and

Giordano [15], [16].

Special attention paid by many authors to the stress-strength model is due to the

wide applicability in various fields of science. In fact, being introduced in the relia-

bility context, it has been adapted and applied in engineering, medicine, economics,

biology, and psychology. For example, in a clinical study, P (Y > X) measures the

effectiveness of the treatment when X and Y are the responses of a control group

and treatment group, respectively. Other known applications in this context concern

the evaluation of the area under the ROC curve for diagnostic tests with continuous

outcomes [1]. In economics, it has been used to evaluate the distance between the

income distributions [12] and, more recently, as a measure of a household financial

fragility which occurs whenever expenses exceed the household yearly income for

dependence case [15].

In recent years, much attention has been turned to the estimation of R based

on various types of incomplete and ordered data, such as censored samples, order

statistics, and record values. In the case when the samples are progressively Type-II

censored, we point out the papers by Raqab and Madi [35] when stress and strength

are two independent generalized Rayleigh distributions, Asgharzadeh et al. [3] and

Valiollahi et al. [41] when X and Y are two independent Weibull random variables,

Saraçoğlu et al. [37] when X and Y are independent exponential random variables,

Basirat et al. [7] in the case when stress and strength follow proportional hazard rate

families. The estimation problem of the stress-strength model based on record values

has been addressed by various authors in the case of independence between stress and

strength and with different specifications of the distribution functions of X and Y .

For example, a different formulation of generalized exponential distribution has been

studied by Jaheen [22], and Baklizi [5]. The Weibull specifications for X and Y have

been used by Baklizi [6]. Nadar and Kızılaslan [29] used the Kumaraswamy distribu-

tion. The case when stress and strength are distributed according to a proportional

reversed hazard family (PRHF) has been proposed by Condino et al. [11].
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For the purposes of this paper, it is important to highlight that the above-

mentioned papers using the ordered data apply in the estimation phase of R =

P (Y > X). A different situation is a case dealt with in the paper by Pakdaman and

Ahmadi [34] in which the main aim is to specify the stress-strength model based

on the rth order stress component, Xr:n1 , and the kth order strength component,

Yk:n2 , i.e. P (Xr:n1 < Yk:n2), when stress and strength are independent exponential

random variables.

In many contexts, being concerned with either order statistic or record value,

we observe the value of another variable, indicated in the literature by the term of

concomitant. The general theory of concomitants of order statistics was originally

studied by Yang [43]. An exhaustive review on concomitants of order statistics is

given in [13]. Let (Xi, Yi), i = 1, . . . , n, be n pairs of independent random vari-

ables from a bivariate cumulative distribution function (cdf) F (x, y). Let Xr:n be

the rth order statistic, then the Y value associated with Xr:n is the concomitant of

the rth order statistic and is denoted by Y[r:n]. The works [4] and [44] have pre-

sented only some recent contributions to the concomitant of order statistics. The

most important use of concomitants arises in selection procedures when k individ-

uals are chosen on the basis of their X-values. Then the corresponding Y -values

represent performance on an associated characteristic. For a recent utilization in an

economic context see the application in [17]. Less attention has been paid in the

literature to studies related to concomitants of record value. We recall the works by

Chacko and Thomas [10] and Bose and Gangopadhyay [9]. We refer to the paper

[33] for a possible application in biosciences. It is of great importance to emphasize

that the values of the concomitant variable, Y[r:n], are not necessarily in ascending

order as X ; furthermore, a priori it is not possible to establish whether the con-

comitant value is greater or less than the value of the order statistic or the record

value.

Recently, some authors have placed their attention on concomitants of general-

ized order statistics (GOSs) proposed by Kamps [25] as a unified approach including

several models of ordered random variables as special cases, e.g. order statistics, the

kth record values and Pfeifer’s record model, progressively type-II censored order

statistics, among others. Beg and Ahsanullah [8] have examined concomitants of

GOSs from Farlie-Gumbel-Morgenstern (FGM) distribution, Tahmasebi et al. [39]

have studied the concomitants of Dual-GOSs from Morgenstern type bivariate gen-

eralized exponential distribution, Domma and Giordano [17] have considered the

concomitants ofm-GOSs from Generalized Farlie-Gumbel-Morgenstern (GFGM) dis-

tribution. It should be noted that since between ordered data and the corresponding

concomitant there exists a dependence structure, it is necessary to use a dependence

structure such as the copula function.
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The main objective of this work is to study the probability that the kth order

statistic (or record statistic) is less than the concomitant of the kth order statistic

(or record statistic). To the best of our knowledge, this work is the first paper that

tackles this issue which can be applied in different fields of science. For example,

in an athletic competition, we can observe the athlete’s time, say A, in correspon-

dence with the personal record of the athlete B. Evidently, the time of athlete A is

the concomitant value observed in correspondence of the record time of B. But we

do not know whether the personal record of B is enough to win the competition.

In other words, the concomitant time of athlete A may be shorter than the time

records of athlete B. Following this scheme, many other real-life problems can be

described.

In this paper, we introduce the above problem from a general viewpoint of studying

the stress-strength model in the case of the concomitant based on the GOSs. In

addition, we use the PRHF as marginal distributions and the copula function to

model the dependence structure. Relevant special cases of concomitant from order

statistics and record values are studied in depth by specifying a particular copula

function and selecting a particular member of the PRHF as marginal distributions.

The paper is organized as follows. Section 2 is devoted to illustrating the con-

comitants of m-GOSs and we are presenting the general formulation of the stress-

strength model. To account for dependence we use the copula function and the

expansion proposed by Nadarajah [31], in Section 3. Moreover, the probability that

the nth m-GOSs is smaller than its concomitant, in the special cases of m-GOSs,

namely the order statistics and the upper record values, are reported in Section 3.

In Section 4, we study the relevant case of the stress-strength model with GFGM

bivariate distribution. The inference problem is studied in Section 5 and the perfor-

mance of the estimators of stress-strength is evaluated with the simulation studies

in Section 6.

2. Concomitant of m-GOSs and stress-strength model

In this section, we introduce the m-GOSs and determine the probability density

function (pdf) of the concomitant of m-GOSs. In the final part of the section,

we provide a general formulation of the stress-strength model in the case of the

concomitant of m-GOSs.

Suppose that F is an absolutely continuous cdf with survival function F = 1−F,

and pdf f . Assume that n ∈ N, m̃ = (m1, . . . ,mn−1) ∈ R
n−1, and k > 0 are

parameters such that γi = k+n−i+Mi > 0 for i = 1, 2, . . . , n−1,whereMi =
n−1∑
j=i

mi.

We denote the random variables of GOSs by X(r,n,m̃,k), r = 1, . . . , n, and their joint
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pdf is given by

(2.1) fX
(1,n,m̃,k)

,...,X
(n,n,m̃,k)

(x1, . . . , xn)

= k
n∏

i=1

γi

(n−1∏

j=1

Fmj (xj)f(xj)

)
F k−1(xn)f(xn)

on the cone F−1(0) < x1 6 . . . 6 xn < F−1(1), where F−1(·) is the inverse function
of u = F (x), i.e. a quantile function. In the particular case, when m1 = m2 = . . . =

mn−1 = m, and γi = k + (n − i)(m + 1) for i = 1, . . . , n − 1, the random variable

X(r,n,m̃,k), is called m-GOSs and is denoted by X(r,n,m,k), r = 1, . . . , n. Using (2.1),

the marginal pdf of the rth m-GOSs is

(2.2) f(r,n,m,k)(x) =
1

(r − 1)!

( r∏

i=1

γi

)
F γr−1(x)f(x)tr−1

m (F (x)),

where

tm(F (x)) =





1

m+ 1
[1− Fm+1(x)], m 6= −1,

− logF (x), m = −1, F (x) ∈ [0, 1).

Special cases ofm-GOSs can be obtained by appropriate choices of the parametersm

and k. For example, it is easy to verify that for m = 0 and k = 1, the m-GOSs

becomes the rth order statistic, whereas for m = 1 and k = 1, X(r,n,m,k) denotes the

rth upper record.

Consider observations (Xi, Yi), i = 1, 2, . . . , n, drawn from a bivariate joint pdf

hX,Y (x, y) with marginal pdfs f(x) and g(y). We can order these pairs based on one

of the random variables X or Y . In this context, if we order the Xi’s involved in

(Xi, Yi), i = 1, 2, . . . , n, the realization of Y associated with the rth m-GOS of X

is defined as the concomitant of X(r,n,m,k), and is denoted by Y[r,n,m,k]. By [8] and

using (2.2), the pdf of Y[r,n,m,k], r = 1, . . . , n, is obtained by

g[r,n,m,k](y) =

∫
∞

−∞

g(y|x)f(r,n,m,k)(x) dx,

where g(y|x) is the conditional pdf of Y given X .

In order to obtain the stress-strength based on the nth m-GOSs and its concomi-

tant, it is necessary to derive the joint pdf between X(n,n,m,k) and Y[n,n,m,k]. By

expressing g[r,n,m,k](y) using (2.2), it is possible to deduce that the joint pdf is given

by

(2.3) hX(n,n,m,k),Y[n,n,m,k]
(x, y) = hX,Y (x, y)

n∏
i=1

γi

(n− 1)!
F γn−1(x)tn−1

m (F (x)).
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Now, using (2.3) we can determine the probability that the nthm-GOS,X(n,n,m,k),

is smaller than its concomitant, Y[n,n,m,k], i.e.

(2.4) R := P (Y[n,n,m,k] > X(n,n,m,k))

=

∫∫

y>x

g(y|x)f(x)

n∏
i=1

γi

(n− 1)!
F γn−1(x)tn−1

m (F (x)) dy dx

=

∫
∞

−∞

n∏
i=1

γi

(n− 1)!
F γn−1(x)tn−1

m (F (x))f(x)

∫
∞

x

g(y|x) dy dx

= EF

[
n∏

i=1

γi

(n− 1)!
F γn−1(X)tn−1

m (F (X)){1−G(X |X)}
]
,

where G(·|·) is the conditional cdf of Y given X , and EF (·) is the expectation with
respect to F (x). It is clear that to use the general formulation shown in equa-

tion (2.4), it is necessary to specify the joint pdf between X and Y , the function t(·),
i.e. the special cases of m-GOS and the marginal distributions G(·) and F (·). To
this end, in the next sections, we use the copula function that allows us to specify

the dependence structure and the marginal distributions separately. We investigate

the stress-strength defined in (2.4) for the special cases of order statistics and record

values based on the PRHF as marginal distributions.

3. A copula-based approach to account for dependence

In the literature, it is well-known that a copula function is a joint distribution

with uniform marginal distributions, the books [23] and [32] are exhaustive references

for more details. The popularity of the copula as a tool to model the dependence

stems from the fact that in a joint distribution the dependence structure, defined by

copula function, and marginal distributions can be specified separately. Moreover,

it is important to highlight that the marginal distributions not necessarily belong to

the same family of distribution.

Let X and Y be two continuous random variables with joint distribution func-

tion HX,Y (x, y) and marginal distribution functions F (x) and G(y), respectively.

Sklar’s theorem states that any bivariate distribution function can be written

as HX,Y (x, y) = C(F (x), G(y)), where C(·, ·) is a unique copula function. It is
easy to verify that the joint pdf is given by hX,Y (x, y) = c(F (x), G(y))f(x)g(y),
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where

c(F (x), G(y)) =
∂2C(F (x), G(y))

∂F (x)∂G(y)

is the copula density.

Using the copula function, we can write the stress-strength of m-GOSs and its

concomitant as

(3.1) R =

∫∫

y>x

c(F (x), G(y))g(y)f(x)

n∏
i=1

γi

(n− 1)!
F γn−1(x)tn−1

m (F (x)) dy dx.

The equation shows that using the copula function, we can consider various cases

for X and Y . For example, X and Y are either independent, C(F (x), G(y)) =

F (x)G(y), or dependent random variables. Also, we can assume that they have

either the same distribution, X
d
= Y, or different distributions.

In order to model the dependence between X and Y, we use a general form of

the bivariate copula introduced by Nadarajah [31] which covers many known copula

functions in the literature. The Nadarajah’s expansion for the bivariate copula is

C(F (x), G(y)) =

d∑

j=1

αjF (x)ajG(y)bj ,

with the bivariate copula density

(3.2) c(F (x), G(y)) =
d∑

j=1

αjajbjF (x)aj−1G(y)bj−1,

where d > 1 is an integer and {(αj , aj , bj) : j > 1} are some real numbers.
In this paper, we use the Nadarajah’s expansion in order to model the dependence

between m-GOSs and the concomitant. So, by substituting (3.2) in (3.1) one obtains

(3.3) R =

d∑

j=1

αjajbj

∫
∞

−∞

n∏
i=1

γi

(n− 1)!
F γn−1(x)tn−1

m (F (x))F aj−1(x)f(x)

×
{∫

∞

x

Gbj−1(y)g(y) dy

}
dx

=

d∑

j=1

αjaj

n∏
i=1

γi

(n− 1)!
EF [F

γn−1(X)tn−1
m (F (X))F aj−1(X){1−Gbj (X)}].
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In the next subsection, we consider two special cases of m-GOSs and attain the

stress-strength in these cases.

3.1. Specification of the function t(·): the special cases of m-GOSs. Two

special cases of m-GOSs are considered and the stress-strength based on them are

obtained in this section.

The best-known cases of m-GOSs are the order statistics and the upper record

values. The stress-strength of order statistics and upper record values using Nadara-

jah’s expansion copula is as follows.

(1) Order statistics.

In order to obtain the stress-strength in the case of ordered statistics, it is necessary

to highlight that if we put m = 0 and k = 1 in m-GOSs, then γi = n− i + 1 and it

can be shown that

(3.4)

n∏
i=1

γi

(n− 1)!
F γn−1(x)tn−1

m (F (x)) = nFn−1(x).

Therefore, substituting equation (3.4) in (3.3), after simple algebra, we derive

(3.5) R1 := P (Y[n,n,0,1] > X(n,n,0,1))

= n

d∑

j=1

αjaj

∫
∞

−∞

[(F (x))n+aj−2f(x) − (F (x))n+aj−2f(x)(G(x))bj ] dx

= n

d∑

j=1

αjaj

[
1

n+ aj − 1
−
∫ 1

0

un+aj−2(G(F−1(u)))bj du

]
.

Unfortunately, there is no general solution to solve the last integral in (3.5) equa-

tion. However, it may be solved for some distributions, as we show in the next

section.

(2) Upper record.

If we set m = −1 and k = 1 in m-GOSs, then

(3.6)

n∏
i=1

γi

(n− 1)!
F γn−1(x)tn−1

m (F (x)) =
(− lnF (x))n−1

(n− 1)!
.

In order to calculate the stress-strength model, we need the following remarks.

R em a r k 3.1 ([19], p. 53). For −1 6 z < 1, we have − ln(1− z) =
∞∑
k=1

zk/k.
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R em a r k 3.2 ([19], p. 17). Power series raised to powers:

( ∞∑

k=0

akz
k

)n

=

∞∑

k=0

ckz
k,

where

c0 = an0 , cm =
1

ma0

m∑

k=1

(kn−m+ k)akcm−k

for m > 1 and n is a natural number.

Using equation (3.6), Remarks 3.1 and 3.2 in equation (3.3), we have

R2 := P (Y[n,n,−1,1] > X(n,n,−1,1))

=
n

(n− 1)!

d∑

j=1

αjaj

[∫
∞

−∞

(F (x))aj−1(− lnF (x))n−1f(x) dx

−
∫

∞

−∞

(F (x))aj−1(− lnF (x))n−1f(x)(G(x))bj dx

]
.

Now, let

I1 =

∫
∞

−∞

(F (x))aj−1(− lnF (x))n−1f(x) dx

and

I2 =

∫
∞

−∞

(F (x))aj−1(− lnF (x))n−1f(x)(G(x))bj dx.

By choosing u = − lnF (x), it is easy to verify that

I1 =

∫
∞

0

(1 − e−u)aj−1un−1e−u du

=

aj−1∑

k=0

(
aj − 1

k

)
(−1)k

∫
∞

0

un−1e−u(k+1) du

=

aj−1∑

k=0

(
aj − 1

k

)
(−1)kΓ(n)

(k + 1)n
,

and by Remarks 3.1 and 3.2 it can be shown that

I2 =

∫
∞

−∞

(F (x))aj−1

( ∞∑

k=1

(F (x))k

k

)n−1

(G(x))bj f(x) dx

=

∫
∞

−∞

(F (x))aj−1

( ∞∑

i=0

(F (x))i+1

i+ 1

)n−1

(G(x))bj f(x) dx

=

∞∑

i=0

ci

∫
∞

−∞

(F (x))aj+n+i−2(G(x))bj f(x) dx,
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where c0 = 1, and

cm =
1

m

m∑

k=1

(kn−m)

k + 1
cm−k

for m > 1.

Ultimately, using the integrals I1 and I2, we determine the expression of R2,

(3.7) R2 =
1

(n− 1)!

d∑

j=1

αjaj

[aj−1∑

k=0

(
aj − 1

k

)
(−1)k

Γ(n)

(k + 1)n

−
∞∑

i=0

ci

∫
∞

−∞

(F (x))aj+n+i−2(G(x))bj f(x) dx

]
.

To solve the last integral we need to specify the form of the cdfs F (·) and G(·).

3.2. The PRHF as marginal distributions for Nadarajah’s expansion

copula. In this section, we use the PRHF as marginal distributions for the copula

function and then we obtain the expressions of the stress-strength model in the

special cases of order statistics (R1) and upper record values (R2).

In a general setting, the cdf of a PRHF is defined as F (z) = [F1(z)]
α, with

−∞ 6 a 6 z 6 b 6 ∞, and α > 0, where F1(·) is an arbitrary continuous cdf
and F1(a) = 0, F1(b) = 1 (see, for example, [27], p. 234). The cdf F1(·) is called the
baseline distribution and α is a resilience parameter. The PRHF is a very flexible

family of distributions and it includes several well-known distributions as special

cases, such as the generalized exponential, the Burr X, the Topp-Leone, the Dagum,

and Type I generalized logistic, just to name a few.

Let F1(·) be the cdf of the baseline distribution with the pdf f1(·). We assume
that

(3.8) X ∼ F (x;αx) = [F1(x)]
αx and Y ∼ G(y;αy) = [F1(y)]

αy ,

with the corresponding pdfs

(3.9) f(x;αx) = αxf1(x)[F1(x)]
αx−1 and g(y;αy) = αyf1(y)[F1(y)]

αy−1.

Now, we obtain the stress-strength based on the m-GOSs and its concomitant in

the special cases of order statistics and upper record values using the PRHF. So, for

order statistics by using (3.5), (3.8), and (3.9) we have

R1 = n

d∑

j=1

αjaj

[
1

n+ aj − 1
− αx

∫
∞

−∞

[F1(x)]
αx(n+aj−1)+αybj−1f1(x) dx

]

= n

d∑

j=1

αjaj

[ 1

n+ aj − 1
− αx

αx(n+ aj − 1) + αybj

]
,
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and according to (3.7), (3.8), and (3.9) for upper record values it can be shown that

R2 =
1

(n− 1)!

d∑

j=1

αjaj

[ aj−1∑

k=0

(
aj − 1

k

)
(−1)k

Γ(n)

(k + 1)n

−
∞∑

i=0

ci
αx

αx(n+ aj + i− 1) + αybj

]
.

It is important to notice that the stress-strength model for order statistics and upper

record based on the PRHF does not depend on the common baseline distribution for

the cdfs of the random stress and of the random strength.

4. Stress-strength model for GFGM distribution family

In this section, we consider the GFGM bivariate distribution function to derive the

stress-strength model. In particular, we use the specification proposed by Bairamov

et al. [4] of the GFGM distribution, which is an extension of the original FGM

distribution obtained by introducing additional parameters in the FGM distribution

to increase the range of dependence measures.

The GFGM distribution family introduced by Farlie [18] is the most general form

of the FGM family, defined by

(4.1) H(x, y) = F (x)G(y){1 + θA(F (x))B(G(y))},

where A(·) and B(·) are differentiable functions on the unit interval and A(t) → 0

and B(t) → 0 as t → 1, and θ is the dependence parameter. In a special case, when

θ = 0, then X and Y are independent. The bivariate pdf of the GFGM is defined by

h(x, y) = {1 + θ[A(F (x)) + F (x)A′(F (x))][B(G(y)) +G(y)B′(G(y))]}F (x)G(y),

where

A′(F (x)) =
∂A(F (x))

∂F (x)
and B′(G(y)) =

∂B(G(y))

∂G(y)
.

Evidently, the FGM distribution is a special case of the GFGM distribution with

dependence parameter θ, when A(F (x)) = 1 − F (x) and B(G(y)) = 1 − G(y), and

the cdf of FGM is

H(x, y) = F (x)G(y){1 + θ(1 − F (x))(1 −G(y))},

with the corresponding bivariate pdf

(4.2) h(x, y) = f(x)g(y){1 + θ(2F (x)− 1)(2G(y)− 1)}.
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If we consider A(F (x)) = [1− Fm1(x)]p1 and B(G(y)) = [1 −Gm2(y)]p2 in equa-

tion (4.1), then we obtain the following generalization of the FGM distribution as

(4.3) H(x, y) = F (x)G(y){1 + θ[1− Fm1(x)]p1 [1−Gm2(y)]p2},

with m1,m2, p1, p2 > 0 (see [4]). It should be noted that θ has an admissible range

θl 6 θ 6 θu where

(4.4) θl = −min
{
1,

1

m1m2

[ 1 +m1p1
m1(p1 − 1)

]p1−1[ 1 +m2p2
m2(p2 − 1)

]p2−1}
,

θu = min
{ 1

m1

[ 1 +m1p1
m1(p1 − 1)

]p1−1

,
1

m2

[ 1 +m2p2
m2(p2 − 1)

]p2−1}
.

It is easy to show that the corresponding pdf of (4.3) is given by

(4.5) h(x, y) = f(x)g(y)

{
1 + θ

p1−1∑

i=0

p2−1∑

j=0

ξp1−1,iξp2−1,jF
m1i(x)Gm2j(y)

× [1− (1 +m1p1)F
m1(x)][1 − (1 +m2p2)G

m2(y)]

}
,

where ξs,t is
(
s
t

)
(−1)t.

Now, using equation (3.1) and equation (4.5), it can be shown that the stress-

strength model of m-GOS and its concomitant in this case is

(4.6) R(GFGM) = P (Y[n,n,m,k] > X(n,n,m,k))

=

n∏
i=1

γi

(n− 1)!
EF [F

γn−1(X)tn−1
m (F (X)){1−G(X)}]

+ θ

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t

n∏
i=1

γi

(n− 1)!

× EF

[
F γn−1(X)tn−1

m (F (X))Fm1r(X){1− η1F
m1(X)}

× {η2,t(1 −Gm2t+1(X))− η3,t(1 −Gm2(t+1)+1(X))}
]
,

where

η1 = 1 +m1p1, η2,t =
1

m2t+ 1
, and η3,t =

1 +m2p2
m2(t+ 1) + 1

.
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As was done in the previous section, to use the equation (4.6), we have to specify

the function t(·) and the marginal distribution functions F (·) and G(·).
Below we consider the stress-strength model on the basis of the m-GOS and its

concomitant, in the simple but relevant case of the FGM bivariate distribution,

a particular case of the GFGM bivariate distribution. Let the density copula of

FGM be as (4.2), then we have

R(FGM) =

n∏
i=1

γi

(n− 1)!
EF [F

γn−1(X)tn−1
m (F (X)){1−G(X)}]

+ θ

n∏
i=1

γi

(n− 1)!
EF [F

γn−1(X)tn−1
m (F (X))(2F (X)− 1)(G(X)−G2(X))].

4.1. Specification of t(·) function: the special cases of m-GOS. In what

follows, the stress-strength model of order statistics and upper record values, special

cases of the m-GOS is presented using the GFGM bivariate distribution.

(1) Order statistics.

In the case of order statistics, we can use the result obtained in the previous

section; in particular, by substituting equation (3.4) in equation (4.6), we derive

(4.7) R
(GFGM)
1 = nEF [F

n−1(X)(1−G(X))]

+ nθ

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,tEF [F
n+m1r−1(X){1− η1F

m1(X)}

× {η2,t(1−Gm2t+1(X))− η3,t(1−Gm2(t+1)+1(X))}].

(2) Upper record.

According to (3.6), it can be written

R
(GFGM)
2 =

∫
∞

0

f(x)
[− ln(1− F (x))]n−1

(n− 1)!

∫
∞

x

g(y) dy dx

+ θ

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t

∫
∞

0

F (x)Fm1r(x)[1 − (1 +m1p1)F
m1(x)]

× [− ln(1 − F (x))]n−1

(n− 1)!

∫
∞

x

g(y)Gm2t(y)[1− (1 +m2p2)G
m2(y)] dy dx.
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Now, using Remarks 3.1 and 3.2 and after some simple algebra, we get

(4.8) R
(GFGM)
2 = 1− 1

(n− 1)!

∞∑

i=0

ci

∫
∞

0

(F (x))n+i−1G(x)f(x) dx

+ θ

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t

{
η2,t − η3,t
(n− 1)!

∞∑

i=0

ci
m1r + n+ i

+
η1(η3,t − η2,t)

(n− 1)!

∞∑

i=0

ci
m1(r + 1) + n+ i

− 1

(n− 1)!

∞∑

i=0

ci

∫
∞

0

[
η2,t(F (x))m1r+n+i−1(G(x))m2t+1

− η3,t(F (x))m1r+n+i−1(G(x))m2(t+1)+1

− η1η2,t(F (x))m1(r+1)+n+i−1(G(x))m2t+1

+ η1η3,t(F (x))m1(r+1)+n+i−1(G(x))m2(t+1)+1
]
f(x) dx

}
.

In the next subsection, we consider the PRHF as marginal distributions in order

to calculate the stress-strength model.

4.2. The PRHF as marginal distributions for GFGM copula. According

to the results obtained in the previous sections, we assume the PRHF as marginal

distributions for GFGM copula and obtain the stress-strength in special cases.

(1) Order statistics.

Using (3.8), (3.9), and (4.7), we can write

(4.9) R
(GFGM)
1 = 1− nαx

nαx + αy

+ nθ

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t

{
η2,t

n+m1r
− η2,tαx

αx(n+m1r) + αy(m2t+ 1)

− η3,t
n+m1r

+
η3,tαx

αx(n+m1r) + αy(m2(t+ 1) + 1)

+
η1η2,tαx

αx(n+m1(r + 1)) + αy(m2t+ 1)
− η1η2,t

n+m1(r + 1)
+

η1η3,t
n+m1(r + 1)

− η1η3,tαx

αx(n+m1(r + 1)) + αy(m2(t+ 1) + 1)

}
.
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(2) Upper record.

According to (3.8), (3.9), and (4.8) and after simple algebra we have

(4.10) R
(GFGM)
2 = 1− αx

(n− 1)!

∞∑

i=0

ci
αx(n+ i) + αy

+ θ

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t

{
(η2,t − η3,t)

(n− 1)!

∞∑

i=0

ci
m1r + n+ i

+
η1(η3,t − η2,t)

(n− 1)!

∞∑

i=0

ci
m1(r + 1) + n+ i

− αxη2,t
(n− 1)!

∞∑

i=0

ci
αx(m1r + n+ i) + αy(m2t+ 1)

+
αxη3,t
(n− 1)!

∞∑

i=0

ci
αx(m1r + n+ i) + αy(m2(t+ 1) + 1)

+
αxη1η2,t
(n− 1)!

∞∑

i=0

ci
αx(m1(r + 1) + n+ i) + αy(m2t+ 1)

− αxη1η3,t
(n− 1)!

∞∑

i=0

ci
αx(m1(r + 1) + n+ i) + αy(m2(t+ 1) + 1)

}
.

It is observed that the stress-strength models obtained in equations (4.9) and (4.10)

are free distributions with respect to baseline distributions.

5. Stress-strength estimation using inference functions

for margins method

In this section, we propose a procedure to estimate the stress-strength model by

considering the GFGM distribution as the bivariate distribution between random

stress and random strength. In this case, it is well-known in the literature that

the maximum likelihood estimation (MLE) of the dependence parameter θ does not

exist. Therefore, we suggest using a procedure similar to the inference functions

for the margins (IFM) method ([23] and [24]). First of all, we apply the maximum

likelihood method to estimate the shape parameters, separately. It is easy to show

that the MLEs of αx and αy based on a random sample with size n are given by

(5.1) α̂x = − n
n∑

i=1

lnF1(Xi)
, α̂y = − n

n∑
i=1

lnF1(Yi)
.
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Subsequently, we use a nonparametric estimator of θ. Domma and Giordano [17]

showed that an unbiased estimator of θ based on the GFGM copula is given by

θ̂ =
(2 +m1p1)(2 +m2p2)τ̂

8p1p2B(2/m1, p1)B(2/m2, p2)
,

with B(·, ·) being the Beta function, where τ̂ is the unbiased estimator of Kendall’s τ

(5.2) τ̂ =

(
n

2

)
−1 ∑

16i6j6n

sgn(Xi −Xj) sgn(Yi − Yj).

Now, replacing the estimators of αx, αy, θ, in (4.9) and (4.10) we derive the estimators

of stress-strength for order statistics and upper record. In so doing, the estimators

of R
(GFGM)
1 and R

(GFGM)
2 are given by

(5.3) R̂
(GFGM)
1 = 1− nα̂x

nα̂x + α̂y
+ nθ̂

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t

×
{

η2,t
n+m1r

− η2,tα̂x

α̂x(n+m1r) + α̂y(m2t+ 1)

− η3,t
n+m1r

+
η3,tα̂x

α̂x(n+m1r) + α̂y(m2(t+ 1) + 1)

+
η1η2,tα̂x

α̂x(n+m1(r + 1)) + α̂y(m2t+ 1)

− η1η2,t
n+m1(r + 1)

+
η1η3,t

n+m1(r + 1)

− η1η3,tα̂x

α̂x(n+m1(r + 1)) + α̂y(m2(t+ 1) + 1)

}
,

and

R̂
(GFGM)
2 = 1− α̂x

(n− 1)!

∞∑

i=0

ci
α̂x(n+ i) + α̂y

(5.4)

+ θ̂

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t

{
η2,t − η3,t
(n− 1)!

∞∑

i=0

ci
m1r + n+ i

+
η1(η3,t − η2,t)

(n− 1)!

∞∑

i=0

ci
m1(r + 1) + n+ i
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− α̂xη2,t
(n− 1)!

∞∑

i=0

ci
α̂x(m1r + n+ i) + α̂y(m2t+ 1)

+
α̂xη3,t
(n− 1)!

∞∑

i=0

ci
α̂x(m1r + n+ i) + α̂y(m2(t+ 1) + 1)

+
α̂xη1η2,t
(n− 1)!

∞∑

i=0

ci
α̂x(m1(r + 1) + n+ i) + α̂y(m2t+ 1)

− α̂xη1η3,t
(n− 1)!

∞∑

i=0

ci
α̂x(m1(r + 1) + n+ i) + α̂y(m2(t+ 1) + 1)

}
.

Although R̂
(GFGM)
1 and R̂

(GFGM)
2 are non-linear functions with respect to (Xi, Yi),

i = 1, . . . , n, some mathematical properties are investigated such as asymptotic un-

biasedness and asymptotic distribution of the R̂
(GFGM)
1 in the following theorem.

Theorem 5.1. The function R̂
(GFGM)
1 has an asymptotic normal distribution as

√
n(R̂

(GFGM)
1 −R

(GFGM)
1 )√

V ∗

d→ N(0, 1),

where

V ∗ =

[
∂R

(GFGM)
1

∂αx
,
∂R

(GFGM)
1

∂αy
,
∂R

(GFGM)
1

∂θ

]

α2
x 0 0

0 α2
y 0

0 0 4K2σ2
τ







∂R
(GFGM)
1

∂αx

∂R
(GFGM)
1

∂αy

∂R
(GFGM)
1

∂θ




,

with

K =
(2 +m1p1)(2 +m2p2)

8p1p2B(2/m1, p1)B(2/m2, p2)
,

and σ2
τ = Var(E[sgn(X−X̃) sgn(Y − Ỹ )|X,Y ]), where (X̃, Ỹ ) is an independent copy

of (X,Y ).

P r o o f. The proof of Theorem 5.1 is given in Appendix. �

In the next section, the efficiency of the proposed estimators is investigated using

simulation and numerical computation.
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6. Simulation study

The simulation study helps us to evaluate the performance of the introduced esti-

mators of the stress-strength model for order statistics and record statistics. Toward

this end, a simulation study is done in three stages as follows:

(1) To generate a data set from the GFGM(m1,m2, p1, p2) copula with dependence

parameter θ, we first consider a fixed θ, say θ0, based on the admissible range in (4.4)

and marginal Dagum distribution for X and Y , i.e., X ∼ Da(αx, λ, δ) and Y ∼
Da(αy, λ, δ), where αx, αy, δ > 0 are shape parameters and λ > 0 is a scale parameter.

It is obvious that the Dagum distribution belongs to PRHF; in fact, the cdf of Dagum

distribution can be written as F (w;αwλ, δ) = [F1(w;λ, δ)]
αw , where F1(w;λ, δ) =

(1+λw−δ)−1. Next, we generate a random pairs of size n from GFGM copula using

the following algorithm (see [32], p. 41), for fixed value of the sample size n, the

marginal parameters αx, αy, λ and δ and the copula parameters m1, m2, p1, p2
and θ:

⊲ Generate two independent random samples of numbers with size n from the U(0, 1)

distribution, i.e. ui, ti for i = 1, 2, . . . , n, where ui and ti are independent observa-

tions from U(0, 1) distribution.

⊲ Compute vi using numerical methods, where vi is the numerical value from the

equation C(vi|ui) = ti and where C(vi|ui) stands for the conditional copula of

GFGM. By repeating this process B times, we have B data sets of size n from

GFGM copula.

⊲ Obtain the n simulated pairs of data, say (xi, yi) for i = 1, 2, . . . , n, by the following

quantiles of Dagum distributions:

xi =

(
λ

u
−1/αx

i − 1

)1/δ

, yi =

(
λ

v
−1/αy

i − 1

)1/δ

.

(2) Now, using the simulated data from the previous stage, we compute the values

of estimators θ̂, α̂x, α̂y, R̂
(GFGM)
1 and R̂

(GFGM)
2 . Note that, to estimate θ, we should

first obtain the value of Kendall’s τ of (xi, yi) using (5.2); also, to obtain α̂x, α̂y, we

should use Dagum distributions as baseline distributions in (5.1).

(3) We apply two criteria: the mean squared error (MSE) and the average of

the relative estimates (AVRE) for evaluating the performance of θ̂, R̂
(GFGM)
1 and

R̂
(GFGM)
2 , in which they are defined on the basis of B iterations as

MSEn(T̂ ) =
1

B

B∑

j=1

(T̂j − T0)
2, AVREn(T̂ ) =

1

B

B∑

j=1

T̂j

T0
,
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where T̂j and T0 are the value of the estimator at the jth iteration and the fixed

value of the parameter, respectively.

Based on the above stages, we performed the simulation for some combinations of

(m1,m2, p1, p2) with B = 10000 iterations for the sample size, i.e. n = 5, 6, 7, 8, 9, 10.

Since the range of θ is a function of (m1,m2, p1, p2), we consider two arbitrary differ-

ent values of θ, one positive and one negative for each combination of (m1,m2, p1, p2).

Also, we have used Dagum marginal distributions Da(1.5, 1, 3) and Da(0.5, 1, 3) to

generate the data according to the aforementioned stages. It should be noted that

the obtained results do not change remarkably in comparison with other choices of

the Dagum parameters. The AVRE criterion indicates the behavior of each estimator

with respect to the chosen fixed value of that parameter.

Table 1 contains the simulation results of MSE and AVRE for R̂
(GFGM)
1 , R̂

(GFGM)
2

and θ̂. There exist 3 different combinations of (m1,m2, p1, p2) in Table 1 and it is

easy to provide quite similar outcomes for other combinations.

On the basis of the obtained results in Table 1, the estimators R̂
(GFGM)
1 and

R̂
(GFGM)
2 carry out quite well. Their estimated values are really near to the chosen

fixed ones of them because the AVRE of two estimators are very close to 1 and this

is desirable. As expected, the bias is decreasing when the sample size increases and

the MSE tends decreasingly to zero as the sample size increases. This trend can

be observed for two estimators R̂
(GFGM)
1 and R̂

(GFGM)
2 and also θ̂ in all cases such

as different combinations of (m1,m2, p1, p2) and various values of θ0. On the other

hand, the values of AVREs and MSEs for estimators are not remarkably sensitive

with respect to changes of (m1,m2, p1, p2), because by changing the combination

(m1,m2, p1, p2), the values of AVREs and MSEs have not really changed.

By comparing the estimators R̂
(GFGM)
1 and R̂

(GFGM)
2 , it can be found that both

estimators decrease with respect to n, but the MSE of R̂
(GFGM)
2 is always less than

that of R̂
(GFGM)
1 in each row of Table 1. Also, the AVRE of R̂

(GFGM)
2 is closer to 1

than the AVRE of R̂
(GFGM)
2 . These evidences show that the estimator R̂

(GFGM)
2

has better performance than the estimator R̂
(GFGM)
1 to estimate the stress-strength

parameter. In other words, based on the results of Table 1, record statistics and their

concomitants may estimate the stress-strength parameter better than order statistics

and their concomitants in view of both the AVRE and MSE criteria.
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m
1

m
2

p
1

p
2

θ 0
n

A
V
R
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(R̂

(G
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M

)
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)
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S
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(R̂
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1

)
A
V
R
E
(R̂
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)
2

)
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(R̂
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2

)
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)
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.2
1
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5
1
.1
3
6
2
3

0
.0
3
1
3
2

1
.0
4
2
5
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0
.0
0
1
0
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0
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6
9
0
7

0
.7
8
5
3
2

6
1
.1
1
2
4
7

0
.0
1
9
5
4

1
.0
1
0
8
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0
.0
0
0
1
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1
.0
2
1
2
2

0
.5
9
9
6
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7
1
.0
9
8
1
8

0
.0
1
3
0
0

1
.0
0
3
0
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2
.9
8
3
0
9
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0
5

1
.0
5
1
1
4

0
.4
7
6
7
2

8
1
.1
0
1
8
5

0
.0
0
8
4
4

1
.0
0
0
9
4

5
.8
4
7
5
7
e−

0
6

0
.9
7
1
4
4

0
.3
9
7
1
0

9
1
.1
1
3
1
1

0
.0
0
6
3
4

1
.0
0
0
3
7

1
.2
9
3
7
9
e−

0
6

0
.9
7
7
9
8

0
.3
3
6
3
7

1
0

1
.0
8
5
7
6

0
.0
0
4
0
3

1
.0
0
0
1
2

2
.3
0
8
2
2
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0
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0
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0
.2
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0
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1
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5
1
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0
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2
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1
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0
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0
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0
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6
1
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0
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0
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1
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0
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1
.1
1
1
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0
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2
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1
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3
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3
.1
2
3
2
9
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0
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1
.0
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2
3
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0
.4
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7
9
7

8
1
.0
7
9
4
8

0
.0
1
0
5
1

1
.0
0
0
7
6

4
.5
8
8
5
7
e−

0
6

1
.0
2
4
1
1

0
.3
7
1
8
4

9
1
.0
7
4
6
5

0
.0
0
7
3
4

1
.0
0
0
2
7

9
.0
0
9
9
1
e−

0
7

0
.9
8
2
4
4

0
.3
2
3
2
6

1
0

1
.0
6
3
3
0

0
.0
0
5
0
4

1
.0
0
0
0
8

1
.5
5
1
8
0
e−

0
7

0
.9
9
0
7
7

0
.2
7
9
3
8

3
4

5
4

−
0
.6
3
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5
1
.1
5
7
3
7

0
.0
2
1
3
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1
.0
5
0
2
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0
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0
0
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0
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9
2
9
2

3
.1
7
3
5
7

6
1
.1
5
9
1
1

0
.0
1
2
4
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1
.0
1
4
0
1

0
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0
0
1
6

0
.9
6
6
4
8

2
.3
5
1
6
2

7
1
.1
2
4
8
4

0
.0
0
7
0
5

1
.0
0
3
5
1

3
.1
7
8
2
9
e−

0
5

0
.9
8
1
3
5

1
.8
4
5
1
6

8
1
.1
2
5
6
4

0
.0
0
4
7
1

1
.0
0
1
2
0

7
.4
6
5
1
9
e−

0
6

0
.9
7
5
2
3

1
.5
1
4
5
3

9
1
.1
0
5
7
9

0
.0
0
3
0
5

1
.0
0
0
3
7

1
.3
7
9
6
3
e−

0
6

0
.9
4
7
5
8

1
.2
9
7
8
9

1
0

1
.0
8
6
9
1

0
.0
0
2
0
4

1
.0
0
0
1
3

2
.5
1
8
8
5
e−

0
7

0
.9
9
9
4
7

1
.0
9
2
0
5

0
.4
7
3

5
1
.0
8
5
0
5

0
.0
2
2
5
1

1
.0
3
6
1
0

0
.0
0
0
5
7

0
.9
9
4
9
4

3
.2
7
3
3
9

6
1
.0
8
9
2
2

0
.0
1
3
0
6

1
.0
0
9
7
9

0
.0
0
0
1
0

1
.0
2
4
2
8

2
.4
7
4
6
1

7
1
.0
7
8
2
8

0
.0
0
8
0
7

1
.0
0
2
5
1

2
.1
8
9
2
9
e−

0
5

0
.9
9
7
3
9

2
.0
0
6
6
6

8
1
.0
7
1
3
2

0
.0
0
5
0
3

1
.0
0
0
7
7

4
.5
6
3
0
1
e−

0
6

0
.9
9
4
0
1

1
.6
4
2
8
7

9
1
.0
7
2
7
2

0
.0
0
3
3
5

1
.0
0
0
2
5

8
.6
0
7
8
5
e−

0
7

1
.0
0
4
0
8

1
.4
2
7
6
5

1
0

1
.0
6
8
3
3

0
.0
0
2
3
1

1
.0
0
0
0
9

1
.6
6
4
1
6
e−

0
7

0
.9
7
9
9
8

1
.2
0
9
9
7

Table 1. The AVRE and MSE of R̂
(GFGM)
1 , R̂

(GFGM)
2 and θ̂ for different combinations of

(m1,m2, p1, p2).
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Appendix

For the proof of Theorem 5.1, we first prove that R̂
(GFGM)
1 is an asymptotically

unbiased estimator. For this purpose, let

R̂
(GFGM)
1 = 1−RA1

+ n

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t{Aθ̂ − θ̂RA2 + θ̂RA3 + θ̂RA4 − θ̂RA5},

where

A =
η2,t

n+m1r
− η3,t

n+m1r
− η1η2,t

n+m1(r + 1)
+

η1η3,t
n+m1(r + 1)

,

and for j = 1, . . . , 5,

RAj =
kj1α̂x

kj2α̂x + kj3α̂y
,

with

k11 = k12 = n and k13 = 1,

k21 = η2,t, k22 = n+m1r and k23 = m2t+ 1,

k31 = η3,t, k32 = n+m1r and k33 = m2(t+ 1) + 1,

k41 = η1η2,t, k42 = n+m1(r + 1) and k43 = m2t+ 1,

k51 = η1η3,t, k52 = n+m1(r + 1) and k53 = m2(t+ 1) + 1.

R em a r k 6.1. For construction, the estimators θ̂, α̂x, and α̂y are independent

of each other.

Now, we verify if the estimator R̂
(GFGM)
1 is unbiased,

E[R̂
(GFGM)
1 ] = 1− E[RA1]

+ n

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t{E[Aθ̂]− E[θ̂]E[RA2] + E[θ̂]E[RA3]

+ E[θ̂]E[RA4]− E[θ̂]E[RA5]}.

The general problem is to calculate the expectation of RAj . From known results in

the literature, we know that for two random variables (see [28], p. 181)

(6.1) E
[X
Y

]
≈ E(X)

E(Y )
− Cov(X,Y )

E2(Y )
+

E(X)

E3(Y )
Var(Y ),
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and

(6.2) Var
[X
Y

]
≈

[E(X)

E(Y )

]2{Var(X)

E2(X)
+

Var(Y )

E2(Y )
− 2Cov(X,Y )

E(X)E(Y )

}
.

Using (6.1), we can write

E[RAj ] = E
[ kj1α̂x

kj2α̂x + kj3α̂y

]

≈ E[kj1α̂x]

E[kj2α̂x + kj3α̂y]
− Cov(kj1α̂x, kj2α̂x + kj3α̂y)

(E[kj2α̂x + kj3α̂y])2

+
E[kj1α̂x]Var(kj2α̂x + kj3α̂y)

(E[kj2α̂x + kj3α̂y])3
.

R em a r k 6.2. (i) We have

(6.3) Cov(kj1α̂x, kj2α̂x + kj3α̂y)

= E{kj1α̂x[kj2α̂x + kj3α̂y]} − E[kj1α̂x]E[kj2α̂x + kj3α̂y]

= E[kj1kj2α̂
2
x + kj1kj3α̂xα̂y]− E[kj1α̂x]{E[kj2α̂x] + E[kj3α̂y]}

= kj1kj2E[α̂
2
x] + kj1kj3E[α̂xα̂y]− kj1kj2{E[α̂x]}2 − kj1kj3E[α̂x]E[α̂y]

= kj1kj2{E[α̂2
x]− (E[α̂x])

2}+ kj1kj3{E[α̂xα̂y]− E[α̂x]E[α̂y]}
= kj1kj2Var(α̂x) + kj1kj3 Cov(α̂x, α̂y)︸ ︷︷ ︸

0

= kj1kj2Var(α̂x),

where the last equality follows from Remark 6.1.

(ii) We get E[kj2α̂x + kj3α̂y] = kj2E[α̂x] + kj3E[α̂y].

(iii) It is easy to see

Var(kj2α̂x + kj3α̂y) = k2j2Var(α̂x) + k2j3Var(α̂y) + 2kj2kj3 Cov(α̂x, α̂y)︸ ︷︷ ︸
0

= k2j2Var(α̂x) + k2j3Var(α̂y).

By Remark 6.2, we derive

E[RAj] ≈
kj1E[α̂x]

kj2E[α̂x] + kj3E[α̂y]
− kj1kj2Var(α̂x)

(kj2E[α̂x] + kj3E[α̂y])2

+
kj1E[α̂x][k

2
j2Var(α̂x) + k2j3Var(α̂y)]

(kj2E[α̂x] + kj3E[α̂y])3
.

R em a r k 6.3. By asymptotic properties of MLE, we can write
√
n(α̂z − αz)

d→
N(0, (I(αz))

−1) for z = x, y, where I(αz) is the Fisher information, i.e. α̂z is asymp-

totically unbiased for αz , with variance equal to Var(α̂z) = (I(αz))
−1/n = α2

z/n.
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By Remark 6.3, the asymptotic E[RAj] is given by

(6.4) E[RAj] ≈
kj1αx

kj2αx + kj3αy
− kj1kj2α

2
x/n

(kj2αx + kj3αy)2

+
kj1αx[k

2
j2α

2
x/n+ k2j3α

2
y/n]

(kj2αx + kj3αy)3
, j = 1, . . . , 5.

So:

⊲ For j = 1, we have

E[RA1] ≈
nαx

nαx + αy
+B1,

where

B1 = − nα2
x

(nαx + αy)2
+

αx[n
2α2

x + α2
y]

(nαx + αy)3
.

⊲ For j = 2, we get

E[RA2] ≈
η2,tαx

(n+m1r)αx + (m2t+ 1)αy
+B2,r,t,

where

B2,r,t = − η2,t(n+m1r)α
2
x/n

[(n+m1r)αx + (m2t+ 1)αy]2

+
η2,tαx[(n+m1r)

2α2
x/n+ (m2t+ 1)2α2

y/n]

[(n+m1r)αx + (m2t+ 1)αy]3
.

⊲ For j = 3, we derive

E[RA3] ≈
η3,tαx

(n+m1r)αx + (m2(t+ 1) + 1)αy
+B3,r,t,

where

B3,r,t = − η3,t(n+m1r)α
2
x/n

[(n+m1r)αx + (m2(t+ 1) + 1)αy]2

+
η3,tαx[(n+m1r)

2α2
x/n+ (m2(t+ 1) + 1)2α2

y/n]

[(n+m1r)αx + (m2(t+ 1) + 1)αy]3
.

⊲ For j = 4, we have

E[RA4] ≈
η1η2,tαx

(n+m1(r + 1))αx + (m2t+ 1)αy
+B4,r,t,

where

B4,r,t = − η1η2,t(n+m1(r + 1))α2
x/n

[(n+m1(r + 1))αx + (m2t+ 1)αy]2

+
η1η2,tαx[(n+m1(r + 1))2α2

x/n+ (m2t+ 1)2α2
y/n]

[(n+m1(r + 1))αx + (m2t+ 1)αy]3
.
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⊲ For j = 5, we get

E[RA5] ≈
η1η3,tαx

(n+m1(r + 1))αx + (m2(t+ 1) + 1)αy
+B5,r,t,

where

B5,r,t = − η1η3,t(n+m1(r + 1))α2
x/n

[(n+m1(r + 1))αx + (m2(t+ 1) + 1)αy]2

+
η1η3,tαx[(n+m1(r + 1))2α2

x/n+ (m2(t+ 1) + 1)2α2
y/n]

[(n+m1(r + 1))αx + (m2(t+ 1) + 1)αy]3
.

R em a r k 6.4. Note that θ̂ is the unbiased estimator of θ (see [17]).

Therefore, using Remark 6.4 we can write

E[R̂
(GFGM)
1 ] ≈ 1− nαx

nαx + αy

+ n

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t

{
Aθ − θ

[ η2,tαx

(n+m1r)αx + (m2t+ 1)αy
+B2,r,t

]

+ θ
[ η3,tαx

(n+m1r)αx + (m2(t+ 1) + 1)αy
+B3,r,t

]

+ θ
[ η1η2,tαx

(n+m1(r + 1))αx + (m2t+ 1)αy
+B4,r,t

]

− θ
[ η1η3,tαx

(n+m1(r + 1))αx + (m2(t+ 1) + 1)αy
+B5,r,t

]}
+B1

= 1− nαx

nαx + αy
+ nθ

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t

{
A− η2,tαx

(n+m1r)αx + (m2t+ 1)αy

+
η3,tαx

(n+m1r)αx + (m2(t+ 1) + 1)αy
+

η1η2,tαx

(n+m1(r + 1))αx + (m2t+ 1)αy

− η1η3,tαx

(n+m1(r + 1))αx + (m2(t+ 1) + 1)αy

}
+B1

+ nθ

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t{−B2,r,t +B3,r,t +B4,r,t −B5,r,t}

= R
(GFGM)
1 +B1 + nθ

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t{−B2,r,t +B3,r,t +B4,r,t −B5,r,t}.

On the other hand, it can be shown that lim
n→∞

B1 = 0 and lim
n→∞

nBj,r,t = 0, for

j = 2, 3, 4, 5. Hence, we can conclude that R̂
(GFGM)
1 is the asymptotically unbiased

estimator of R
(GFGM)
1 .
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Now, we calculate the variance of estimator R̂
(GFGM)
1 .

(6.5) Var(R̂
(GFGM)
1 ) = Var(RA1) + n2

p1−1∑

r=0

p2−1∑

t=0

ξ2p1−1,rξ
2
p2−1,t

× {A2Var(θ̂) + Var(θ̂RA2) + Var(θ̂RA3) + Var(θ̂RA4) + Var(θ̂RA5)}

+ 2n

p1−1∑

r=0

p2−1∑

t=0

ξp1−1,rξp2−1,t

{
−Cov(RA1, Aθ̂)− Cov(RA1, θ̂RA2)

− Cov(RA1, θ̂RA3)− Cov(RA1, θ̂RA4) + Cov(RA1, θ̂RA5)

− Cov(Aθ̂, θ̂RA2) + Cov(Aθ̂, θ̂RA3) + Cov(Aθ̂, θ̂RA4) + Cov(Aθ̂, θ̂RA5)

− Cov(θ̂RA2, θ̂RA3)− Cov(θ̂RA2, θ̂RA4) + Cov(θ̂RA2, θ̂RA5)

+ Cov(θ̂RA3, θ̂RA4)− Cov(θ̂RA3, θ̂RA5)− Cov(θ̂RA4, θ̂RA5)
}
.

By [17] we have

(6.6) Var(θ̂) =
[ (2 +m1p1)(2 +m2p2)

8p1p2B(2/m1, p1)B(2/m2, p2)

]2
Var(τ̂ ),

where Var(τ̂ ) is reported in Appendix of [17].

For j = 2, 3, 4, 5, we can write

Var(θ̂RAj) = Var
(
θ̂

kj1α̂x

kj2α̂x + kj3α̂y

)
,

with θ̂ and RAj being independent, so

(6.7) Var(θ̂RAj) = Var(θ̂)Var(RAj) + Var(θ̂)[E(RAj)]
2 +Var(RAj)[E(θ̂)]

2.

Note that E(RAj) is reported in equation (6.4) andVar(θ̂) is given in (6.6). Moreover,

θ̂ is the unbiased estimator of θ and using (6.2), we get

Var(RAj) = Var
( kj1α̂x

kj2α̂x + kj3α̂y

)

≈
{ E[kj1α̂x]

E[kj2α̂x + kj3α̂y]

}2{Var(kj1α̂x)

E[kj1α̂x]2
+

Var(kj2α̂x + kj3α̂y)

E[kj2α̂x + kj3α̂y]2

− 2
Cov(kj1α̂x, kj2α̂x + kj3α̂y)

E[kj1α̂x]E[kj2α̂x + kj3α̂y]

}
.

By Remarks 6.2 and 6.3, we have

(6.8) Var(RAj)

≈
{ kj1αx

kj2αx + kj3αy

}2{ 1

n
+

k2j2α
2
x + k2j3α

2
y

n[kj2αx + kj3αy]2
− 2kj2αx

n[kj2αx + kj3αy]

}
,

j = 1, . . . , 5.
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Now we calculate the covariances in equation (6.5). First note that Cov(RA1, Aθ̂)=0,

because RA1 and θ̂ are independent. Furthermore,

(6.9) Cov(Aθ̂, θ̂RAj) = E[Aθ̂2RAj ]− E[Aθ̂]E[θ̂RAj ]

= AE[θ̂2]E[RAj ]−A(E[θ̂])2E[RAj ] = AVar(θ̂)E[RAj ]

≈ A
[ (2 +m1p1)(2 +m2p2)

8p1p2B(2/m1, p1)B(2/m2, p2)

]2
Var(τ̂ )E[RAj ], j = 2, . . . , 5.

In addition, for j = 2, . . . , 5, we have

(6.10) Cov(RA1, θ̂RAj) = E[RA1θ̂RAj ]− E[RA1]E[θ̂RAj ] = E[θ̂]Cov(RA1, RAj),

and

(6.11) Cov(θ̂RAi, θ̂RAj) = E[θ̂2RAiRAj ]− E[θ̂RAi]E[θ̂RAj ]

= E[θ̂2]E[RAiRAj ]− E[θ̂]2E[RAi]E[RAj]

= (Var(θ̂) + E[θ̂]2)E[RAiRAj ]− E[θ̂]2E[RAi]E[RAj ]

= Var(θ̂)E[RAiRAj ] + E[θ̂]2E[RAiRAj ]

− E[θ̂]2E[RAi]E[RAj]

= Var(θ̂)E[RAiRAj ] + E[θ̂]2Cov(RAi, RAj).

Now, we need to compute Cov(RAi, RAj). To this end,

(6.12) Cov(RAi, RAj) = E[RAiRAj ]− E[RAi]E[RAj ]

= E
[ ki1α̂x

ki2α̂x + ki3α̂y

kj1α̂x

kj2α̂x + kj3α̂y

]

− E
[ ki1α̂x

ki2α̂x + ki3α̂y

]
E
[ kj1α̂x

kj2α̂x + kj3α̂y

]

= E
[ ki1kj1α̂

2
x

(ki2α̂x + ki3α̂y)(kj2α̂x + kj3α̂y)

]
− E[RAi]E[RAj].

By (6.1), we get

E
[ ki1kj1α̂

2
x

[ki2α̂x + ki3α̂y][kj2α̂x + kj3α̂y]

]
≈ ki1kj1E[α̂

2
x]

E[(ki2α̂x + ki3α̂y)(kj2α̂x + kj3α̂y)]

− Cov(ki1kj1α̂
2
x, [ki2α̂x + ki3α̂y][kj2α̂x + kj3α̂y])

{E[(ki2α̂x + ki3α̂y)(kj2α̂x + kj3α̂y)]}2

+
ki1kj1E[α̂

2
x]

{E[(ki2α̂x + ki3α̂y)(kj2α̂x + kj3α̂y)]}3
Var([ki2α̂x + ki3α̂y][kj2α̂x + kj3α̂y]).
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To calculate the last equation, we need to compute

I1 := E[(ki2α̂x + ki3α̂y)(kj2α̂x + kj3α̂y)],

I2 := Cov(ki1kj1α̂
2
x, [ki2α̂x + ki3α̂y][kj2α̂x + kj3α̂y])

and

I3 := Var([ki2α̂x + ki3α̂y][kj2α̂x + kj3α̂y]).

For this purpose, we can write

(6.13) I1 = E[ki2kj2α̂
2
x + ki2kj3α̂xα̂y + ki3kj2α̂xα̂y + ki3kj3α̂

2
y]

= ki2kj2E[α̂
2
x] + (ki2kj3 + ki3kj2)E[α̂xα̂y] + ki3kj3E[α̂

2
y]

= ki2kj2(Var(α̂x) + E[α̂x]
2) + (ki2kj3 + ki3kj2)E[α̂x]E[α̂y]

+ ki3kj3(Var(α̂y) + E[α̂y]
2)

= ki2kj2

[α2
x

n
+ α2

x

]
+ (ki2kj3 + ki3kj2)αxαy + ki3kj3

[α2
y

n
+ α2

y

]
.

To obtain I2, since
√
n(α̂z − αz)

d→ N(0, α2
z) for z = x, y, we notice that

E[α̂3
z] = (E[α̂z])

3 + 3Var(α̂z)E[α̂z ] = α3
z + 3

α3
z

n
,

and

E[α̂4
z] = (E[α̂z])

4 + 6Var(α̂z)(E[α̂z ])
2 + 3(Var(α̂z))

2 = α4
z + 6

α4
z

n
+ 3

α4
z

n2
.

Hence,

(6.14) I2 = E[ki1kj1α̂
2
x{ki2kj2α̂2

x + (ki2kj3 + ki3kj2)α̂xα̂y + ki3kj3α̂
2
y}]

− ki1kj1E[α̂
2
x]I1

= E[ki1kj1ki2kj2α̂
4
x + ki1kj1(ki2kj3 + ki3kj2)α̂

3
xα̂y

+ ki1kj1ki3kj3α̂
2
xα̂

2
y]− ki1kj1E[α̂

2
x]I1

= ki1kj1ki2kj2

[
α4
x + 6

α4
x

n
+ 3

α4
x

n2

]

+ ki1kj1(ki2kj3 + ki3kj2)
[
α3
x + 3

α3
x

n

]
αy

+ ki1kj1ki3kj3

[α2
x

n
+ α2

x

][α2
y

n
+ α2

y

]
− ki1kj1

(
α2
x +

α2
x

n

)

×
{
ki2kj2

[α2
x

n
+ α2

x

]
+ (ki2kj3 + ki3kj2)αxαy + ki3kj3

[α2
y

n
+ α2

y

]}

= ki1kj1ki2kj2

[
2 +

1

n

]2α4
x

n
+ ki1kj1(ki2kj3 + ki3kj2)

2α3
xαy

n
,
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and

(6.15) I3 = Var(ki2kj2α̂
2
x + [ki2kj3 + ki3kj2]α̂xα̂y + ki3kj3α̂

2
y)

= k2i2k
2
j2Var(α̂

2
x) + [ki2kj3 + ki3kj2]

2Var(α̂xα̂y) + k2i3k
2
j3Var(α̂

2
y)

= 2
k2i2k

2
j2

n

(
2 +

1

n

)
α4
x + [ki2kj3 + ki3kj2]

2
( 1

n
+ 2

)α2
xα

2
y

n

+ 2
k2i3k

2
j3

n

(
2 +

1

n

)
α4
y.

Furthermore, the estimator of Kendall’s τ is a U-statistic, i.e.

τ̂ =

(
n

2

)
−1 ∑

16i<j6n

sgn(Xi −Xj) sgn(Yi − Yj).

From the theory of U-statistics we know that the τ -estimator is an unbiased and

strongly consistent estimator and asymptotically normal as
√
n(τ̂ − τ)

d→ N(0, 4σ2
τ ),

as n → ∞, where σ2
τ = Var(E[sgn(X − X̃) sgn(Y − Ỹ )|X,Y ]) and where (X̃, Ỹ ) is

an independent copy of (X,Y ) (see [14]). Hence, using Var(τ̂ ) = 4σ2
τ/n, and by

substituting equations (6.6)–(6.15) in (6.5), we obtain the variance of R̂
(GFGM)
1 .

Consequently, R̂
(GFGM)
1 is a consistent estimator, because it is a function of con-

sistent estimates. Moreover, since
√
n(τ̂ − τ)

d→ N(0, 4σ2
τ ), we can conclude that√

n(θ̂ − θ)
d→ N(0, 4K2σ2

τ ), as n → ∞, where θ̂ = Kτ̂ and θ = Kτ . Now, using

the asymptotic distributions of α̂x and α̂y and since α̂x, α̂y and θ̂ are independent,

therefore,

√
n






α̂x

α̂y

θ̂


−




αx

αy

θ




 d→ N3×3


0,




α2
x 0 0

0 α2
y 0

0 0 4K2σ2
τ




 .

Hence, by the Delta method we can conclude that

√
n(R̂

(GFGM)
1 −R

(GFGM)
1 )√

V ∗

d→ N(0, 1),

where

V ∗ =
[∂R(GFGM)

1

∂αx
,
∂R

(GFGM)
1

∂αy
,
∂R

(GFGM)
1

∂θ

]


α2
x 0 0

0 α2
y 0

0 0 4K2σ2
τ







∂R
(GFGM)
1

∂αx

∂R
(GFGM)
1

∂αy

∂R
(GFGM)
1

∂θ




.
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