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Some results on GC-flat dimension of modules
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Abstract. In this paper, we study some properties of GC-flat R-modules, where
C is a semidualizing module over a commutative ring R and we investigate
the relation between the GC -yoke with the C-yoke of a module as well as the
relation between the GC -flat resolution and the flat resolution of a module over
GF -closed rings. We also obtain a criterion for computing the GC-flat dimension
of modules.
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1. Introduction

In basic homological algebra, projective, injective and flat modules play an
important and fundamental role. Homological properties of the Gorenstein pro-
jective, injective and flat modules have been studied by many authors, some
references are [2], [3], [5], [8], [15]. The study of semidualizing modules over
commutative Noetherian rings was initiated independently (with different names)
by H.-B. Foxby in [6], E. S. Golod in [7], and W.V. Vasconcelos in [16]. Over
a commutative Noetherian ring, E. S. Holm and P. Jørgensen in [9] introduced
the C-Gorenstein projective, C-Gorenstein injective and C-Gorenstein flat mod-
ules using semidualizing modules and their associated projective, injective and
flat classes which are also called GC -projective, GC -injective and GC -flat module,
respectively. D. White introduced in [17] the GC -projective modules and gave
a functorial description of the GC -projective dimension of modules with respect
to a semidualizing module C over a commutative ring; and in particular, many
classical results about the Gorenstein projectivity of modules were generalized
in [17]. Being motivated from [17], in this paper, we give equivalent conditions
for GC -flat dimension of modules with respect to a semidualizing module C.

This paper is organized as follows. In Section 2, we recall some notions and
definitions which will be needed in the later sections. In Section 3, we establish
the relation between the GC -yoke with the C-yoke of a module as well as the
relation between the GC -flat resolution and the flat resolution of a module over
a GF -closed ring.
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In Section 4, we get some properties of GC -flat dimension of modules. In
particular, as an application of the results obtained in Section 3, we get a criterion
for computing such a dimension. Let R be a GF -closed ring and let M be an
R-module and n ≥ 0. We prove that the GC -flat dimension of M is at most n if
and only if for every nonnegative integer t such that 0 ≤ t ≤ n, there exists an
exact sequence of R-modules 0 → Xn → · · · → X1 → X0 → M → 0 such that Xt

is GC -flat and Xi are flat for i 6= t.

2. Preliminaries

Throughout this paper, R is a commutative ring with identity and all modules
are unitary modules. Let M be an R-module. We denote AddRM (or ProdRM)
the subclass of R-modules consisting of all modules isomorphic to direct sum-
mands of direct sums (direct products, respectively) of copies of M . At the
beginning of this section, we recall some notions from [10], [17].

Definition 2.1 ([17]). A degreewise finite projective (or free) resolution of an R-
module M is a projective (or free) resolution P of M such that each Pi is finitely
generated projective (free, respectively).

Remark 2.2. Note that M admits a degreewise finite projective resolution if
and only if it admits a degreewise finite free resolution. However, it is possible for
a module to admit a bounded degreewise finite projective resolution but not to
admit a bounded degreewise finite free resolution. For example, if R = k1 ⊕ k2,
where k1 and k2 are fields, then M = k1 ⊕ 0 is a projective R-module, but it does
not admit a bounded free resolution.

Definition 2.3 ([17]). An R-module C is semidualizing if it satisfies the following
conditions:

(1) C admits a degreewise finite projective resolution;
(2) the natural homothety morphism R → HomR(C,C) is an isomorphism;

and
(3) ExtiR(C,C) = 0 for any i ≥ 1.

Remark 2.4. A free R-module of rank one is semidualizing. If R is Noetherian
and admits a dualizing module D, then D is a semidualizing.

Definition 2.5 ([10]). Let C be a semidualizing module for a ring R. An R-
module is C-projective if it has the form C ⊗R P for some projective module P .
An R-module is called C-injective if it has the form HomR(C, I) for some injective
module I. Set

PC(R) = {C ⊗R P : P is R-projective},
and

IC(R) = {HomR(C, I) : I is R-injective}.

Definition 2.6 ([10]). An R-module is called C-flat if it has the form C ⊗R F

for some flat module F . Set FC(R) = {C ⊗R F : F is R-flat}.
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Definition 2.7. Let R be a ring and let X be a class of R-modules.

(1) A class X is closed under extensions if for every short exact sequence of
R-modules 0 → A → B → C → 0, the conditions A and C are in X imply
B is in X.

(2) A class X is closed under kernels of epimorphisms if for every short exact
sequence of R-modules 0 → A → B → C → 0, the conditions B and C

are in X imply A is in X.
(3) A class X is projectively resolving if it contains all projective modules and

it is closed under both extensions and kernels of epimorphisms, i.e., for
every short exact sequence of R-modules 0 → A → B → C → 0 with
C ∈ X, the conditions A ∈ X and B ∈ X are equivalent.

Definition 2.8 ([5]). An R-module M is said to be Gorenstein flat, if there exists
an exact sequence of flat R-modules,

· · · → F1 → F0 → F 0 → F 1 → · · ·

such that M ∼= Im(F0 → F 0) and such that B ⊗R − leaves the sequence exact
whenever B is an injective R-module.

Definition 2.9 ([1]). Let R be a ring. We call R GF -closed if the class of
Gorenstein flat R-modules is closed under extensions.

3. GC-flat modules

We start with the following definition.

Definition 3.1 ([9]). A complete FFC -resolution is a IC(R)⊗R-exact sequence:

(1) X : · · · → F1 → F0 → C ⊗R F 0 → C ⊗R F 1 → · · ·

in R-Mod with all Fi and F i flat. An R-module M is called GC -flat if there exists
a complete FFC -resolution as in (1) with M = Coker(F1 → F0). Set GFC(R) to
be the class of GC -flat R-modules.

It is trivial that in case C = R, the GC -flat modules are just the usual Goren-
stein flat modules.

Using the definition, we immediately get the following results.

Proposition 3.2. If (Fi)i∈I is a family of GC -flat R-modules, then
⊕

Fi is GC -

flat.

Proposition 3.3. An R-module M is GC -flat if and only if

TorR≥1
(HomR(C, I),M) = 0

and M admits a FC-resolution Y with HomR(C, I) ⊗R Y exact for any injec-

tive I.
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Proposition 3.4. Let R be a commutative Noetherian ring and F a flat R-

module. If M is an GC -flat R-module, then M ⊗R F is a GC -flat R-module.

Proof: There is an exact sequence

· · · → F1 → F0 → C ⊗R F 0 → C ⊗R F 1 → · · ·

with Fi and F i flat and M = Coker(F1 → F0). Then the sequence

· · · → F1 ⊗ F → F0 ⊗ F → C ⊗R F 0 ⊗ F → C ⊗R F 1 ⊗ F → · · ·

is exact with Fi ⊗F , F i ⊗F flat by [12, Proposition 2.11]. Let I be any injective
R-module and F = Hom(C, I). Then

TorR
1
(M ⊗R F,Hom(C, I)) = Hi((M ⊗R F )⊗F)

∼= Hi(M ⊗R (F ⊗F))

∼= TorR
1
(M,F ⊗R Hom(C, I)) = 0

by [13, page 258, 9.20] for all i ≥ 1, since F ⊗R Hom(C, I) ∼= Hom(C,F ⊗R I) is
a C-injective module by [4, Theorem 3.2.16] and [10, (1.10)]. Hence M ⊗R F is
a GC -flat R-module. �

The following result is due to [14, Proposition 5.3].

Proposition 3.5. Let C be a semidualizing R-module. Then the class GFC(R)
is closed under kernels of epimorphisms and extensions.

Proposition 3.6. Let C be a semidualizing R-module. If F is flat R-module,

then F and C ⊗R F are GC -flat. Thus, every R-module admits a GC -flat resolu-

tion.

Proof: Follows from [9, Example 2.8 (a) and (c)] and since the class of GC -
flat modules contains the class of flat modules, every R-module admits a GC -flat
resolution. �

Theorem 3.7. Let C be a semidualizing module, then the class GFC(R) of

GC -flat R-modules is projectively resolving and closed under direct summands.

Proof: Using the dual of Theorem 2.8 in [17] and together with the [14, Lem-
ma 5.2], we see that GFC(R) is projectively resolving. Now, comparing Proposi-
tion 3.5 with Proposition 1.4 in [8], we get GFC(R) is closed under direct sum-
mands. �

Proposition 3.8. Let R be a GF -closed ring. Then every cokernel in a complete

FFC -resolution is GC -flat.

Proof: Follows from Proposition 3.3, Theorem 3.7 and [14, Lemma 5.4]. �
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Lemma 3.9. Let R be a GF -closed ring and let M be GC -flat R-module. Then

there exists IC(R)⊗-exact sequences of R-modules:

0 → M → G → N → 0
and

0 → K → F → M → 0

with N,K GC -flat, G, F flat.

Proof: By the definition of GC -flat modules and Proposition 3.8 . �

The following result plays a crucial role in this section and it follows from [11,
Proposition 2.2].

Lemma 3.10. Let R be a GF -closed ring and suppose that

(2) 0 → A → G1

f
→ G0 → M → 0

is an exact sequence of R-modules with G0, G1 GC -flat. Then we have the fol-

lowing exact sequences:

(3) 0 → A → C1 → G → M → 0,

and

(4) 0 → A → H → F → M → 0

with C1, F flat, and G,H GC -flat.

Proof: Since G1 is GC -flat, there exists a short exact sequence 0 → G1 → C1 →
G′ → 0 with C1 is flat and G′ GC -flat by Lemma 3.9. Then we have the following
pushout diagram:

0

��

0

��

0 // A // G1
//

��

Im(f)

��

// 0

0 // A // C1

��

// B

��

// 0

G′

��

G′

��

0 0
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Consider the following pushout diagram:

0

��

0

��

0 // Im(f) //

��

G0
//

��

M // 0

0 // B //

��

G

��

// M // 0

G′

��

G′

��

0 0

Since G0 and G′ are GC -flat, G is also GC -flat by Theorem 3.7. Connecting the
middle rows in the above two diagrams, we get the first desired exact sequence
(3).

Since G0 is GC -flat, there exists an exact sequence 0 → G′′ → F → G0 → 0
with F flat and G′′ GC -flat by Lemma 3.9. Then we have the following pullback
diagram:

0

��

0

��

G′′

��

G′′

��

0 // N //

��

F

��

// M // 0

0 // Im(f) //

��

G0
//

��

M // 0

0 0
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Consider the following pullback diagram:

0

��

0

��

G′′

��

G′′

��

0 // A // H

��

// N

��

// 0

0 // A // G1

��

// Im(f)

��

// 0

0 0

Since G1 and G′′ are GC -flat, H is also GC -flat by Theorem 3.7. Connecting
the middle rows in the above two diagrams, we get the second desired exact
sequence (4). �

Definition 3.11. Let n be a positive integer. An R-module A is called an C-yoke
module (of M) if there exists an exact sequence of R-modules

0 → A → Fn−1 → · · · → F1 → F0 → M → 0

with all Fi C-flat.

Definition 3.12. Let n be a positive integer, a module A is called an GC -yoke
module (of M) if there exists an exact sequence of R-modules

0 → A → Gn−1 → · · · → G1 → G0 → M → 0

with all Gi GC -flat.

The following result establishes the relation between the GC -yoke with the C-
yoke of a module as well as the relation between the GC -flat resolution and the
flat resolution of a module.

Lemma 3.13. Let R be a GF -closed ring and let n ≥ 1 and

(5) 0 → A → Gn−1 → · · · → G1 → G0 → M → 0

be an exact sequence of R-modules with all Gi GC -flat. Then we have the follow-

ing:

(i) There exists exact sequences of R-modules:

(6) 0 → A → Cn−1 → · · · → C1 → C0 → N → 0
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and

0 → M → N → G → 0

with all Ci flat and G GC -flat.

(ii) There exist exact sequences of R-modules

(7) 0 → B → Fn−1 → · · · → F1 → F0 → M → 0

and

0 → H → B → A → 0

with all Fi flat and H GC -flat.

Proof: We proceed by induction on n.
(i) When n = 1, we have an exact sequence of R-modules 0 → A → G0 →

M → 0. Since we have a IC(R)⊗R-exact sequence of R-modules 0 → G0 →
C0 → G → 0 with C0 is flat and G GC -flat by Lemma 3.9, we have the following
pushout diagram:

0

��

0

��

0 // A // G0
//

��

M

��

// 0

0 // A // C0

��

// N

��

// 0

G

��

G

��

0 0

The middle row and the last column in the above diagram are the desired two
exact sequences.

Now assume that n ≥ 2 and we have an exact sequence of R-modules 0 → A →
Gn−1 → · · · → G1 → G0 → M → 0 with all Gi GC -flat. Put K = Coker(Gn−1 →
Gn−2). By Lemma 3.10, we get an exact sequence of R-modules

(8) 0 → A → Cn−1 → G′
n−2

→ K → 0

with Cn−1 flat and G′
n−2

GC -flat. Put A′ = Im(Cn−1 → G′
n−2

). Then, we get
an exact sequence of R-modules 0 → A′ → G′

n−2
→ Gn−3 → · · · → G1 → G0 →

M → 0. So, by the induction hypothesis, we get the assertion.
(ii) When n = 1, we have an exact sequence of R-modules 0 → A → G0 →

M → 0. Since we have a IC(R)⊗R-exact sequence of R-modules 0 → H → F0 →
G0 → 0 with F0 flat and H GC -flat by Lemma 3.9, we have the following pushout
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diagram:

0

��

0

��

H

��

H

��

0 // B //

��

F0

��

// M // 0

0 // A //

��

G0
//

��

M // 0

0 0

The middle row and the first column in the above diagram are the desired two
exact sequences.

Now assume that n ≥ 2 and we have an exact sequence of R-modules 0 → A →
Gn−1 → · · · → G1 → G0 → M → 0 with all Gi GC -flat. Put K = Ker(G1 → G0).
By Lemma 3.10, we get an exact sequence of R-modules

(9) 0 → K → G′
1
→ F0 → M → 0

with F0 flat and G′
1
GC -flat. Put M ′ = Im(G′

1
→ P0). Then we get an exact

sequence of R-modules 0 → A → Gn−1 → · · · → G2 → G′
1
→ G0 → M → 0. So,

by the induction hypothesis, we get the assertion. �

4. GC-flat dimensions of modules

The class of GC -flat modules can be used to define the GC -flat dimension.

Definition 4.1. For an R-module M , the GC -flat dimension of M , denoted by
GC − fdR(M), is defined as inf{n : there exists an exact sequence of R-modules
0 → Gn → · · · → G1 → G0 → M → 0 with all Gi GC -flat}. We have GC −
fdR(M) ≥ 0, and we set GC − fdR(M) = ∞ if no such integer exists.

We start with the following standard result.

Lemma 4.2. Let 0 → L → M → N → 0 be an exact sequence of R-modules.

(i) GC − fdR(N) ≤ max{GC − fdR(M), GC − fdR(L)+1}, and the equality

holds if GC − fdR(M) 6= GC − fdR(L).
(ii) GC − fdR(L) ≤ max{GC − fdR(M), GC − fdR(N)− 1}, and the equality

holds if GC − fdR(M) 6= GC − fdR(N).
(iii) GC − fdR(M) ≤ max{GC − fdR(L), GC − fdR(N)}, and the equality

holds if GC − fdR(N) 6= GC − fdR(L) + 1.
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Proof: It is easy. �

The proof of the following theorem is similar to [8, Theorem 3.15].

Theorem 4.3. Assume that R is GF -closed and C is a semidualizing module.

If any two of the modules M , M ′ or M ′′ in a short exact sequence 0 → M ′ →
M → M ′′ have finite GC -flat dimension, then so has the third.

Next result is a GC -flat version of the corresponding result about flat dimension
of modules.

Proposition 4.4. Let 0 → L → M → N → 0 be an exact sequence of R-mod-

ules. If L 6= 0 and N is GC -flat, then GC − fdR(L) = GC − fdR(M).

Proof: It follows by Lemma 4.2 (3). �

We give a criterion for computing the GC -flat dimension of modules as follows.
It generalizes [8, Theorem 3.14].

Theorem 4.5. Let R be a GF -closed ring. The following statements are equiv-

alent for any R-module M and n ≥ 0.

(i) GC − fdR(M) ≤ n.

(ii) For every nonnegative integer t such that 0 ≤ t ≤ n, there exists an exact

sequence of R-modules 0 → Xn → · · · → Xt → · · · → X1 → X0 →
M → 0 such that Xt is GC -flat and Xi are flat for i 6= t.

Proof: (ii) ⇒ (i). It is trivial.
(i) ⇒ (ii). We proceed by induction on n. Suppose GC − fdR(M) ≤ 1. Then

there exists an exact sequence of R-modules 0 → G1 → G0 → M → 0 with G0

and G1 GC -flat. By Lemma 3.10 with A = 0, we get the exact sequences of
R-modules 0 → C1 → G′

0
→ M → 0 and 0 → G′

1
→ F0 → M → 0 with C1 and

F0 flat, and G′
0
, G′

1
GC -flat.

Now suppose GC − fdR(M) = n ≥ 2. Then there exists an exact sequence
of R-modules 0 → Gn → · · · → G1 → G0 → M → 0 with Gi GC -flat for any
0 ≤ i ≤ n. Set A = Coker(G3 → G2). By applying Lemma 3.10 to the exact
sequence 0 → A → G1 → G0 → M → 0, we get an exact sequence of R-modules
0 → Gn → · · · → G2 → G′

1
→ F0 → M → 0 with G′

1
GC -flat and F0 flat. Set

N = Coker(G2 → G′
1
). Then we have GC − fdR(N) ≤ n − 1. By the induction

hypothesis, there exists an exact sequence of R-modules

0 → Xn → · · · → Xt → · · · → X1 → F0 → M → 0

such that F0 is flat and Xt is GC -flat and Xi are flat for i 6= t and 1 ≤ t ≤ n.
Now we need only to prove (ii) for t = 0. Set B = Coker(G2 → G1). By

the induction hypothesis, we get an exact sequence of R-modules 0 → Xn →
· · · → X3 → X2 → G′

1
→ B → 0 with G′

1
GC -flat and Xi being flat for any

2 ≤ i ≤ n. Set D = Coker(X3 → X2). Then by applying Lemma 3.10 to the
exact sequence 0 → D → G′

1
→ G0 → M → 0, we get the exact sequence of
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R-modules 0 → D → C1 → G′
0
→ M → 0 with C1 flat and G′

0
GC -flat. Thus we

obtain the desired exact sequence of R-modules

0 → Xn → · · · → X2 → X1 → G′
0
→ M → 0

with all Xi flat and G′
0
GC -flat. �
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