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OPTIMAL CONTROL PROBLEM AND MAXIMUM
PRINCIPLE FOR FRACTIONAL ORDER COOPERATIVE
SYSTEMS

G.M. Bahaa

In this paper, by using the classical control theory, the optimal control problem for fractional
order cooperative system governed by Schrödinger operator is considered. The fractional time
derivative is considered in a Riemann–Liouville and Caputo senses. The maximum principle for
this system is discussed. We first study by using the Lax-Milgram Theorem, the existence and
the uniqueness of the solution of the fractional differential system in a Hilbert space. Then we
show that the considered optimal control problem has a unique solution. The performance index
of a (FOCP) is considered as a function of both state and control variables, and the dynamic
constraints are expressed by a Partial Fractional Differential Equation (PFDE). Finally, we
impose some constraints on the boundary control. Interpreting the Euler-Lagrange first order
optimality condition with an adjoint problem defined by means of right fractional Caputo
derivative, we obtain an optimality system for the optimal control. Some examples are analyzed
in details.

Keywords: fractional optimal control, cooperative systems;, Schrödinger operator, maxi-
mum principle, existence of solution, boundary control, optimality conditions,
fractional Caputo derivatives, Riemann–Liouville derivatives

Classification: 26A33, 49J20, 35R11, 49J15, 49K20, 93C20

1. INTRODUCTION

Fractional calculus deals with the generalization of differentiation and integration of
non integer orders. In recent years, it has played a significant role in physics, chemistry,
biology, economics, control theory, signal and image processing, biophysics, blood flow
phenomena, aerodynamics, fitting of experimental data, etc. Extensive treatment and
various applications of the fractional calculus are discussed for example in ([14, 16, 23],
[37]).

Both fractional calculus of variations and fractional optimal control problems were
developed by many authors it is enough to see, for example, works in (see [1] – [3], [11] –
[14, 21, 35, 36] and the papers and references therein) similar to a differential equations
with integer time derivatives (see [10], [17] – [20], [24] – [26], [38] and the papers and
references therein).
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One of the most useful and best known tools employed in the study of integer order
partial differential equations is the maximum principle, as it is an useful tool to prove
many results such as existence, multiplicity and qualitative properties for their solutions.
An excellent overview of the subject up to 1967 can be found in the book by Protter
and Weinberger [38]. Several papers have explored maximum principle for integer order
different systems (linear, semilinear and nonlinear) involving Laplace and p-Laplace
operators. The maximum principle has also been studied for linear elliptic systems. In
particular, in [19], the authors proved sufficient and necessary conditions for having the
maximum principle and the existence of positive solutions for cooperative linear elliptic
systems involving Laplace operator with constant coefficients. In [20], Fleckinger and
Serag presented necessary and sufficient conditions for having the maximum principle
and for the existence of positive solutions for cooperative semilinear elliptic systems
involving Laplace operator with variable coefficients. These results have been extended
in [19] to the cooperative nonlinear elliptic system involving the p-Laplacian operators
with constant coefficients.

Also one of the recent research topics in this theory is studying the analogies of the
maximum principles known for the parabolic and elliptic types of partial differential
equations as well as their applications to analysis of solutions to the boundary or initial
boundary value problems for the fractional (non integer) partial differential equations.
The first publications that should be mentioned in this connection are the papers [15]
and [22], where a kind of a maximum principle was employed for analysis of some
fractional partial differential equations without an explicit formulation of this principle.
In [29], a weak maximum principle for a single-term time-fractional diffusion equation
with the Caputo fractional derivative was formulated and proved for the first time.
In [31], this principle was applied for an a priori estimate for solutions to the initial-
boundary-value problems for a multi-dimensional time-fractional diffusion equation. The
weak maximum principles for multi-term time-fractional diffusion equations and time-
fractional diffusion equations with the Caputo fractional derivatives of the distributed
orders were introduced and applied in [32] and [30], respectively. In [27], a strong
maximum principle for time-fractional diffusion equations with the Caputo derivatives
was established and applied for proving a uniqueness result for a related inverse source
problem of determination of the temporal component of the source equation term.

In [4] – [6], the maximum principles for single, multi-term, and distributed order frac-
tional diffusion equations with the Riemann–Liouville fractional derivatives, respectively,
were proved and employed for analysis of solutions to the initial boundary value prob-
lems for linear and non-linear time-fractional partial differential equations. A maximum
principle for multi-term time-space fractional differential equations with the modified
Riesz space-fractional derivative in the Caputo sense was introduced and employed in
[39]. In [28], a maximum principle for multi-term time-space variable-order fractional
differential equations with the Riesz–Caputo fractional derivatives was proved and ap-
plied for analysis of these equations. Finally, we mention a very recent paper [33],
where a weak maximum principle for a general time-fractional diffusion equation which
was introduced in [23], was derived and employed for proving the uniqueness of both
the strong and the weak solutions to the initial-boundary-value problem for this equa-
tion. The general time-fractional diffusion equation contains both single-and multi-term
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time-fractional diffusion equations as well as time-fractional diffusion equation of the
distributed order among its particular cases and is a new object in fractional calculus
worth to be investigated in detail.

In this paper we consider the following fractional optimal control problem for the
following cooperative systems :

aD
βy1(x; t) + (−∆ + q(x))y1(x; t) = ay1(x; t) + by2(x; t) + f1 in Ω,

aD
βy2(x; t) + (−∆ + q(x))y2(x; t) = cy1(x; t) + dy2(x; t) + f2 in Ω,

y1(x; t) = g1 as |x| → ∞,
y2(x; t) = g2 as |x| → ∞,

aI
1−βy1(x, 0+) = y1,0(x) in Ω,

aI
1−βy2(x, 0+) = y2,0(x) in Ω,


(1)

where:

(1) a, b, c and d are given numbers such that b, c > 0 (in this case, we say that the
system (1) is cooperative ),

(2) q(x) is a positive function and tending to ∞ at infinity,

(3) The fractional integral aI
1−β and fractional derivative aD

β are understood here
in the Riemann–Liouville sense, aI

1−βy(x, 0+) = limt→0+ aI
1−βy(x, t). As usual,

the Shrödinger operator takes the form Aq(x) = −∆ + q(x) in L2(Ω) where ∆
and q(x), respectively, denote the self-adjoint Laplace operator and the pointwise
multiplication operator by the potential q(x) in L2(Ω).

A strong motivation for studying and investigating the solution and the properties
for fractional cooperative systems governed by Shrödinger operators comes from the
fact that they describe efficiently anomalous of fractals physical objects of fractional
dimension like some amorphous semiconductors or strongly porous materials and frac-
tional random walk. The existence and uniqueness of solutions for such equations were
proved. Fractional optimal control is characterized by the adjoint problem. By using
this characterization, particular properties of fractional optimal control are proved.

The rest of the paper is organized as follows. In Section 2, we introduce some def-
initions and preliminary results. In Section 3, we discuss the maximum principle and
existence theorem of the system (1). In Section 4, we formulate the fractional control
problem for the cooperative system (1). In section 5, we give the fractional control
problem for the scalar case. In section 6, we state some mathematical examples and ap-
plications. We formulate an equivalent system to system (1) with fractional derivative
in Caputo sense and with different control constraints. Also we generalize our results
to n-dimensional coupled fractional system. Finally, some conclusions are formulated in
section 7.

2. PRELIMINARIES

In this section we introduce some basic definitions related to fractional derivatives. Let
n ∈ N∗ and Ω be a bounded open subset of Rn with a smooth boundary ∂Ω of class C2.
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For a time T > 0, we set Q = Ω× (0, T ) and Σ = ∂Ω× (0, T ), lateral boundary of Q.

Definition 2.1. The Left Riemann–Liouville Fractional Integral (left RLFI) and
the Right Riemann–Liouville Fractional Integral (right RLFI) are presented respectively
by

aI
βf(t) =

1

Γ(β)

∫ t

a

(t− τ)β−1f(τ) dτ, (2)

Iβb f(t) =
1

Γ(β)

∫ b

t

(τ − t)β−1f(τ) dτ, (3)

where β > 0, n− 1 < β < n. From now on, Γ(β) represents the Gamma function.

The Left Riemann–Liouville Fractional Derivative (left RLFD) is given by

aD
βf(t) =

1

Γ(n− β)

(
d

dt

)n ∫ t

a

(t− τ)n−β−1f(τ) dτ. (4)

The Right Riemann–Liouville Fractional Derivative (right RLFD) is defined by

Dβ
b f(t) =

1

Γ(n− β)

(
− d

dt

)n ∫ b

t

(τ − t)n−β−1f(τ) dτ. (5)

The fractional derivative of a constant takes the form

aD
βC = C

(t− a)−β

Γ(1− β)
, (6)

and the fractional derivative of a power of t has the following form

aD
β(t− a)α =

Γ(β + 1)(t− a)α−β

Γ(α− β + 1)
, (7)

for α > −1, β ≥ 0.

Definition 2.2. The Caputo’s fractional derivatives are defined as follows:

The Left Caputo Fractional Derivative (left CFD)

C
aD

βf(t) =
1

Γ(n− β)

∫ t

a

(t− τ)n−β−1

(
d

dτ

)n
f(τ) dτ, (8)

and

The Right Caputo Fractional Derivative (right CFD)

CDβ
b f(t) =

1

Γ(n− β)

∫ b

t

(τ − t)n−β−1

(
− d

dτ

)n
f(τ) dτ, (9)

where β represents the order of the derivative such that n−1 < β < n. Further, it holds

C
0 D

β c = 0, where c is a constant,
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and

C
0 D

β tn =

{
0, for n ∈ N0 and n < [β],

Γ(n+1)
Γ(n+1−β) t

n−β , for n ∈ N0 andn ≥ [β],

where N0 = 0, 1, 2, . . .. We recall that for β ∈ N , the Caputo differential operator
coincides with the usual differential operator of integer order. Note also that when
T = +∞, CDβ

b f(t) is the Weyl fractional integral of order β of f . The Caputo frac-
tional derivative is a sort of regularization in the time origin for the Riemann–Liouville
fractional derivative.

Lemma 2.3. (See Bahaa [9, 10]) Let T > 0, u ∈ Cm([0, T ]), β ∈ (m − 1,m),m ∈ N
and v ∈ C1([0, T ]). Then for t ∈ [0, T ] the following properties hold:

0D
βv(t) =

d

dt
0I

1−βv(t), m = 1, (10)

0D
β

0I
βv(t) = v(t), (11)

0I
β C

0 D
βu(t) = u(t)−

m−1∑
k=0

tk

k!
u(k)(0), (12)

lim
t→0+

C
0 D

βu(t) = lim
t→0+

0I
βu(t) = 0. (13)

Definition 2.4. Relation between RLFD and the CFD

The relation between the right RLFD and the right CFD is as follows:

CDβ
b x(t) = Dβ

b x(t)−
n−1∑
k=0

x(k)(b)

Γ(k − β + 1)
(b− t)(k−β), (14)

The relation between the left RLFD and the left CFD is as follows:

C
aD

βx(t) = aD
βx(t)−

n−1∑
k=0

x(k)(a)

Γ(k − β + 1)
(t− a)k−β . (15)

If x and x(i), i = 1, . . . , n − 1, vanish at t = a, then aD
βx(t) = C

aD
βx(t), and if they

vanish at t = b, then Dβ
b x(t) = CDβ

b x(t).

INTEGRATION BY PARTS

In [1] – [3], a formula for the fractional integration by parts on the whole interval [a, b]
was given by the following lemma

Lemma 2.5. Let β > 0, p, q ≥ 1, and 1
p + 1

q ≤ 1 +β ( p 6= 1 and q 6= 1 in the case when
1
p + 1

q = 1 + β )

(a) If ϕ ∈ Lp(a, b) and ψ ∈ Lq(a, b), then∫ b

a

ϕ(t)(aI
βψ)(t) dt =

∫ b

a

ψ(t)(Iβb ϕ)(t) dt. (16)
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(b) If g ∈ Iβb (Lp) and f ∈ aI
β(Lq), then∫ b

a

g(t)(aD
βf)(t) dt =

∫ b

a

f(t)(Dβ
b g)(t) dt, (17)

where aI
β(Lp) := {f : f = aI

βg, g∈Lp(a, b)} and Iβb (Lp) := {f : f =Iβb g, g∈Lp(a, b)}.

In [1] – [3], other formulas for the fractional integration by parts on the subintervals
[a, r] and [r, b] were given by the following lemmas.

Lemma 2.6. Let β > 0, p, q ≥ 1, r ∈ (a, b) and 1
p + 1

q ≤ 1 + β ( p 6= 1 and q 6= 1 in the

case when 1
p + 1

q = 1 + β ).

(a) If ϕ ∈ Lp(a, b) and ψ ∈ Lq(a, b), then∫ r

a

ϕ(t)(aI
βψ)(t) dt =

∫ r

a

ψ(t)(Iβr ϕ)(t) dt, (18)

and thus if g ∈ Iβr (Lp) and f ∈ aI
β(Lq), then∫ r

a

g(t)( aD
βf)(t) dt =

∫ r

a

f(t)(Dβ
r g)(t) dt, (19)

(b) If ϕ ∈ Lp(a, b) and ψ ∈ Lq(a, b), then∫ b

r

ϕ(t)(aI
βψ)(t) dt =

∫ b

r

ψ(t)( Iβb ϕ)(t) dt

+
1

Γ(β)

∫ r

a

ψ(t)

(∫ b

r

ϕ(s)(s− t)β−1 ds

)
dt, (20)

and hence if g ∈ Iβb (Lp) and f ∈ aI
β(Lq), then∫ b

r

g(t)( aD
βf)(t) dt =

∫ b

r

f(t)(Dβ
b g)(t) dt

− 1

Γ(β)

∫ r

a

( aD
βf)(t)(

∫ b

r

(Dβ
b g)(s)(s− t)β−1 ds) dt. (21)

That is ∫ b

r

g(t)( aD
βf)(t) dt =

∫ b

r

f(t)(Dβ
b g)(t) dt

− 1

Γ(β)

∫ r

a

f(t)Dβ
r

(∫ b

r

(Dβ
b g)(s)(s− t)β−1 ds

)
dt. (22)
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Lemma 2.7. Let β > 0, p, q ≥ 1, r ∈ (a, b) and 1
p + 1

q ≤ 1 + β ( p 6= 1 and q 6= 1 in the

case when 1
p + 1

q = 1 + β ).

(a) If ϕ ∈ Lp(a, b) and ψ ∈ Lq(a, b), then∫ b

r

ϕ(t)(Iβb ψ)(t) dt =

∫ b

r

ψ(t)(rI
βϕ)(t) dt, (23)

and thus if g ∈ rI
β(Lp) and f ∈ Iβb (Lq), then∫ b

r

g(t)(Dβ
b f)(t) dt =

∫ b

r

f(t)(rD
βg)(t) dt. (24)

(b) If ϕ ∈ Lp(a, b) and ψ ∈ Lq(a, b), then∫ r

a

ϕ(t)(bI
βψ)(t) dt =

∫ r

a

ψ(t)(Iβaϕ)(t) dt

+
1

Γ(β)

∫ b

r

ψ(t)

(∫ r

a

ϕ(s)(t− s)β−1 ds

)
dt (25)

and hence if g ∈ aI
β(Lp) and f ∈ Iβb (Lq), then∫ r

a

g(t)(Dβ
b f)(t) dt =

∫ r

a

f(t)(aD
βg)(t) dt

− 1

Γ(β)

∫ b

r

(Dβ
b f)(t)(

∫ r

a

(aD
βg)(s)(t− s)β−1 ds) dt. (26)

That is ∫ r

a

g(t)(Dβ
b f)(t) dt =

∫ r

a

f(t)(aD
βg)(t) dt

− 1

Γ(β)

∫ b

r

f(t)rD
β(

∫ r

a

(aD
βg)(s)(t− s)β−1 ds) dt. (27)

Remark 2.8. Let 0 < β < 1. Then for any φ ∈ C∞(Q), where Q is the closure set of
Q, we have: ∫ T

0

∫
Ω

(aD
βy(x, t) +Ay(x, t))φ(x, t) dxdt

=

∫
Ω

φ(x, T )aI
1−βy(x, T ) dx−

∫
Ω

φ(x, 0)aI
1−βy(x, 0+) dx

+

∫ T

0

∫
∂Ω

y
∂φ

∂νA
d∂Ωdt−

∫ T

0

∫
∂Ω

∂y

∂νA
φ dσdt

+

∫ T

0

∫
Ω

y(x, t)(CDβ
b φ(x, t) +A∗φ(x, t)) dxdt.

(28)
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where A∗ is conjugate of the operator A; which given in the next section and

∂y

∂νA
=

n∑
i,j=1

aij
∂y

∂xj
cos(n, xj) on ∂Ω,

cos(n, xj) is the ith direction cosine of n,n being the normal at ∂Ω exterior to Ω.

P r o o f . (See Mophou [35, 36]) Since the left integration in (26) can be written as∫ T

0

∫
Ω

(aD
βy(x, t) +Ay(x, t))φ(x, t) dxdt

=

∫ T

0

∫
Ω
aD

βy(x, t)φ(x, t) dxdt+

∫ T

0

∫
Ω

Ay(x, t)φ(x, t) dxdt,

(29)

the last integration in (29) is equivalent to∫ T

0

∫
Ω

Ay(x, t)φ(x, t) dxdt

=

∫ T

0

∫
Ω

y(x, t)A∗φ(x, t) dxdt+

∫ T

0

∫
∂Ω

y
∂φ

∂νA
dσdt−

∫ T

0

∫
∂Ω

∂y

∂νA
φ dσdt,

(30)

the second integration in (29) is equivalent to∫ T

0

∫
Ω
aD

βy(x, t)φ(x, t) dxdt

=

∫
Ω

[ ∫ T

0

φ(x, t)(
d

dt
aI

1−βy(x, t)) dt

]
dx

=

∫
Ω

φ(x, T )aI
1−βy(x, T )) dx−

∫
Ω

φ(x, 0) aI
1−βy(x, 0)) dx

−
∫

Ω

[ ∫ T

0

φ′(x, t)aI
1−βy(x, t) dt

]
dx

(31)

the last integration in (31) is equivalent to

−
∫

Ω

[ ∫ T

0

φ′(x, t)aI
1−βy(x, t) dt

]
dx

= −
∫

Ω

[ ∫ T

0

φ′(x, t)

(
1

Γ(1− β)

∫ t

0

(t− s)−βy(x, s) ds

)
dt

]
dx

= −
∫

Ω

[ ∫ T

0

y(x, s)

(
1

Γ(1− β)

∫ T

s

(t− s)−βφ′(x, t) dt

)
ds

]
dx

=

∫
Ω

[ ∫ T

0

y(x, s)CDβ
b φ(x, s) ds

]
dx,

(32)
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we deduce that (31) is given by∫ T

0

∫
Ω
aD

βy(x, t)φ(x, t) dxdt

=

∫
Ω

φ(x, T )aI
1−βy(x, T ) dx−

∫
Ω

φ(x, 0)aI
1−βy(x, 0) dx

+

∫
Ω

[ ∫ T

0

y(x, s)CDβ
b φ(x, s) ds

]
dx.

(33)

Hence adding (33) to (30), we obtain (28). �

Theorem 2.9. Lax Milgram Theorem (Lions [25], Lions and Magenes [26])

Let H be a real Hilbert space. Let (·, ·)H be its inner product, and || · ||H the associated
norm. Let H ′ be its topological dual (i. e. the space of continuous linear forms on H).
Let π be a bilinear form on H, and let f ∈ H ′ be a continuous linear form on H.
Let Hh be a closed vector subspace of H (in practice, Hh is finite dimensional). The
Lax–Milgram theorem states existence and uniqueness of the solution to the following
general problems:

find u ∈ H such that : ∀v ∈ H,π(u, v) = f(v) (34)

find uh ∈ Hh such that : ∀vh ∈ Hh, π(uh, vh) = f(vh) (35)

The main statement is the following:

Lax–Milgram theorem. Assume that π is bounded with continuity constant C ≤ 0
and coercive with constant α > 0. Then, there exists a unique u ∈ H solution to
Problem (13) and there exists a unique uh ∈ Hh solution to Problem (14). Moreover,
||u||H ≤ 1

c ||f ||H′ and for all vh ∈ Hh, ||u− uh||H ≤ C
α ||u− vh||H

3. MAXIMUM PRINCIPLE AND EXISTENCE THEOREM

We are concerned with the following form of the Maximum Principle: The hypotheses
f1 ≥ 0 and f2 ≥ 0 on Ω implies y1 ≥ 0 and y2 ≥ 0 for any solution y = (y1, y2) of (1).

We first study the Maximum Principle for system (1) and then we prove the existence
of positive weak solutions for this system by using Lax–Milgram method. In [17, 18],
Fleckinger obtained the necessary and sufficient conditions for having the maximum
principle and the existence of positive solutions for cooperative integer order optimal
control for the system:

∂y1

∂t
+ (−∆ + q(x))y1 = ay1 + by2 + f1 inRn,

∂y2

∂t
+ (−∆ + q(x))y2 = cy1 + dy2 + f2 inRn,

y1 = g1 as |x| → ∞,
y2 = g2 as |x| → ∞,

y1(x, 0) = y1,0(x) inRn,
y2(x, 0) = y2,0(x) inRn,


(36)
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which are:
a < λ(q(x)), d < λ(q(x))

(λ(q(x))− a)(λ(q(x))− d) > bc,

}
(37)

where λ(q(x)) is defined later.
Here, we shall use the same conditions (37) to prove the existence of the state of our

system (1); then we study the existence of fractional optimal control for system (1).
To prove the existence of the state y = (y1, y2) of system (1), we state briefly some

results introduced in [10] concerning the eigenvalue problem:

(−∆ + q(x))φ = λ(q(x))φ in Ω

φ(x)→ 0 as |x| → ∞, φ > 0.

}
(38)

The associated variational space is Vq(x)(Ω), the completion of D(Ω), with respect to
the norm:

||y||q(x) =

(∫
Ω

|∆y|2 + q(x)|y|2 dx

) 1
2

. (39)

Since the imbedding of Vq(x)(Ω) into L2(Ω) is compact. Then the operator (−∆ + q(x))
considered as an operator in L2(Ω) is positive self-adjoint with compact inverse. Hence
its spectrum consists of an infinite sequence of positive eigenvalues tending to infinity;
moreover the smallest one which is called the principle eigenvalue denoted by λ(q(x)) is
simple and is associated with an eigenfunction which does not change sign in Rn. It is
characterized by:

λ(q(x))

∫
Ω

|y|2dx ≤
∫

Ω

|∆y|2 + q(x)|y|2 dx ∀y ∈ Vq(x)(Ω). (40)

Now, to study our system (1), we have the embedding

Vq(x)(Ω)× Vq(x)(Ω)→ L2(Ω)× L2(Ω)

is continuous and compact then, we define a bilinear form

π : (Vq(x)(Ω))2 × (Vq(x)(Ω))2 → R

by

π((y1, y2), (φ1, φ2)) =
1

b

∫
Ω

[∆y1∆φ1 + q(x)y1φ1] dx+
1

c

∫
Ω

[∆y2∆φ2 + q(x)y2φ2] dx

−
∫

Ω

y1φ2 dx− d

c

∫
Ω

y2φ2 dx− a

b

∫
Ω

y1φ1 dx−
∫

Ω

y2φ1 dx.

(41)

It is easy to check that π is a continuous bilinear form; and then by Lax–Milgram
Theorem (Theorem (2.9)), we have the following theorem:

Theorem 3.1. For f1, f2 ∈ L2(∂Ω), there exists a unique solution y = (y1, y2) ∈
(Vq(x)(Ω))2 of system (1) if conditions (37) are satisfied.
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P r o o f .
We choose m large enough such that a+m > 0 and d+m > 0 and define on Vq(x)(Ω)

the equivalent norm

||y||2q(x),m =

∫
Ω

[|∆y|2 + (m+ q(x))|y|2] dx

to norm (39), and we write (41) as:

π((y1, y2), (φ1, φ2))

=
1

b

∫
Ω

[∆y1∆φ1 + (q(x) +m)y1φ1] dx− a+m

b

∫
Ω

y1φ1 dx−
∫

Ω

y2φ1dx

+
1

c

∫
Ω

[∆y2∆φ2 + (q(x) +m)y2φ2]dx− d+m

c

∫
Ω

y2φ2 dx−
∫

Ω

y1φ2 dx.

Then

π((y1, y2), (y1, y2)) =
1

b

∫
Ω

[|∆y1|2 + (q(x) +m)|y1|2] dx− a+m

b

∫
Rn

|y1|2 dx−
∫

Ω

y1y2 dx

+
1

c

∫
Ω

[|∆y2|2 + (q(x) +m)|y2|2] dx− d+m

c

∫
Ω

|y2|2 dx−
∫

Ω

y1y2 dx.

By Cauchy Schwartz inequality, we have

π((y1, y2), (y1, y2)) ≥ 1

b

∫
Ω

[|∆y1|2 + (q(x) +m)|y1|2] dx− a+m

b

∫
Ω

|y1|2dx

+
1

c

∫
Ω

[|∆y2|2 + (q(x) +m)|y2|2] dx− d+m

c

∫
Ω

|y2|2 dx

− 2

(∫
Ω

|y1|2 dx

) 1
2
(∫

Ω

|y2|2 dx

) 1
2

,

from (40), we deduce

π((y1, y2), (y1, y2)) ≥ 1

b

(
1− a+m

λ(q(x)) +m

)
||y1||2q(x),m +

1

c

(
1− d+m

λ(q(x)) +m

)
||y2||2q(x),m

2

λ+m
||y1||q(x),m||y2||q(x),m.

If (37) holds, then

π((y1, y2), (y1, y2)) ≥ C(||y1||2q(x),m + ||y2||2q(x),m) (42)

which prove the coerciveness of the bilinear form π. Then by using Lax–Milgram The-
orem (Theorem 2.9), for f1, f2 ∈ L2(Ω) system (1) has a unique solution y = (y1, y2) ∈
(Vq(x)(Ω))2 if conditions (37) are satisfied. �
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4. FORMULATION OF THE FRACTIONAL CONTROL PROBLEM

The space L2(∂Ω) × L2(∂Ω) is the space of controls. For a control u = (u1, u2) ∈
(L2(∂Ω))2, the state y(u) = (y1(u), y2(u)) of the system is given by the solution of

aD
βy1(u) + (−∆ + q(x))y1(u) = ay1(u) + by2(u) + f1 in Ω,

aD
βy2(u) + (−∆ + q(x))y2(u) = cy1(u) + dy2(u) + f2 in Ω,

y1 = u1 as |x| → ∞,
y2 = u2 as |x| → ∞,

aI
1−βy1(x, 0+) = 0 in Ω,

aI
1−βy2(x, 0+) = 0 in Ω.


(43)

The observation equations are given by

zi(u) = yi(u, t), for each i = 1, 2. (44)

For given zd = (zd1, zd2) in (L2(Ω))2; the cost function is given by:

J(v) =

∫
Ω

(y1(v)− zd1)2 + (y2(v)− zd2)2 dx+ (Nv, v)(L2(∂Ω))2 (45)

where N ∈ L((L2(∂Ω))2, (L2(∂Ω))2) is hermitian positive definite operator:

(Nu, u) ≥ η||u||2(L2(Ω))2 . (46)

The control problem then is to find

u = (u1, u2) ∈ Uad such that

J(u) ≤ J(v)

}
(47)

where Uad is a closed convex subset of (L2(∂Ω))2.
Under the given consideration, we may apply the theorem of Lions [25, 26] to obtain

the following result:

Theorem 4.1. Assume that (41) and (46) hold. If the cost function is given by (45),
then there exists an optimal control u = (u1, u2); Moreover it is characterized by the
following equations and inequalities:

CDβ
b p1(u) + (−∆ + q(x))p1(u)− ap2(u)− cp2(u) = y1(u)− z1d in Ω

CDβ
b p2(u) + (−∆ + q(x))p2(u)− bp1(u)− dp2(u) = y2(u)− z2d in Ω

p1(u) = 0 p2(u) = 0 on ∂Ω

 (48)

∫
∂Ω

∂p1(u)

∂νA
(v1 − u1) +

∂p2(u)

∂νA
(v2 − u2) dσ + (Nu, v − u)(L2(∂Ω))2 ≥ 0 ∀v ∈ Uad

together with (43), where p(u) = (p1(u), p2(u)) is the adjoint state.
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P r o o f . The control u is characterized by

J ′(u)(v − u) ≥ 0 ∀u ∈ Uad

which is equivalent to

(y(u)− zd, y(v)− y(u))(L2(Rn))2 + (Nu, v − u)(L2(∂Ω))2 ≥ 0

i. e.,

(y1(u)− z1d, y1(v)− y1(u))L2(Rn) + (y2(u)− z2d, y2(v)− y2(u))L2(Rn)

+(Nu, v − u)(L2(∂Ω))2 ≥ 0.
(49)

Since for p = (p1, p2), y = (y1, y2),

A(φ = {φ1, φ2})→ Aφ := {(−∆ + q(x))φ1 − aφ1 − bφ2, (−∆ + q(x))φ2 − cφ1 − dφ2}
for φ ∈ (V ′q (Ω))2

we have (A∗p, y) = (p,Ay). Indeed

(p,Ay) = (p1, (−∆ + q(x))y1 − ay1 − by2) + (p2, (−∆ + q(x))y2 − cy1 − dy2)

= (p1, (−∆ + q(x))y1)− a(p1, y1)− b(p1, y2) + (p2, (−∆ + q(x))y2)− c(p2, y1)

− d(p2, y2)

= ((−∆ + q(x))p1, y1)− a(p1, y1)− c(p2, y1) + ((−∆ + q(x))p2, y2)− d(p2, y2)

− b(p1, y2)

= ((−∆ + q(x))p1 − ap1 − cp2, y1) + ((−∆ + q(x))p2 − bp1 − dp2, y2)

= (A∗p, y)

where

A∗(p = (p1, p2))→ {(−∆ + q(x))p1 − ap1 − cp2, (−∆ + q(x))p2 − bp1 − dp2}

where A∗ is the adjoint for A, p = (p1, p2) is the adjoint state. Then A∗p = y(u) − zd
can be written as

(−∆ + q(x))p1 − ap1 − cp2 = y1(u)− z1d

(−∆ + q(x))p2 − bp1 − dp2 = y2(u)− z2d

p1(u) = p2(u) = 0.

Now, multiplying the first two equations in (48) by (y1(v)− y1(u)) and (y2(v)− y2(u))
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respectively and adding the two equations, and applying Green’s formula, we obtain:

(y1(u)− z1d, y1(v)− y1(u))L2(Ω + (y2(u)− z2d, y2(v)− y2(u))L2(Ω)

= (CDβ
b p1(u) + (−∆ + q(x))p1 − ap1 − cp2, y1(v)− y1(u))

+ (CDβ
b p2(u) + (−∆ + q(x))p2 − bp1 − dp2, y2(v)− y2(u))

= (p1(u),aD
β(y1(v)− y1(u)) + (p1(x, 0),a I

1−β(y1(v;x, 0+)

− y1(u;x, 0+)))L2(Ω) + (−∆ + q(x))(y1(v)− y1(u))L2(Ω)

−
(
∂p1(u)

∂νA
, y1(v)− y1(u))L2(∂Ω) + (p1(u),

∂

∂νA
(y1(v)− y1(u)

)
L2(∂Ω)

− a(p1(u), y1(v)− y1(u))− b(p1(u), y2(v)− y2(u))L2(Ω)

+ (p2(u),aD
β(y2(v)− y2(u)) + (p2(x, 0),a I

1−β(y2(v;x, 0+)− y2(u;x, 0+)))L2(Ω)

+ (−∆ + q(x))(y2(v)− y2(u))L2(Ω) − (
∂p2(u)

∂νA
, y2(v)

− y2(u))L2(∂Ω) + (p2(u),
∂

∂νA
(y2(v)− y2(u))L2(∂Ω)

− c(p2(u), y1(v)− y1(u))L2(Ω) − d(p2(u), y2(v)− y2(u))L2(Ω).

From (43), we obtain

(y1(u)− z1d, y1(v)− y1(u))L2(Ω) + (y2(u)− z2d, y2(v)− y2(u))L2(Ω)

= (p1(u), a(y1(v)− y1(u)) + b(y2(v)− y2(u)) + f1 − f1 − a(y1(v)− y1(u)))L2(Ω)

+

(
∂p1(u)

∂νA
, v1 − u1

)
L2(∂Ω)

+

(
0,

∂

∂νA
(y1(v)− y1(u))L2(∂Ω) − c(p2(u), y1(v)− y1(u)

)
L2(Ω)

(p2(u), c(y1(v)− y1(u)) + d(y2(v)− y2(u)) + f2 − f2 − c(y1 − y1(u)))L2(Ω)

+

(
∂p2(u)

∂νA
, v2 − u2

)
L2(∂Ω)

+ (0,
∂

∂νA
(y2(v)− y2(u))L2(∂Ω) − d(p2(u), y2(v)− y2(u))L2(Ω).

Then (49) is equivalent to:(
∂p1(u)

∂νA
, v1 − u1)L2(∂Ω) +

(
∂p2(u)

∂νA
, v2 − u2

)
L2(∂Ω)

+ (Nu, v − u)(L2(∂Ω)2)

)
≥ 0.

i. e., ∫
∂Ω

(
∂p1(u)

∂νA
(v1 − u1) +

∂p2(u)

∂νA
(v2 − u2)) dσ + (Nu, v − u)(L2(∂Ω2)

)
≥ 0

∀u ∈ Uad, v ∈ Uad. Which completes the proof of the theorem. �
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5. FORMULATION OF THE FRACTIONAL OPTIMAL CONTROL PROBLEM
FOR THE SCALAR CASE

To study the fractional optimal control for the scalar case:

aD
βy + (−∆ + q(x))y = ay + f in Ω,

y(x) = g in ∂Ω,

aI
1−βy(x, 0+) = 0

 (50)

we define a bilinear form π : Vq(x)(Ω)× Vq(x)(Ω)→ R by

π(y, φ) =

∫
Ω

(∇y∇φ+ q(x)yφ) dx− a
∫

Ω

yφdx.

As in Theorem (3.1), we can prove π is coercive if a < λ(q(x)) and then there exists
a unique solution of (50) for f ∈ L2(Ω). Therefore, the state of the system is given by
the solution of:

aD
βy(u) + (−∆ + q(x))y(u) = ay(u) + f in Ω,

y(u) = u in ∂Ω,

aI
1−βy(x, 0+) = 0

 (51)

where u is given in the space U = L2(∂Ω) of controls. For given zd in L2(Ω), the cost
function is given by

J(v) =

∫
Ω

|y(v)− zd|2 dx+

∫
∂Ω

(Nv)v dσ (52)

where N is a given hermitian positive definite operator. Then we have the following
characterization of optimal control for this system:

CDβ
b p(u) + (−∆ + q(x))p(u)− ap(u) = y(u)− zd in Ω,

p(u) = 0 in ∂Ω,

}
(53)

∫
∂Ω

∂p(u)

∂νA
(v − u) dσ + (Nu, v − u)L2(∂Ω) ≥ 0, ∀ v ∈ Uad, (54)

together with (51), where p(u) is the adjoint state.

6. MATHEMATICAL EXAMPLES AND APPLICATIONS

This section is devoted to introduce some mathematical examples and applications to
illustrate the control problem in the paper.

Example 6.1. Neumann problem with boundary control.

We consider an example of time-fractional cooperative system governed by Schrödinger
operator which is analogous to that considered in section 4 but with Neumann boundary
condition and boundary control.
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In this example we consider the space

W(0, T ) := {y : y ∈ L2(0, T ;Vq(x)(Ω)), Dβ
b y(t) ∈ L2(0, T ; (Vq(x)(Ω))

′
)}

in which a solution of a fractional differential systems is contained. Let y(u) = (y1(u), y2(u))
∈ W(0, T ) be the state of the system which is given by,

aD
βy1(u) + (−∆ + q(x))y1(u) = ay1(u) + by2(u) + f1 in Ω,

aD
βy2(u) + (−∆ + q(x))y2(u) = cy1(u) + dy2(u) + f2 in Ω,

∂y1(x, t)

∂νA
|Σ = u1 as |x| → ∞,

∂y2(x, t)

∂νA
|Σ = u2 as |x| → ∞,

aI
1−βy1(x, 0+) = 0 in Ω,

aI
1−βy2(x, 0+) = 0, in Ω.


(55)

The control u = (u1, u2) is taken in U = L2(Σ) × L2(Σ). Let us consider the case
where we have partial observation of the final state

z(v) = y1(x, T ; v),

and the cost function J(v) for v = (v1, v2) is given by

J(v) =

∫
Ω

(y1(x, T ; v)− zd)2 dx+ (Nv, v)(L2(Σ))2 , zd ∈ L2(Ω),

where N = (N1, N2) ∈ L(L2(Σ), L2(Σ)) is hermitian positive definite operator:

(Nu, u) ≥ c||u||2L2(Σ), c > 0. (56)

Control Constraints: We define Uad( set of admissible controls) is closed, convex
subset of U = L2(Σ)× L2(Σ).

Control Problem: We want to minimize J over Uad i. e. find u = (u1, u2) such that

J(u) = inf
v=(v1,v2)∈Uad

J(v). (57)

Problem (57) admits a unique solution and the optimal control is characterized by
the state system (55) with the adjoint state is given by

CDβ
b p1(u) + (−∆ + q(x))p1 − ap1 − cp2 = y1(u)− z1d, , in Ω,

CDβ
b p2(u) + (−∆ + q(x))p2 − bp1 − dp2 = y2(u)− z2d, in Ω,

∂p1(u)

∂νA∗
= 0 on Σ,

∂p2(u)

∂νA∗
= 0 on Σ,

p1(x, T ;u) = y1(u)− zd, in Ω,

p2(x, T ;u) = 0, in Ω.


(58)
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The optimality condition is∫
∂Ω

(y1(u)−zd, v1−u1) dσ+(Nu, v−u)(L2(∂Ω))2 ≥ 0 ∀u = (u1, u2), v = (v1, v2) ∈ Uad.

(59)

Example 6.2. No constraints problem.

In the case of no constraint on the control U = Uad and N = (N1, N2) is a diagonal
matrix of operators. Then (59) reduces to

p1 +N1u1 = 0 on Σ, p2 +N2u2 = 0 on Σ,

which equivalent to

u1 = −N−1
1 (p1(u)|Σ)), u2 = −N−1

2 (p2(u)|Σ). (60)

The fractional optimal control is obtained by the simultaneous solving (55) and (58)
(where we eliminate u1, u2 with the aid of (60)) and then utilizing (60).

Example 6.3. Constraint problem.

If we take

Uad =

{
ui|ui ∈ L2(Σ), ui ≥ 0 almost everywhere on Σ, i = 1, 2

}
,

and N = ν×Identity, (59) gives

u1 ≥ 0, p1(u) + ν1u1 ≥ 0, u1(p1(u) + ν1u1) = 0 on Σ,

u2 ≥ 0, p2(u) + ν2u2 ≥ 0, u2(p2(u) + ν2u2) = 0 on Σ.

The fractional optimal control is obtained by the solution of the fractional problem

aD
βy1(x, t;u) + (−∆ + q(x))y1(x, t;u) = ay1(x, t;u) + by2(x, t;u) + f1

in Ω a.e. t ∈ ]0, T [, f1 ∈ L2(Ω),

aD
βy2(x, t;u) + (−∆ + q(x))y2(x, t;u) = cy1(x, t;u) + dy2(x, t;u) + f2

in Ω, a.e. t ∈ ]0, T [, f2 ∈ L2(Ω),

CDβ
b p1(x, t;u)+(−∆+q(x))p1(x, t;u)−ap1(x, t;u)−cp2(x, t;u) = y1(x, t;u)−z1d, in Ω,

CDβ
b p2(x, t;u)+(−∆+q(x))p2(x, t;u)−bp1(x, t;u)−dp2(x, t;u) = y2(x, t;u)−z2d, in Ω,

aI
1−βy1(x, 0+) = 0, in Ω, aI

1−βy2(x, 0+) = 0 in Ω,

p1(x, T ;u) = y1(u)− zd, in Ω, p2(x, T ;u) = 0, in Ω,

∂y1(x, t)

∂νA
|Σ, ≥ 0, x ∈ ∂Ω, t ∈ (0, T ),

∂y2(x, t)

∂νA
|Σ, ≥ 0, x ∈ ∂Ω, t ∈ (0, T ),

∂p1(u)

∂νA∗
= 0, on Σ,

∂p2(u)

∂νA∗
= 0, on Σ,

p1 + ν1
∂y1

∂νA
≥ 0, on Σ,

∂y1

∂νA
[p1 + ν1

∂y1

∂νA
] = 0, on Σ,

p2 + ν2
∂y2

∂νA
≥ 0, on Σ,

∂y2

∂νA
[p2 + ν2

∂y2

∂νA
] = 0, on Σ,
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hence

u1 =
∂y1

∂νA
|Σ, u2 =

∂y2

∂νA
|Σ.

Example 6.4. Coupled fractional control problem in a Caputo sense

We consider an example analogous to that considered in example 6.1. but the fractional
time derivative is considered in a Caputo sense. The optimality systems is given by:

The state equations is given by:

C
aD

βy1(x, t;u) + (−∆ + q(x))y1(x, t;u) = ay1(x, t;u) + by2(x, t;u) + f1 in Ω,
C
aD

βy2(x, t;u) + (−∆ + q(x))y2(x, t;u) = cy1(x, t;u) + dy2(x, t;u) + f2 in Ω,

y1(x, 0;u) = 0, x ∈ Ω,

y2(x, 0;u) = 0, x ∈ Ω,

∂y1(x, t)

∂νA
|Σ = u1, x ∈ ∂Ω, t ∈ (0, T ),

∂y2(x, t)

∂νA
|Σ = u2 , x ∈ ∂Ω, t ∈ (0, T ).


(61)

The adjoint state is given by:

CDβ
b p1(x, t;u)+(−∆ + q(x))p1(x, t;u)−ap1(x, t;u)−cp2(x, t;u) = 0, in Ω,

CDbp2(x, t;u)+(−∆ + q(x))p2(x, t;u)−bp1(x, t;u)−dp2(x, t;u) = 0, in Ω,

∂p1(u)

∂νA∗
= 0, on Σ,

∂p2(u)

∂νA∗
= 0 on Σ,

p1(x, T ;u) = y1(u)−zd, in Ω,

p2(x, T ;u) = 0 in Ω.


(62)

The optimality condition is given by:∫
∂Ω

(y1(u)−zd, v1−u1) dσ+(Nu, v−u)(L2(∂Ω))2 ≥ 0 ∀u = (u1, u2), v = (v1, v2) ∈ Uad.

(63)

P r o o f . Now, multiplying the first two equations in (62) by (y1(v)−y1(u)) and (y2(v)−
y2(u)) respectively and adding the two equations, and applying Green’s formula, we
obtain:

0 = (CDβ
b p1(u) + (−∆ + q(x))p1(u)− ap1(u)− cp2(u), y1(v)− y1(u))

= (p1(u), (CaD
β + (−∆ + q(x))(y1(v)

− y1(u))L2(Ω) + (p1(x, 0), (y1(v;x, 0)− y1(u;x, 0)))L2(Ω)

− (
∂p1(u)

∂νA
, y1(v)− y1(u))L2(∂Ω) + (p1(u),

∂

∂νA
(y1(v)− y1(u))L2(∂Ω)

− a(p1(u), y1(v)− y1(u))− c(p2(u), y1(v)− y1(u))L2(Ω)

(64)
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0 = (CDβ
b p2(u) + (−∆ + q(x))p2(u)− bp1 − dp2(u), y2(v)− y2(u))

= (p2(u),Ca D
β + (−∆ + q(x))(y2(v)− y2(u))L2(Ω) + (p2(x, 0), (y2(v;x, 0)− y2(u;x, 0)))L2(Ω)

− (
∂p2(u)

∂νA
, y2(v)− y2(u))L2(∂Ω) + (p2(u),

∂

∂νA
(y2(v)− y2(u))L2(∂Ω)

− b(p1(u), y2(v)− y2(u))L2(Ω) − d(p2(u), y2(v)− y2(u))L2(Ω)

(65)

From (61),(62), we obtain

0 = (p1(u), a(y1(v)− y1(u)) + b(y2(v)− y2(u)) + f1 − f1 − a(y1(v)

− y1(u)))L2(Ω) − (0, y1(v)− y1(u))L2(∂Ω)

+ (y1(u)− zd, v1 − u1)L2(∂Ω) − c(p2(u), y1(v)− y1(u))L2(Ω)

(66)

0 = (p2(u), c(y1(v)− y1(u)) + d(y2(v)− y2(u)) + f2 − f2 − c(y1 − y1(u)))L2(Ω)

+ (0, y2(v)− y2(u))L2(∂Ω)

+ (0, v2 − u2))L2(∂Ω) − b(p1(u), y2(v)− y2(u))L2(Ω).

(67)

Then if we add (66),(67), we obtain

(p1(u), v1 − u1)L2(∂Ω) = 0

i. e.,
(y1(u)− zd, v1 − u1)L2(∂Ω) = 0.∫

∂Ω

(y1(u)− zd, v1−u1) dσ+ (Nu, v−u)(L2(∂Ω))2 ≥ 0 ∀u = (u1, u2), v = (v1, v2) ∈ Uad.

Which completes the proof of the theorem. �

Example 6.5. n-coupled fractional system.

We can generalize our results to n−dimensional coupled fractional system as follows.
The state of the system is given, for each i = 1, 2, . . . , n, by

C
aD

βyi(u) + (−∆ + q(x))yi(u) =

n∑
j=1

ajyj(u) + fi(t), in Ω, a.e. t ∈ ]0, T [, f1 ∈ L2(Ω),

yi(x, t;u) = ui, as |x| → ∞,
yi(x, 0) = 0, x ∈ Ω.

The adjoint state is given by

CDβ
b pi(u) + (−∆ + q(x))pi(u) +

n∑
j=1

bjpj(u) = yi(u)− zid, in Ω,

pi(x, t;u) = 0, on ∂Ω,

where bi are the transpose of ai. The optimality condition is∫
∂Ω

n∑
i=1

∂pi(u)

∂νA∗
(vi − ui) dσ + (Nu, v − u)(L2(∂Ω))n ≥ 0,

∀v = (v1, v2, . . . , vn) ∈ Uad, u = (u1, u2, . . . , un) ∈ Uad.
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Remark 6.6. If we take β = 1, in the previews sections we obtain the classical results
in the optimal control with integer derivatives see [25, 26] .

7. CONCLUSIONS

In this paper, we proved a weak maximum principle for the weak solution to an initial
boundary value problem for a single-order fractional order cooperative systems involving
Schrödinger operator. Also we studied the fractional optimal control of problem for this
system. The fractional derivatives was defined in the Riemann–Liouville and Caputo
senses. The analytical results were given in terms of Euler–Lagrange equations for the
fractional optimal control problems. The formulation presented and the resulting equa-
tions are very similar to those for classical optimal control problems. The optimization
problem presented in this paper constitutes a generalization of the optimal control prob-
lem of parabolic systems with Dirichlet and Neumann boundary conditions considered in
[25] to fractional optimal control problem for cooperative systems involving Schrödinger
operator. Many infinity of variations on the above problem are possible to study with
the help of Lions formalism in [25] and Dubovitskii–Milyutin formalisms see [24]. Also
some numerical and graphical results can be studied for system (1). Those problems
need further investigations form tasks for future research.
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