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PID AND FILTERED PID CONTROL DESIGN
WITH APPLICATION TO A POSITIONAL SERVO DRIVE

Igor Bélai, Mikuláš Huba, Kevin Burn and Chris Cox

This paper discusses a novel approach to tuning 2DOF PID controllers for a positional
control system, with a special focus on filters. It is based on the multiple real dominant pole
method, applicable to both standard and series PID control. In the latter case it may be
generalized by using binomial nth order filters. These offer filtering properties scalable in a
much broader range than those allowed by a standard controller. It is shown that in terms
of a modified total variance, controllers with higher order binomial filters allow a significant
reduction of excessive control effort due to the measurement noise. When not limited by the
sampling period choice, a significant performance increase may be achieved by using third
order filters, which can be further boosted using higher order filters. Furthermore, all of the
derived tuning procedures keep the controller design sufficiently simple so as to be attractive for
industrial applications. The proposed approach is applied to the position control of electrical
drives, where quantization noise can occur as a result of angular velocity reconstruction using
the differentiated outputs of incremental position sensors.

Keywords: PID control, dominant pole placement, filtering, optimization
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1. INTRODUCTION

Suppression of noise induced oscillations in control can radically reduce overall energy
consumption, thermal losses, wear of mechanical parts, and acoustic noise. In some
situations it may also significantly increase the control precision, due to the elimination of
noise induced tracking error [5, 20]. Therefore, filtering of measurement and quantization
noise has an important role in contemporary controller design. In the context of the
most frequently used proportional-integral-derivative (PID) control, Segovia et al. [25]
proposed the second order Butterworth filter for a first order plus dead time (FOPDT)
system. Its time constant, expressed as a fraction of the integral time constant, was
determined, together with other loop parameters, by an integral absolute error (IAE)
or integral error (IE) optimization, subject to robustness constraints (Ms,Mt). The
controller evaluation focused on the disturbance response.

The multiple real dominant pole (MRDP) method represents one of the first analyti-
cal methods used for controller tuning [23]. In numerous later applications to the design
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of simple controllers, we could also mention P and PD controller design for time delayed
integral systems in [18], or the design of PI and PID controllers in [27, 28]. Whilst the
above method directly gives both the dominant closed loop poles and the correspond-
ing “optimal” controller parameters, in pole assignment control the choice of closed loop
poles represents a crucial part of the controller tuning process. According to [1], the first
publication devoted to this approach dates back to 1960 [24]. However, the pole assign-
ment approach does not solve the problem of optimal controller tuning. It only brings a
new formulation of the problem, where the basic question arises as to how the “optimal”
pole vector can be chosen [4]. For example, in [30] the choice of a dominant triple loop
pole under PID control has been based on an IAE optimization. In [31] the approach of
minimizing the IAE criterion with a constraint of a damping factor and root ratios has
been extended to a much broader class of time delayed systems by using a dimensionless
model with similarity numbers of “laggardness” and “swingability”. In [13, 14, 16] an
approach to the optimal tuning of a PD controller for time delayed systems based on the
triple real dominant pole method has been extended by the notions of equivalent poles
and a delay equivalence. This made it possible to integrate PD controller tuning with
an appropriate filter design. The filter calculation has also been included in the pole
assignment controller design based on a choice of four closed loop poles by an iterative
IAE optimization [7]. It has been carried out with a damping factor of 0.707 (character-
istic for the Butterworth filter) and it included the filter time constant determination.
However, the paper concluded that filters with a higher damping coefficient should also
be considered in future research.

In [15] the MRDP method was applied to the integrated tuning of PI and PID con-
trollers for FOPDT systems extended by additional noise filters (4). Such binomial
filters, characterized by the order n and a single time constant Tf , have been proposed
to keep a constant position of the dominant poles for any chosen n. The filter order
ideally should be chosen to be as high as possible. However, since the Tf values corre-
sponding to fixed loop dynamics decrease with increasing n, and for a chosen sampling
period Ts there is a decreasing filtering ability for decreasing Tf/Ts, it is always possible
to find an optimal filter order n. By simulation, it has been shown that for PI control,
a filter order increase has resulted in significant control effort decrease up to n = 2.
For PID control, the performance significantly improves with increasing n up to n = 3,
which is in sharp contrast to the first order PID filters usually employed.

In this paper, the study carried out in [15], with noise generated in Matlab/Simulink
by the Uniform Random Number block, is for the first time extended to a double inte-
grator plus dead time (DIPDT) system. The optimal tuning rules for PID and filtered
PID control (FPIDn), with different filter orders n, are derived by the multiple real
dominant pole method and evaluated using simulation.

Next, ISA PID and generalized series FPIDn control are applied to a test bed with a
servo positional system. This is a relatively fast motor torque generator, resulting in the
necessity to consider so-called two pulse (2P) control, typically with acceleration and
braking phases [13]. The control of such processes requires a determination of velocity,
frequently implemented by differentiating the position signal from an incremental sensor.
It represents a quantization noise source dominating both at low and high speeds of
rotation. Whereas at low speed the velocity kicks produced by one position increment
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related to the time interval among the subsequent changes are lower than for a high
speed of rotation, the relative quantization error values related to the absolute velocity
values are lower for the high speed of rotation. Due to the highly non-linear nature of the
speed dependent noise characteristics, the filtering approaches based on a priori known
noise and system models (as, for example, the Kalman filter and other state observers
[2, 3, 29]) usually present a complex problem. The situation is made more demanding by
adverse effects of Coulomb friction, which in combination with integral controller action
frequently leads to permanent oscillations. Without wishing to explore the nature of the
processes that have arisen in detail, we will show that the proposed controller design
can be successfully used in the given context. At the same time, however, we will also
point to its substantial differences from the situation examined by the initial analysis.

The rest of the paper is structured as follows. Section 2 defines a model of the
dominant plant dynamics and the binomial filters used for noise attenuation. In Section
3, optimal ideal PID controllers are derived for the double integrator system combined
with a dead-time, or with a binomial filter Qn(s). Based on the requirement of a fixed
position of the dominant pole, an equivalence of two types of delays in the considered
closed loop is proposed, which enables an implementation of derivative action more
reliable than that of the method usually applied in standard PID controllers. Section 4
defines the performance measures used for the subsequent control evaluation. Simulated
and real time experimental results are derived and discussed in Section 5 and 6, and
summarized in Section 7, together with an outline of future research directions.

2. CONSIDERED PLANT AND FILTER DYNAMICS

The modeled loop dynamics reflect a dominant subsystem approximated by the 2nd
order transfer function

F (s) =
Ks

s2 + a1s+ a0
. (1)

The transfer function of a typical positional servo with a0 = 0, a1 > 0 may be expressed
in the form

F (s) =
Ks

s2 + a1s
=

K

s(Tps+ 1)
(2)

with the time constant Tp = 1/a1. To consider a variable load, unmodeled dynamics
Fa(s), and model uncertainties, an input disturbance di is added to the manipulated
variable ur

Y (s) = [Ur(s)Fa(s) +Di(s)]F (s). (3)

Thereby, the impact of torque generator (actuator) dynamics Fa(s) will be considered
by adjusting the controller parameters, not by modifications to its structure. The ve-
locity signal of the derivative action is produced from the measured position y(t) by
differentiation. Both the velocity and the output signals may be filtered by an nth order
binomial low pass filter Qn(s)

Qn (s) =
1

(Tfs+ 1)
n ;

0 < Tf << Tp; n = 1, 2, . . .
(4)
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The approaches to identify the servo model with maximum precision usually work with
a1 > 0, which, for a constant input signal, corresponds to a limited steady-state angu-
lar velocity value. However, the approaches prioritizing simple, purely integral models
neglect this parameter (which usually varies with time) by considering a1 = 0. In this
way, the loop dynamics including the dominant second order plant (2), actuator, and
the necessary filters, will be simplified to a double integrator plus dead time (DIPDT)
model

Fm(s) =
Km

s2
e−Tdts (5)

with a total dead time Tdt consisting of estimates of an actuator dead time Ta, a com-
munication delay Tc and an equivalent filter delay estimate Te

Tdt = Ta + Tc + Te. (6)

Such “ultra-local” linear models1 would exhibit linearly increasing angular velocity tran-
sients in their step responses. Thus, they may seem to be inadequate in the case of typical
servo drives. However, when studying the control design based on the “flatness” the-
ory [6, 8, 9], we may find that in so-called “model free”, or “intelligent” PID control,
such purely integral models are frequently used for an approximation of plants with
constrained velocity signals in their step responses.

Purely integral models are also behind the “active disturbance rejection control”
(ADRC) method using an extended state observer (ESO) [10, 11, 12, 19], which can
approximate complex feedback dynamics by an equivalent input disturbance. They may
also be found in several other robust control approaches, such as the ones mentioned by
[17, 21].

3. PID CONTROL FOR A TIME DELAYED DOUBLE INTEGRATOR SYSTEM

By applying the MRDP method for tuning the ideal PID controller, approximations by
DIPDT models (5) may be used for a broad spectrum of linear and non-linear, stable and
unstable systems. To simplify the controller design, the complex and possibly non-linear
plant internal feedbacks may be approximated by input or output disturbances.

3.1. 2DOF PID controller for the DIPDT plant by the QRDP method

According to the International Society of Automation (ISA), the traditional one-degree-
of-freedom (1DOF) ideal PID controller2 may be expressed as

C(s) =
U(s)

E(s)
= Kc

(
1 +

1

sTi
+ sTD

)
= Kc +

KI

s
+KDs (7)

Kc is the gain, Ti the integral and TD the derivative time constant. Alternatively, it
may also be expressed as a parallel PID with the gains Kc,KI and KD.

1which are intuitively expected to yield a required precision on a smaller neighborhood of an operating
point than the “local” linear models considering nonzero parameters a0 and a1

2also called standard, or non-interacting, controller
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Optimal controller parameters may be derived analytically by generalization of the
approach applied in [27, 28]. For the DIPDT model, it starts with a derivation of the
closed loop transfer functions of 1DOF PID control, where

Fr0(s) =
Y (s)

R(s)
=

KcKm(1 + Tis+ TiTDs
2)

Tis3eTdts +KcKm(1 + Tis+ TiTDs2)

Fi(s) =
Y (s)

Di(s)
=

KmTis

Tis3eTdts +KcKm(1 + Tis+ TiTDs2)
.

(8)

The quadruple real dominant poles (QRDP) so of the characteristic quasi-polynomial

P (s) = Tis
3eTdts +KcKm(1 + Tis+ TiTDs

2) (9)

follow from the conditions

P (so) = 0, Ṗ (so) = 0, P̈ (so) = 0,
...
P (so) = 0. (10)

The optimal solution corresponds to

so = −0.416/Tdt
Ko = KcoKmT

2
dt = 0.125

τio = Tio/Tdt = 10.324
τDo = TDo/Tdt = 4.043.

(11)

The optimal controller parameters Kco, Tio and TDo are given by the corresponding
dimensionless (normed) parameters Ko, τio and τDo.

Overshoot, occurring typically in PID control of integral systems, may be eliminated
by a 2DOF PID controller cancelling the numerator of the transfer function Fr0(s) (8).
By cancelling one or two of the dominant closed loop poles so (11) using the numerator
of a prefilter

Fp(s) =
cTiTDs

2 + bTis+ 1

TiTDs2 + Tis+ 1
(12)

the transients become faster. The “optimal” weighting cancelling a single closed loop
pole so may be specified by

b1 =
1/ |so|
Tio

= − 1

τioTdtso
= 0.233 ; c1 = 0. (13)

The fastest possible setpoint step responses correspond to the numerator of (12) factored
to the form enabling cancellation of the double pole so, where

(s− so)2 = s2 − 2sso + s2o = s2 + bs/(cTD) + 1/(cTiTD). (14)

This yields the prefilter coefficients

b2 = −2/(Tiso) = 0.466, c2 = 1/(TiTDs
2
o) = 0.150 (15)

The integral of absolute error (IAE) can be used to evaluate the loop performance for
unit setpoint and input disturbance step inputs without the error sign changes given by
the integrals of error (IE)

IAEr = Ti(1− b); IAEi = Ti/Kc. (16)



Filtered PID control for a positional servo drive 545

Fig. 1. Possible 2DOF ISA PID and FPIDn implementation with

filters in the feedback loop of the position servo control of the motor

mechanical subsystem; δ – quantization noise, Hi, Ho - actuator and

communication delays.

In optimal situations, with one or two poles cancelled

IAEr1 = 7.92Tdt; IAEr2 = 5.96Tdt; IAEi = 82.73KmT
3
dt. (17)

Thus, both the optimal controller tuning and the optimal loop performance have been
simply expressed using a two-parameter model of the DIPDT plant (5).

3.2. 2DOF ISA PID controller

Further problems in the application to real systems are related to the implementation
of the improper derivative term in (7). In the ISA 2DOF PID controller equation

U(s) = Kc

{
bR(s)− Y (s) +

R(s)− Y (s)

Tis
+
TDs[cR(s)− Y (s)]

1 + sTD/N

}
. (18)

It is solved by introducing a differentiator filter with a time constant of TD/N (see also
Figure (1)). Thereby, N ∈ [5, 20] is usually chosen. With higher values, N ≈ 20, it
is possible to come closer to the ideal responses (Figure 2). A decrease in this value
to the range N ∈ (5, 10) leads to performance degradation. However, amplification of
higher frequencies introduced by the noise is proportional to N . Thus, in balancing the
trade-off between noise attenuation and transient speed, the 2DOF ISA PID offers just
limited possibilities.
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Fig. 2. Plant output and input after input disturbance step from

di = 0 to di = 0.08 at t = 0: Impact of the parameter N of the ISA

2DOF PID controller on the loop performance in the DIPDT plant

control, Km = 1;Tdt = 0.25; n = 1; N = {5, 10, 20};

(TD/N)/Tdt = {0.162, 0.404, 0.809}.

3.3. Generalized 2DOF series controller design by the MRDP method

In series 2DOF PID control, the filters affect all controller actions, when

U(s) = Kc

{[
b+

1

sTi

]
1 + scTD

1 + sTD/N
W (s)−

[
1 +

1

sTi

]
1 + sTD

1 + sTD/N
Y (s)

}
. (19)

By replacing TD/N = Tf , and considering the binomial filter (4) in combination with
the ideal PID (7) and the prefilter (12) instead of 1/(1 + Tfs), a generalized solution
may be derived (see Figure 13). Since for loops containing filter dynamics combined with
dead time, the multiple real dominant pole method leads to overly complex formulae,
a simplified solution will be proposed based on an equivalence of the dead time and
filter time constants. Similar to [15], this will be based upon firstly considering loops
with just one type of delay, deriving for them optimal tuning guaranteeing the multiple
real dominant poles, and then requiring for both situations the same position of the
dominant closed loop poles.

The close loop transfer functions with the plant Km/s
2, 1DOF PID control, and

Qn(s) are

Fr0(s) =
Y (s)

R(s)
=

KcKm(1 + Tis+ TiTDs
2)

Tis3(1 + Tfs)n +KcKm(1 + Tis+ TiTDs2)

Fi(s) =
Y (s)

Di(s)
=

KmTis

Tis3(1 + Tfs)n +KcKm(1 + Tis+ TiTDs2)
.

(20)

3Location of the filters in the feedback loop has been chosen only for a more compact picture - the
higher order filters may be assembled by putting together terms located at both the controller input
and output.
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n −snTf KPKmT
2
f TD/Tf Ti/Tf b c dn = Te/Tf fn = Tf/Te

1 0.2500 0.01798 12.161 35.226 0.641 0.297 1.663 0.6013
2 0.1551 0.02115 10.115 26.523 0.486 0.155 2.682 0.3729
3 0.1127 0.01057 14.188 36.928 0.481 0.150 3.689 0.2711
4 0.0886 0.00633 18.247 47.297 0.477 0.148 4.693 0.2131
5 0.0730 0.00421 22.301 57.649 0.475 0.146 5.696 0.1756

Tab. 1. Tuning parameters for particular n, Tdt = 0.

According to the MRDP method, the roots sn of the characteristic polynomial

Pn(s) = Tis
3(1 + Tfs)

n +KcKm(1 + Tis+ TiTDs
2) (21)

have to fulfill conditions equivalent to (10). Then, from the requirement of a fixed
position of the real dominant pole for both types of the considered delays

so = sn , n = 1, 2, 3, . . . (22)

it is possible to derive an equivalence between the loops containing only Qn(s) (specified
by n and the time constants Tf ) and only the equivalent dead time Tdt = Te (6). Such
an equivalence may be expressed in the form

Tf = fnTe , n = 1, 2, 3, . . . (23)

or inversely as Te = dnTf . The corresponding parameters fn and dn = 1/fn may be
found in Table 1.

It is well known that for the sake of an optimal controller tuning, several dead times
included in a control loop may be replaced by a single time delay corresponding to their
sum. This might be used to formulate the following procedure for the controller tuning.

Proposition 3.1. (Integrated PID & Filter Qn(s) tuning procedure)
After specifying the dead time Te, equivalent under (22) to a chosen Qn(s) as Te = dnTf ,
the controller for a DIPDT plant model combined with the binomial filter, i. e. with a
delay Tdt composed from several dead times (6), has to be tuned according to (11).

In many situations it may be convenient to choose some Te > 0 and then to apply
the tuning (11), and for a chosen n to calculate the filter time constant Tf = fnTe.
Since it may be unrealistic to analytically design controllers in loops with significant
measurement noise, it is often more practical to perform several iterations of the design
process by trial and error.

Remark 3.2. (“Trial and error” character of the controller tuning)
Similarly the pole assignment method does not yield the optimal pole choice and the
optimal filter parameters n and Tf are usually specified by trial and error methods.

Of course, the question also arises as to how precisely the derived equivalence holds
for loops with both types of delays and for systems with a1 or a0 not equal to zero.
Since an analytical proof to this proposition would be too complex (see, for example
analysis of the optimal PD control in [13, 14, 16]), we are going to test this proposition
experimentally.
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4. PERFORMANCE MEASURES

In setpoint tracking, the task is to bring the system’s output y from an initial value y0
to a piecewise constant setpoint r monotonically and in the shortest possible time, with
a minimal IAE (Integral of Absolute Error) value. For a step disturbance, r(t) = 0 and
the excited output has to be returned monotonically with a minimal IAE, where

IAEi =

∫ ∞
0

|e(t)|dt; e(t) = r(t)− y(t). (24)

To characterize the output deviations from monotonicity, the total variance (the total
sum of absolute increments, [26]) exceeding the net output change |y∞ − y0|

yTV0 =

∫ ∞
0

(∣∣∣∣dydt
∣∣∣∣− sign(y∞ − y0)

dy

dt

)
dt ≈

∑
i

(|yi+1 − yi|)− |y∞ − y0| (25)

which emphasises the contribution of excessive increments and yields the best measure
of the “smoothness” of the output change. The value yTV0 = 0 corresponds to an ideally
smooth output change, else yTV0 > 0.

Since an ideal output disturbance step response (the full curve in Figure 2, left)
consists of two monotonic intervals separated by the maximum ym, the deviations from
such an ideal response denoted as “one pulse” (1P) will be evaluated according to

yTV1 =
∑
i

(|yi+1 − yi|)− |2ym − y∞ − y0| . (26)

Also, during an input step response, excessive control effort exceeding the inevitable
acceleration and braking should be kept as low as possible [13]. This focus on exces-
sive control effort represents one of the most important differences from the traditional
quadratic optimal control dealing with minimization of overall controller activity. Atten-
tion is paid to deviations from the input transients from an unavoidable two-pulse (2P)
input shape given by the inversion of the plant model dynamics [13]. Geometrically, an
ideal 2P input shape (the full curve in Figure 2 right) is specified by two extreme points
um1, um2 occurring for t ∈ (0,∞) and separating three monotonic control intervals.
Excessive control effort is then evaluated according to

uTV 2 =
∑
i

(|ui+1 − ui|)− |2um1 − 2um2 − u∞ − u0| . (27)

For ideal 2P control functions u(t), uTV 2 = 0.

5. SIMULATED EVALUATION FOR A DIPDT PLANT

The impact of measurement noise on the loop performance and the validity of Proposi-
tion 3.1 will be tested in several steps.
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5.1. Loop evaluation, no noise

Firstly, the controller tuning (11) derived by the QRDP method has been applied to the
2DOF ISA controller for a DIPDT system with a standard first order filter (n = 1) and
three different values of N (Figure 2).

Then, the FPIDn controllers (with filters Qn(s)) tuned by an equivalent dead time
Te, Tf = fnTe, n ∈ [1, 5] have been tested without any measurement noise for Te/Td ∈
[0.01, 2], Td = 0.25,Km = 1, Ts = 0.001 (Figure 3). Obviously no observable deviations
from 1P shapes at the plant output and 2P shapes at the plant input occur in the tested
ranges of n and Te.

By considering more detailed noise characteristics of the input disturbance step re-
sponses in Figure 2 and Figure 3 shown in Figure 4, it is apparent that they are always
influenced by a low level internal noise resulting from imperfections in the numerical in-
tegration. The plant input noise characteristics in Figure 4, left illustrate the impact of
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Fig. 3. Input and output of the loop with DIPDT plant with the

FPID control for the input disturbance step change from 0 to 0.08, no

external noise, Te/Tdt ∈ [0.01, 2], n ∈ [1, 5], Tdt = 0.25, Km = 1,

Ts = 0.001.

the ISA controller parameter N and the impact of the generalized series FPIDn tuning
parameter Te on the loop performance expressed in the plane (uTV2, IAEi). For the
series FPIDn, the impact of the internal noise resulting from the numerical integration
is significantly lower than for the best ISA performance with N = 20. The depen-
dence on n is negligible. Similar conclusions may be drawn from the plant output noise
characteristics expressing dependence of IAEi on yTV1 (Figure 4, right).

Remark 5.1. (Choice of the ISA controller filter parameter N)
The choice of the differentiator filter parameter N strongly influences the loop perfor-
mance (Figure 2), which may be demonstrated by the output shape deviations yTV1.
Although there seems to be no practical difference between yTV 1 = 10−20 or yTV 1 =
10−5, attention has to be paid to their ratio, indicating a strong difference in the noise
attenuation. Thus, for N = 5 it is already possible to observe a significant performance
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Fig. 4. Noise characteristics of the loop with DIPDT plant and input

disturbance steps, no external noise, for the ISA PID with n = 1 and

N = {5, 10, 20}; for FPIDn with n ∈ [1, 5], Te/Tdt ∈ [0.01, 2];

Tdt = 0.25,Km = 1, Ts = 0.001.

degradation (Figure 2) expressed by the increase in shape related deviations, which are
visible in the noise characteristics. As we will see when adjusting the noise attenuation
in a loop with external noise, for the choice of the derivative filter with low shape related
deviations, the ISA controller yields just a narrow working range.

Remark 5.2. (Impact of the simplified FPIDn tuning by Te)
Under generalized series FPIDn control, the noise brought by the numerical simulation
has much lower impact on the loop performance than for the ISA PID control and there
appears to be no performance degradation due to the tuning parameter changes. An
increase of the tuning parameter Te contributes only to an IAEi increase without causing
any shape related deviations (Figures 3 – 4). The negligible shape related deviations
at the plant input and output confirm that the simplified tuning procedure given by
Proposition 3.1 offers an excellent tool for FIPDn controller tuning. It may be used
for a broad range of the tuning parameter Te (broad range of the transient velocities)
without a negative impact on the shape of the transient responses.

Remark 5.3. (Basic restrictions on FPIDn tuning)
In applying Proposition 3.1 to the DIPDT plant, the only restriction is that the filter
time constants have to fulfil the requirement Tf >> Ts, whereby Ts denotes the sampling
period used for the quasi-continuous-time controller implementation.

5.2. Evaluation under a measurement noise impact

Next, evaluation of the loop properties will continue with the loop simulation under a
measurement noise generated by the Simulink block Uniform Random Number, with
the integration step Ts = 0.001 and with amplitudes |δ| < 0.01 and |δ| < 1. This block
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Controller uTV2 % ISA/FPID
ISA PID 7.999.105 100 -
FPID1 1.362.106 170.27 0.587
FPID2 3.927.104 4.91 20.37
FPID3 5.481.103 0.69 145.94
FPID4 4.219.103 0.53 189.60
FPID5 4.237.103 0.53 188.79

Tab. 2. Comparing ISA PID, N = 5 and FPIDn, n ∈ [1, 5] for

Ts = 1ms, IAEi = 5.5807, Km = 1, Tdt = 0.25.

generates random numbers uniformly distributed over an interval (−δ, δ). Its results are
well illustrated by the noise characteristics in Figure 5 and by the following remarks.

Remark 5.4. (Application areas for the ISA PID and FPIDn control)
Noise characteristics in Figure 5 show that under a relatively low noise level the fastest
transients may be achieved by the ISA PID. FPIDn control with n ≥ 3 may significantly
reduce the excessive control effort, however, at the cost of slower transients.

For higher noise amplitudes and n > 1, FPIDn control may significantly reduce
excessive control effort (to decrease the uTV2 values) and simultaneously also yield
sufficiently fast transients (with low IAEi values). Still, this requires the possibility to
work with Te << Tdt and, at the same time, with Tf >> Ts (see Remark 5.3).

Remark 5.5. (Optimal choice of the filter order n)
For the given integration step (or the sampling period for noise generation) Ts = 1ms,
significant performance improvements may be observed while increasing the Qn(s) order
from n = 1 up to the value n = 3. The best performance corresponds to n = 4 (Table 2),
when the excessive control effort uTV2 produced by FPIDn is nearly 190 times below
the ISA PID noise level. For some noise and disturbance step amplitudes, this ratio may
yet be significantly higher. Hence, the situation in industrial control, where typically
first order filters are used, should be revised. This point may also give new impulse to
several recent studies dealing mostly with 2nd order filters [25, 31].

Remark 5.6. (Impact of the noise distribution)
Performance improvements due to noise filtering have been achieved under the assump-
tion that during the filtering of measurement noise with a zero mean value, its amplitude
at the filter output for increasing n and Tf decreases to zero. Thus, the filter design
does not need identification of the actual noise distribution, which in practice usually
depends on the working point and varies with time. Furthermore, in the following illus-
tration example, it will depend not only on the actual angular velocity, but also on the
incremental sensor resolution and the applied sampling period.

Remark 5.7. (Noise elimination by averaging)
Performance improvements may be achieved by decreasing the sampling period, since
by averaging higher numbers of output samples, the impact of the measurement noise
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converges to zero. This, however, does not hold for the quantization noise considered in
the subsequent example of servo drive control. In this case, by decreasing the sampling
period, the velocity “kicks” produced by one increment divided by the sampling period
actually increase.

6. APPLICATION TO SERVO DRIVE CONTROL

When wishing to demonstrate the contribution of the newly presented approach to
controller design for dominant 2nd order plants, the most demanding solution would be
to consider a plant with two unstable, or marginally stable, poles. Stable hydraulic or
thermal processes considered by [25], or [22] do not represent such a challenge - they
may be stabilized without the derivative action and thus it is unclear if they really
test all features of the proposed controller. With respect to this, from the spectrum of
processes available for an experimental verification of the above analysis and design, we
have chosen a positional servo drive system. With a0 = 0 and relatively short delays,
similar to Figure 2, it routinely requires a 2P control signal [13] consisting of three almost
monotonic intervals, which may not be achieved by a simpler control. However, as will
be explained later, several nonlinear effects and properties of the included noise signal
mean that this process is far from ideal for demonstrating the presented approach.

Position servo drives today typically use incremental sensors for output measurement.
Velocity reconstruction is then mostly based on output differentiation using derivative
action. Furthermore, when the decreased control precision leads to changes of the con-
trol error sign, in combination with Coulomb friction and the integral action, permanent
oscillations occur. With respect to the precision of the velocity calculation, the sampling
period Ts used for the differentiation should be the shortest possible. Usually it is set
to the hardware limits, which determine the resulting loop performance. This, however,
in combination with the output quantization, leads to significant velocity kicks, which
are reciprocal to Ts. They result in current and generated torque kicks, possibly ac-
companied by acoustic noise. Since the effects of output quantization in the calculation
of the control signal may not be eliminated by averaging, as for the random signals
from previous analysis, there is a question as to whether it can influence the closed loop
performance.

6.1. Experiment setup

An experimental test bed (Figure 6) contains two electric drives connected by their
shafts. The controlled BLDC motor utilizes the second DC motor as the load drive
enabling emulation of load torque changes. The shaft position is measured through an
incremental rotary encoder (IRC) with 1024 imp./rev. The identified parameters are:
J = 2 10−5 [kgm2], moment of inertia;
TL0 = 3.5 10−5 [Nm], Coulomb friction;
Ks = 1/J = 5 104 [kg−1m−2], plant model gain;
a1 = 0.481 [N.s.rad−1kg−1m−1], internal plant feedback coefficient;
a0 = 0 (no position feedback, system has an integral character);
Ta = 0.2 [ms], time constant of the torque generator;
∆ϕ = 0.001534 [rad], position sensor resolution;
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Fig. 6. Experimental setup.

The controller has been implemented in Matlab/Simulink by using a standard PC.
For the controller design, the plant (1) plus the actuator model have been reduced to
the simplest possible form - a double integrator model (5). Thus, the estimate of the
internal feedback coefficient a1 has not been used in the controller tuning.

6.2. Experiment 1, Ts = 0.25 [ms], Tdt = Ta + Ts = 0.45 [ms], Tc = 0

The sampling period has been set to Ts = 0.25 [ms]. The actuator delay, together with
the sampling period Ts, were approximated by a transport delay Tdt = Ta + Ts = 0.45
[ms]. With respect to Remark 5.3 requiring Tf >> Ts, this configuration does not allow
any repetition of the simulated experiment in its full, previously proposed extent with
n ∈ [1, 5] and Te/Tdt ∈ [0.01, 2]. Instead, we worked with Te/Tdt ∈ [1, 20]. It means
that already for n = 4 and Te = Tdt the shortest filter time constant Tf = fnTdt ≈
0.18(0.45 + 0.45) = 0.16ms does not guarantee appropriate filtering (Remark 5.4) and
at least for the shortest values Te the use of higher order filters is not expected to bring
any meaningful results.

A step change of the input disturbance di has been emulated by the load torque step
change TL from 0 to -0.08 [Nm].

The disturbance step responses with the ISA PID controller in Figure 7 demonstrate
the dominant impact of the output quantization and of the Coulomb friction.

In contrast to the oscillatory response of the DIPDT plant for N = 5, the output
performance is now (due to the presence of plant viscous damping) close to its behaviour
for N = 10 (compare with Remark 5.1). Therefore, the noise characteristics of the
FPIDn achieved for Te/Tdt ∈ [1, 20] (Figure 8) partially confirm the above results from
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Ts = 0.25ms.

the DIPDT analysis. Notwithstanding this, it has still been possible to reduce excessive
control effort more than 50 times at the plant input (Figure 8 left). However, it is at the
cost of increased IAE. To improve this performance, the experiment should be carried
out with a significantly shorter sampling period.

Also, the nonlinear effects fully changed the yTV1-IAEi characteristic (Figure 8

right). By a weaker controller tuning (increased Te) the shape-related deviations at
the output increase.

6.3. Experiment 2, Ts = 0.1 [ms], Tdt = Ta + Ts + Tc = 4.3 [ms]

In order to be able to decrease the minimal value of Te/Tdt applicable under the existing
hardware limitations, the sampling period has been set to the hardware limit Ts =
0.1 [ms]. At the same time, a communication delay Tc = 4[ms] has been introduced in
Simulink, which may correspond to situations typical for many network applications.
One half of Tc has been added to the plant input, the other half to the plant output
(Figure 1). Such a modification not only mimics real situations, but also makes the
control problem more difficult and magnifies all design imperfections.

Evaluation of different situations using the ISA PID and FPIDn controllers (see Fig-
ures 9 – 10) yields conclusions which are now much closer to the comments from Re-
mark 5.4.

The noise characteristics have been measured for Te/Tdt ∈ [0.1, 10]. In comparison to
the above experiment with Tc = 0, the prolonged loop delays increased the disturbance
impact at the plant output (compare Figure 9 with Figure 7).

However, due to the decreased Te/Tdt values, in some aspects the responses are now
closer to the DIPDT simulation case and Remark 5.4 as above.

The noise characteristics in Figure 10, left, show that by using higher order filters
the excessive control effort may be reduced significantly. However, a full correspondence
with the simulation analysis would require Te values to be 10 times shorter. In the sense
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Fig. 8. Noise characteristics of the loop with real servosystem ,

Te/Tdt ∈ [1, 20], n ∈ [1, 5], Td = 0.45ms, Km = 50000, Ts = 0.25ms.

of Remark 5.4 that would also mean sampling periods Ts of at least 10 times shorter.
On the other hand, the yTV1-IAEi characteristics (Figure 10 right) again illustrate

that the application of a softer controller tuning leads to increased output oscillations.
Thus, with respect to the existing hardware limitations and Remark 5.4, in applications
with focus on minimal IAE values (i. e. on the fast transients) the ISA PID control
might still seem to represent the optimal solution.

However, at this point it should be noted that the increased IAEi value of the FPIDn

control is due to the higher amplitude of the initial output pulse (max(y) > 0.6), whereas
for ISA PID max(y) < 0.6. Surprisingly, this does not necessarily mean slower responses:
when evaluating the speed of responses by the settling time ts defined by a ±0.01 broad
error band around zero (the dashed line, see Figure 9), the FPIDn control with ts = 0.11s
is more than 50% faster than the ISA PID (ts = 0.17s), and it offers smoother responses
both at the plant input and output. In explaining these differences in behavior, it is to
remember that in the ISA PID design the filter time constant has not been taken into
account. In the FPIDn tuning, Td has been increased by Te, which according to (11)
leads to increased Ti values.

7. CONCLUSIONS AND FUTURE WORK

It has been shown that the newly presented PID tuning procedure derived by the multiple
real dominant pole (MRDP) method for the double integrator plus dead time (DIPDT)
model may be applied to a broader class of systems with 2nd order dominant dynamics.
Several problems related to the implementation of the ISA PID controller and an aug-
mented series PID controller with a generalized nth order binomial filter (FPIDn) have
been discussed. An integrated design of the FPIDn controller has been generalized from
the FOPDT [15] to the DIPDT systems.

ISA PID control has been shown as appropriate for applications with a relatively low
noise level which do not require an additional noise filter.

The advantages of the novel FPIDn control with respect to the commonly applied ISA
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Te = 0.1Tdt.

or series PID controllers with first order filters have been demonstrated by simulation
and partially also by real time experiments. The analysis confirmed the conclusions
formulated for FOPDT systems [15] which stated that significant loop performance
improvements may be achieved by increasing the order of the binomial filters Qn(s) up
to n = 3. These are, however, conditioned by use of sufficiently short sampling periods
employed for the quasi-continuous controller implementation.

In order to fully demonstrate such improvements of FPIDn control with higher n,
we have been developing a new test bed for positional servo drives with a significantly
faster FPGA based controller. The available servo system is going to be extended by a
variable inertial moment, which will permit us to handle more effectively the robustness
issues.
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