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K Y B E R N E T I K A — V O L U M E 5 5 ( 2 0 1 9 ) , N U M B E R 3 , P A G E S 5 1 8 – 5 3 0

SOME NOTES ON U-PARTIAL ORDER

M. Nesibe Kesicioğlu, Ümit Ertuğrul and F. Karaçal

In this paper, an equivalence on the class of uninorms on a bounded lattice is discussed.
Some relationships between the equivalence classes of uninorms and the equivalence classes of
their underlying t-norms and t-conorms are presented. Also, a characterization for the sets
admitting some incomparability w.r.t. the U-partial order is given.
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1. INTRODUCTION

The aggregation functions characterized by the non-decreasing monotonicity and fulfill-
ing boundary conditions have been a valuable field of study for researchers in recent
years. Their popularity come from their applicability to many areas [4, 22, 23].

Triangular norms (t-norms), triangular conorms (t-conorms), uninorms and null-
norms, which are extensively studied in [7, 8, 10, 18], are some of aggregation functions.
Especially, the importance of uninorms is thanks to their special algebraic structures
generalizing both t-norms and t-conorms. As a natural, it is not surprising that many
problems for triangular norms (or t-conorm) are invesigated for uninorms [5, 9, 19].

In recent years, inducing an order from logical operators has been an interesting
problem for many researchers. In this sense, the triangular order denoted by �T has
been introduced by Kesicioğlu and Karaçal in [11]. As an extension of t- partial order,
the U- partial order �U induced by uninorms, has been given in [6]. In the papers
[12, 13, 17], some properties of �U have been studied.

In this paper, we investigate an equivalence on the class of uninorms on a bounded
lattice based on the equality of the sets admitting some incomparability w.r.t. the
U-partial order. The paper consists of 4 main parts. In the second part, we shortly
recall some basic notions and results. In the third part, Some relationships between the
equivalence classes of uninorms and the equivalence classes of their underlying t-norms
and t-conorms are presented. We show that two idempotent uninorms are equivalent.
We determine the equivalence classes of the greatest and smallest uninorms. We give
some relationships between the sets admitting incomparability w.r.t. the U-partial order
and its φ-conjugate. Finally, we characterize the set admitting incomparability w.r.t.
the U-partial order under some special conditions.
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2. NOTATIONS, DEFINITIONS AND A REVIEW OF PREVIOUS RESULTS

Definition 2.1. (Birkhoff [3]) Let (L,≤, 0, 1) be a bounded lattice. If x ≤ y or y ≤ x,
the elements x and y are called comparable. Otherwise, x and y are called incomparable
and the notation x||y is used.

Definition 2.2. (Karaçal and Kesicioğlu [11]) An operation T (S) on a bounded lattice
L is called a triangular norm (triangular conorm) if it is commutative, associative,
increasing with respect to the both variables and has a neutral element 1 (0).

The following are the four basic t-norms TM , TP , TL and TD given by respectively:

TM (x, y) = min(x, y),
TP (x, y) = x.y,
TL(x, y) = max(x+ y − 1, 0),

TD(x, y) =

{
0 (x, y) ∈ [0, 1)2,
min(x, y) otherwise.

Definition 2.3. (Karaçal and Kesicioğlu [11], Kesicioğlu et al. [14]) A t-norm T (or a
t-conorm S) on a bounded lattice L is divisible if the following condition holds:

For all x, y ∈ L with x ≤ y there is z ∈ L such that x = T (y, z) (or y = S(x, z)).

Definition 2.4. (Karaçal and Mesiar [10]) Let (L,≤, 0, 1) be a bounded lattice. An
operation U : L2 → L is called a uninorm on L, if it is commutative, associative,
increasing with respect to the both variables and has a neutral element e ∈ L.

In this study, the notation U(e) will be used for the set of all uninorms on L with a
neutral element e ∈ L.

Corollary 2.5. (Karaçal and Mesiar [10]) Let (L,≤, 0, 1) be a bounded lattice and
e ∈ L \ {0,1}. Then the following uninorms UT∧ : L2 → L and US∨ : L2 → L,
respectively, are the greatest and the smallest uninorm on L with neutral element e.

UT∧ (x, y) =


x ∧ y , if (x, y) ∈ [0, e]

2

x ∨ y , if (x, y) ∈ [0, e]× (e, 1] ∪ (e, 1]× [0, e]
y , if x ∈ [0, e] , y‖e
x , if y ∈ [0, e] , x‖e
1 , otherwise,

US∨ (x, y) =


x ∨ y , if (x, y) ∈ [e, 1]

2

x ∧ y , if (x, y) ∈ [0, e)× [e, 1] ∪ [e, 1]× [0, e)
y , if x ∈ [e, 1] , y‖e
x , if y ∈ [e, 1] , x‖e
0 , otherwise.

Proposition 2.6. (Karaçal and Mesiar [10]) Let (L,≤, 0, 1) be a bounded lattice, and
U a uninorm with a neutral element e ∈ L. Then,

(i) TU = U |[0,e]2 : [0, e]2 → [0, e] is a t-norm on [0, e].

(ii) SU = U |[e,1]2 : [e, 1]2 → [e, 1] is a t-conorm on [e, 1].
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SU and TU given in Proposition 2.6 are called the underlying t-conorm and t-norm
of U , respectively.

Definition 2.7. (Grabisch et al. [8]) Let (L,≤, 0, 1) be a bounded lattice and U ∈ U(e).
An element x ∈ L is called an idempotent element of U if U(x, x) = x.

Moreover, a uninorm is called an idempotent uninorm whenever U(x, x) = x for all
x ∈ L.

Definition 2.8. (Baczyński and Jayaram [2], Kesicioğlu, R. Mesiar [15]) Let (L,≤, 0, 1)
be a bounded lattice. A decreasing function N : L→ L is called a negation if N(0) = 1
andN(1) = 0. A negationN on L is called strong if it is an involution, i.e., N(N(x)) = x,
for all x ∈ L.

Definition 2.9. (Baczyński and Jayaram [2]) Let T be a t-norm on a bounded lattice
L and N be a strong negation on L. The t-conorm S defined by

S(x, y) = N(T (N(x), N(y))), x, y ∈ L

is called the N-dual t-conorm to T on L.

Definition 2.10. (Ertuğrul et al. [6]) Let (L,≤, 0, 1) be a bounded lattice and U ∈
U(e). Define the following relation: For every x, y ∈ L

x �U y ⇔


if x, y ∈ [0, e] and there exists k ∈ [0, e]

such that U(k, y) = x or,
if x, y ∈ [e, 1] and there exists ` ∈ [e, 1]

such that U(x, `) = y or,
if (x, y) ∈ L∗ and x ≤ y,

where Ie = {x ∈ L | x‖e} and L∗ = [0, e]× [e, 1] ∪ [0, e]× Ie ∪ [e, 1]× [0, e] ∪ [e, 1]× Ie ∪
Ie × [0, e] ∪ Ie × [e, 1] ∪ Ie × Ie.

This relation is a partial order and called U -partial order.

Definition 2.11. (Klement et al. [16]) If T is a t-norm on the unit interval [0, 1] and
φ : [0, 1] → [0, 1] an order-preserving bijection, then the operation Tφ : [0, 1]2 → [0, 1]
given by

Tφ(x, y) = φ−1(T (φ(x), φ(y)))

is also a t-norm. This t-norm is called φ-conjugate of T .

The φ-conjugate of a uninorm (t-conorm) on a bounded lattice is defined as similar
to Definition 2.11.

A lattice is directly related to the order on it. Therefore, it is also interesting to exam-
ine the change when the order on the lattice changes. To better observe the relationship
between the natural order on the lattice and the order determined by an operator given,
let’s define the set KM for the operator M on the lattice.
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Definition 2.12. (Aşıcı F. Karaçal [1], Kesicioğlu et al. [14], Kesicioğlu et al. [13],
Lu et al. [17]) Let (L,≤, 0, 1) be a bounded lattice and M be a t-norm (t-conorm,
uninorm). Define the set KM as follow:
KM = {x ∈ L\{0, 1}| for some y ∈ L\{0, 1}, [x < y and x �M y] or [y <

x and y �M x] or x‖y}.

Definition 2.13. (Aşıcı and Karaçal [1], Kesicioğlu et al. [13], Kesicioğlu et al. [14],
Lu et al. [17]) Let (L,≤, 0, 1) be a given bounded lattice. Define the relations ∼ and
∼K on the class of all t-norms (t-conorms, uninorms with a neutral element e) on L:

M1 ∼M2 if and only if the �M1
=�M2

,

M1 ∼K M2 if and only if the KM1 = KM2 .

Lemma 2.14. (Aşıcı and Karaçal [1], Kesicioğlu et al. [13], Kesicioğlu et al. [14], Lu et
al. [17]) The relations ∼ and ∼K given in Definition 2.13 are the equivalence relations.

In this paper, we will use the notation M for the equivalence class linked to M w.r.t.
the ∼K , i.e.

M = {M
′
|M

′
∼K M}.

Definition 2.15. (Birkhoff [3]) Let (L,≤, 0, 1) be a bounded lattice. If there exists an
element y ∈ L for an element x ∈ L such that x∧ y = 0 and x∨ y = 1, then the element
y is called a complement of x.
L is called a complemented lattice if all elements have complements.
L is called relatively complemented if all intervals are complemented.

Proposition 2.16. (Kesicioğlu [12]) Let T1 and T2 be two t-norms on a bounded lattice
(L,≤, 0, 1). If T1 ∼ T2, then T1 ∼K T2.

Proposition 2.16 is also true for two t-conorms.

Proposition 2.17. (Kesicioğlu [12]) Let (L,≤, 0, 1) be a bounded lattice, S1 and S2

the N-dual t-conorms of two t-norms T1 and T2 on L, respectively. Then, T1 ∼K T2 iff
S1 ∼K S2.

Proposition 2.18. (Kesicioğlu [12]) Let (L,≤, 0, 1) be a bounded lattice, a ∈ L and
N be a strong negation on L with N(a) = a. If S : [0, a]2 → [0, a] is a t-conorm, then
for any x, y ∈ [a, 1]

T (x, y) = N(S(N(x), N(y)))

is a t-norm on [a, 1].
Similarly, if T : [a, 1]2 → [a, 1] is a t-norm, then for any x, y ∈ [0, a]

S(x, y) = N(T (N(x), N(y)))

is a t-conorm on [0, a]. Then, T (S) is called the N-dual t-norm (t-conorm) of S (T ).

Proposition 2.19. (Kesicioğlu [12]) Let T be a t-norm on a bounded lattice L and φ
an order-preserving bijection on L. Then, x ∈ KT iff φ−1(x) ∈ KTφ .
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3. THE EQUIVALENCE CLASS

In this section, an equivalence relation for the class of all uninorms on a bounded lattice
is investigated. In this sense, a relationship between the equivalence of two uninorms
and the equivalence of their underlying t-norms and t-conorms are examined.

Proposition 3.1. (Kesicioğlu et al. [13]) Let (L,≤, 0, 1) be a complemented lattice
and U ∈ U(e). Then, KU = L \ {0, 1}.

Proposition 3.2. Let (L,≤, 0, 1) be a complemented lattice and U1, U2 ∈ U(e). Then,
U1 ∼K U2.

P r o o f . Let (L,≤, 0, 1) be a complemented lattice. KU1
= L\{0, 1} = KU2

is obtained
from Proposition 3.1. Thus, U1 ∼K U2. �

Theorem 3.3. (Kesicioğlu et al. [13]) Let (L,≤, 0, 1) be a bounded lattice and U ∈
U(e). Then,

KU = KTU ∪KSU ∪ Ie ∪M,

where M = {x ∈ L | x‖y for some y ∈ Ie}.

Corollary 3.4. (Kesicioğlu et al. [13]) Let (L,≤, 0, 1) be a bounded lattice and U ∈
U(e). If Ie = ∅, then KU = KTU ∪KSU .

Remark 3.5. Let (L,≤, 0, 1) be a bounded lattice and U ∈ U(e). If Ie 6= ∅, then KU

is a set with at least two elements.

P r o o f . Let Ie 6= ∅. Therefore, there exists at least an element x ∈ Ie. We have that
e ∈ M from the definition of the set M . Thus, {x, e} ⊆ Ie ∪M ⊆ KU . So, KU has at
least two elements. �

Theorem 3.6. (Kesicioğlu et al. [13]) Let (L,≤, 0, 1) be a bounded lattice and U1, U2 ∈
U(e). Then, TU1

∼ TU2
and SU1

∼ SU2
iff U1 ∼ U2.

Proposition 3.7. Let (L,≤, 0, 1) be a bounded lattice and U1, U2 ∈ U(e). If TU1 ∼K
TU2

and SU1
∼K SU2

, then U1 ∼K U2.

P r o o f . Let TU1
∼K TU2

and SU1
∼K SU2

. Thus, we have that KTU1
= KTU2

and
KSU1

= KSU2
. Then,

KU1 = KTU1
∪KSU1

∪ Ie ∪M
= KTU2

∪KSU2
∪ Ie ∪M = KU2 ,

whence U1 ∼K U2. �

Corollary 3.8. Let (L,≤, 0, 1) be a bounded lattice and U1, U2 ∈ U(e). If U1 ∼ U2,
then U1 ∼K U2.
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P r o o f . Let U1 ∼ U2. We obtained that TU1 ∼ TU2 and SU1 ∼ SU2 from U1 ∼ U2.
Thus, we have that TU1

∼K TU2
and SU1

∼K SU2
by Proposition 2.16. Thus, by

Proposition 3.7, it is obtained that U1 ∼K U2. �

Proposition 3.9. Let U1 and U2 be two idempotent uninorms on [0, 1]. Then, U1 ∼K
U2.

P r o o f . Since U1 and U2 are two idempotent uninorms,

TU1 = TU2 = TM and SU1 = SU2 = SM .

It is obtained that �U1=�U2=≤, i.e., U1 ∼ U2 since TU1 , TU2 , SU1 and SU2 are continuous
(see Corollary 8 in [6]). Then, by Corollary 3.8, we have that U1 ∼K U2. �

Remark 3.10. The converse of Proposition 3.7 and Corollary 3.8 may not be true. Let
us investigate the following example.

Example 3.11. Consider the lattice (L = {0, a, b, c, d, 1},≤, 0, 1) whose lattice diagram
given in Figure 1.

1

c

b

a

0

d

Fig. 1. (L,≤).

Take the drastic product TD on [0, c] and TM on [0, c], the functions U1 and U2 are
uninorms on L with neutral element c by [10]. U1 and U2 can be seen in detail in Table 1
and Table 2:

U1 0 a b c d 1
0 0 0 0 0 d 1
a 0 0 0 a d 1
b 0 0 0 b d 1
c 0 a b c d 1
d d d d d 1 1
1 1 1 1 1 1 1

U2 0 a b c d 1
0 0 0 0 0 d 1
a 0 a a a d 1
b 0 a b b d 1
c 0 a b c d 1
d d d d d 1 1
1 1 1 1 1 1 1

Tab. 1. The uninorm U1 on L. Tab. 2. The uninorm U2 on L.
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The orders �U1 and �U2 obtained from U1 and U2, respectively, are depicted on Figure
2 and Figure 3.

0

a b d

c

1

Fig. 2. (L,�U1)

and

1

c

b

a

0

d

Fig. 3. (L,�U2)

Obviously, KU1
= {a, b, c, d} = KU2

but KTU1
= {a, b} 6= ∅ = KTU2

. That means,
U1 ∼K U2 but KTU1

∼K KTU2
does not satisfy.

Proposition 3.12. Let (L,≤, 0, 1) be a bounded lattice, U1, U2 ∈ U(e) and Ie = ∅.
Then, TU1 ∼K TU2 and SU1 ∼K SU2 iff U1 ∼K U2.

P r o o f . ⇒: It is clear by Proposition 3.7.
⇐: Suppose that U1 ∼K U2. Then, we have that KU1 = KU2 . We know that for any

uninorm U , KU = KTU ∪KSU by Corollary 3.4. Thus, it is obtained that

KTU1
∪KSU1

= KU1
= KU2

= KTU2
∪KSU2

.

Since KTU1
,KTU2

⊆ [0, e] and KSU1
,KSU2

⊆ [e, 1], we have that
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KTU1
= KTU1

∩ [0, e] = ∅ ∪ (KTU1
∩ [0, e])

= (KTU1
∩ [0, e]) ∪ (KSU1

∩ [0, e])

= (KTU1
∪KSU1

) ∩ [0, e]

= (KTU2
∪KSU2

) ∩ [0, e]

= (KTU2
∩ [0, e]) ∪ (KSU2

∩ [0, e])

= (KTU2
∩ [0, e]) ∪ ∅ = KTU2

∩ [0, e] = KTU2
.

Then, it is obtained that TU1
∼K TU2

. Similarly, it can be shown that SU1
∼K SU2

. �

Corollary 3.13. Let U1 and U2 be two uninorms on [0, 1]. Then, TU1 ∼K TU2 and
SU1 ∼K SU2 iff U1 ∼K U2.

Corollary 3.14. Let (L,≤, 0, 1) be a bounded lattice and U1, U2 ∈ U(e). Suppose that
SU1

and SU2
are the N-dual t-conorms of TU1

and TU2
, respectively. If TU1

∼K TU2
,

then U1 ∼K U2.

Remark 3.15. The converse of Corollary 3.14 may not be true. If we consider Example
3.11, KU1 = {a, b, c, d} = KU2 but KTU1

= {a, b} 6= ∅ = KTU2
, i.e., U1 ∼K U2 but TU1

and TU2 are not equivalent under relation ∼K .

Corollary 3.16. Let (L,≤, 0, 1) be a bounded lattice, U ∈ U(e) and N be a strong
negation on L with N(e) = e. Let SU be the N-dual t-conorm of TU . If Ie = ∅, then
KU = {x|x ∈ KTU or there exists an element y ∈ KTU such that x = N(y)}.

Example 3.17. The equivalence classes of the greatest uninorm U
(∨)
e and the smallest

uninorm U
(∧)
e with a neutral element e ∈ (0, 1) w.r.t. the relation ∼K are given by

U
(∨)
e = {U |KTU = (0, e) and SU is continuous}

and

U
(∧)
e = {U |KSU = (e, 1) and TU is continuous},

respectively.

P r o o f . It can be easily seen that U
(∨)
e |[0,e]2 = TD and U

(∨)
e |[e,1]2 = SM . Then,

KT
U

(∨)
e

= KTD = (0, e) and KS
U

(∨)
e

= KSM = ∅.

Let U ∈ U
(∨)
e , i.e., U ∼K U

(∨)
e . Thus, it is obtained that KU = K

U
(∨)
e

. Since

KU = KTU ∪KSU = KT
U

(∨)
e

∪KS
U

(∨)
e

= (0, e) ∪ ∅ = (0, e), it must be KTU = (0, e) and

KSU = ∅. It can be shown that SU is continuous iff KSU = ∅ using Lemma 3 in [14].
Thus, KTU = (0, e) and SU is continuous.
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Conversely, it is clear that KU = K
U

(∨)
e

for any uninorm U ∈ U(e) with KTU = (0, e)

and SU is continuous.
Similarly, it can be easily shown that

U
(∧)
e = {U |KSU = (e, 1) and TU is continuous}.

�

Proposition 3.18. Let (L,≤, 0, 1) be a bounded lattice, U ∈ U(e) and φ an order-
preserving bijection with φ(e) = e. If TU ∼K TUφ and SU ∼K SUφ , then U ∼K Uφ.

Proposition 3.19. Let (L,≤, 0, 1) be a bounded lattice, U ∈ U(e) and φ an order-
preserving bijection on L with φ(e) = e. If TU and SU are divisible, then U ∼K Uφ.

P r o o f . If TU and SU are divisible, it is obtained that TUφ and SUφ are also divisible.
Thus, we have that �TUφ=≤=�TU and �SUφ=≤=�SU . So, it is clear that TUφ ∼ TU
and SUφ ∼ SU . We obtain that U ∼ Uφ by Theorem 3.6. We have that U ∼K Uφ by
Corollary 3.8. �

Proposition 3.20. Let (L,≤, 0, 1) be a bounded lattice, U ∈ U(e) and φ be an order-
preserving bijection on L satisfying φ(e) = e. Then, x ∈ KU iff φ−1(x) ∈ KUφ .

P r o o f . Let U |[0,e]2 = TU and U |[e,1]2 = SU . It is clear that Uφ|[0,e]2 = TUφ = (TU )φ
and Uφ|[e,1]2 = SUφ = (SU )φ.

Let x ∈ KTU ∪KSU ∪ Ie ∪M .

• If x ∈ KTU , φ−1(x) ∈ K(TU )φ = KTUφ
⊆ KUφ by Proposition 2.19. Thus, we have

that φ−1(x) ∈ KUφ .

• If x ∈ KSU , then we obtain that φ−1(x) ∈ KUφ since φ−1(x) ∈ K(SU )φ = KSUφ
⊆

KUφ .

• Let x ∈ Ie. If φ−1(x) ≤ e, it would be φ−1(x) ≤ e = φ−1(e), which contradicts
that x ∈ Ie. Similarly, if e ≤ φ−1(x), a contradiction again. Thus, it must be
φ−1(x)‖e, i.e., φ−1(x) ∈ Ie ⊆ KUφ . We obtain that φ−1(x) ∈ KUφ .

• Let x ∈ M . Then, there exists an element y ∈ Ie such that x‖y. If φ−1(y) ≤ e,
it would be φ−1(y) ≤ e = φ−1(e), which contradicts that y ∈ Ie. We similarly
obtain a contradiction if e ≤ φ−1(y). Thus, it must be φ−1(y) ∈ Ie. Now, let us
show that φ−1(x)‖φ−1(y). If we consider φ−1(x) ≤ φ−1(y), then we would have
a contradiction since x and y are not comparable. Similarly, if φ−1(y) ≤ φ−1(x),
we would have a contradiction again. Thus, it must be φ−1(x)‖φ−1(y). Then, we
have that φ−1(x) ∈M ⊆ KUφ . Thus, φ−1(x) ∈ KUφ for any x ∈ KU .

Conversely, suppose that φ−1(x) ∈ KUφ . Let us denote ψ = φ−1. Then, ψ(e) =
φ−1(e) = e. We have that ψ−1(φ−1(x)) ∈ K(Uφ)ψ = KU for φ−1(x) ∈ KUφ . Then, we
obtain that

x = φ(φ−1(x)) = ψ−1(φ−1(x)) ∈ KU .

�
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Corollary 3.21. Let (L,≤, 0, 1) be a bounded lattice, U ∈ U(e) and φ an order-
preserving bijection on L with φ(e) = e. Then, U ∼K Uφ iff φ−1(x) ∈ KU for any
x ∈ KU .

Theorem 3.22. Let (L,≤, 0, 1) be a bounded lattice and U ∈ U(e). If KTU = ∅ and
KSU = ∅, then

KU =
⋃
t∈Ie

(e ∧ t, e ∨ t).

P r o o f . If Ie = ∅, then M = ∅. Clearly, KU = ∅. Then, it is obvious that

KU = ∅ =
⋃
∅

(e ∧ t, e ∨ t).

Now, suppose that Ie 6= ∅. We have that KU = Ie ∪M since KU = KTU ∪KSU ∪ Ie ∪M
and KTU = ∅ = KSU by Theorem 3.3.

Let x ∈ KU be arbitrary.

• If x ∈ Ie, then it is obvious that x ∈
⋃
t∈Ie(e ∧ t, e ∨ t) since x ∈ (e ∧ x, e ∨ x).

• Let x 6∈ Ie. Then, it must be x ∈ M . There exists an element y ∈ Ie such that
x‖y.

Suppose that x 6∈ (e ∧ y, e ∨ y).

Let x‖(e ∧ y). It must be x ≤ e or e ≤ x since x 6∈ Ie. If x ≤ e, it would be
x ∈ KTU since x‖(e ∧ y), but it contradicts that KTU = ∅. If e ≤ x, we would get
a contradiction with x‖(e ∧ y) since e ∧ y ≤ e ≤ x.

Let x‖(e ∨ y). It can be shown that this situation is not possible in a similar way
to the previous situation.
If x 6∈ (e ∧ y, e ∨ y), then it must be x ≤ e ∧ y or x ≥ e ∨ y. Let x ≤ e ∧ y. Since
x ≤ e∧y ≤ y, this contradicts that x‖y. If e∨y ≤ x, then we have a contradiction
again since y ≤ e ∨ y ≤ x. Thus, it must be x ∈ (e ∧ y, e ∨ y) for y ∈ Ie. Then, we
have that

x ∈
⋃
t∈Ie

(e ∧ t, e ∨ t).

Thus,

KU ⊆
⋃
t∈Ie

(e ∧ t, e ∨ t).

Conversely, suppose that x ∈
⋃
t∈Ie(e∧ t, e∨ t). We need to show that x ∈ KU . If

x ∈
⋃
t∈Ie(e∧ t, e∨ t), then there exists an element t ∈ Ie such that x ∈ (e∧ t, e∨ t).

If x ∈ Ie, then we obtain that x ∈ KU since Ie ⊆ KU . Let x 6∈ Ie. Then, x ≤ e or
e ≤ x.

Let x ≤ e. If x ≤ t, then we would have a contradiction since x ≤ (e∧ t). If t ≤ x,
it is a contradiction since t ∈ Ie. Thus, it must be x‖t. Then, by the definition of
KU , we have that x ∈ KU .
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Let e ≤ x. If x ≤ t, then we would have e ≤ t, which contradicts that t ∈ Ie. If
t ≤ x, it would be e ∨ t ≤ x. It is a contradiction. Then, it must be x‖t. Thus, it
is clear that x ∈ KU . Therefore,⋃

t∈Ie

(e ∧ t, e ∨ t) ⊆ KU .

�

Proposition 3.23. Let (L,≤) be a complete lattice and U ∈ U(e). If KTU = ∅ and
KSU = ∅, then for any family {ti|i ∈ I} ⊆ Ie,

KU = (e ∧ (
∧
i∈I

ti), e ∨ (
∨
i∈I

ti)).

P r o o f . We know that KU =
⋃
t∈Ie(e ∧ t, e ∨ t) by Theorem 3.22.

Let x ∈
⋃
t∈Ie(e ∧ t, e ∨ t). Then, there exists an element t ∈ Ie such that x ∈

(e ∧ t, e ∨ t). Since e ∧ (
∧
i∈I ti) ≤ e ∧ t < x < e ∨ t ≤ e ∨ (

∨
i∈I ti), we have that

x ∈ (e ∧ (
∧
i∈I ti), e ∨ (

∨
i∈I ti)), whence⋃

t∈Ie

(e ∧ t, e ∨ t) ⊆ (e ∧ (
∧
i∈I

ti), e ∨ (
∨
i∈I

ti)).

Conversely, let x ∈ (e ∧ (
∧
i∈I ti), e ∨ (

∨
i∈I ti)) be arbitrary. If x = e, then we have

that x ∈
⋃
t∈Ie(e ∧ t, e ∨ t) since e ∧ t < e < e ∨ t for any t ∈ Ie. Let x 6= e. Then, there

are three possible cases for x: x‖e or x < e or e < x.

• Let x‖e. Since e∧ x < x < e∨ x and x ∈ Ie, we obtain that x ∈
⋃
t∈Ie(e∧ t, e∨ t).

• Let x < e. Suppose that x 6∈ (e ∧ t, e ∨ t) for any t ∈ Ie. Since x < e and
x 6∈ (e ∧ t, e ∨ t), either x ≤ e ∧ t or x‖(e ∧ t). Suppose that x ≤ e ∧ t. For any
t ∈ Ie, x ≤ e ∧ t ≤ t, whence x ≤ t. x ≤

∧
i ti, ti ∈ Ie holds since x ≤ t for any

t ∈ Ie. By x = x ∧ e ≤ e ∧ (
∧
i ti), a contradiction x ∈ (e ∧ (

∧
i∈I ti), e ∨ (

∨
i∈I ti))

is obtained. Let x‖(e ∧ t) for any t ∈ Ie. Since x, e ∧ t < e and x‖(e ∧ t), it is
clear that x ∈ KTU , it is a contradiction since KTU = ∅. Then, there must exist
an element t ∈ Ie such that x ∈ (e ∧ t, e ∨ t). Thus, x ∈

⋃
t∈Ie(e ∧ t, e ∨ t).

• Let x > e. Suppose that x 6∈ (e ∧ t, e ∨ t) for any t ∈ Ie. Since x > e and
x 6∈ (e ∧ t, e ∨ t), either x ≥ e ∨ t or x‖(e ∨ t) for any t ∈ Ie. Let x ≥ e ∨ t. Then,
for any t ∈ Ie, we obtain that t ≤ e ∨ t ≤ x, whence t ≤ x. Since t ≤ x for any
t ∈ Ie,

∨
i ti ≤ x. By the monotonicity of the supremum, we have that

e ∨ (
∨
i

ti) ≤ e ∨ x = x,

which contradicts that x ∈ (e∧ (
∧
i∈I ti), e∨ (

∨
i∈I ti)). Let x‖(e∨ t) for any t ∈ Ie.

Since x, e ∨ t ≥ e and x‖(e ∨ t), it is clear that x ∈ KSU . Since KSU = ∅, this is a
contradiction. Then, there must exist an element t ∈ Ie such that x ∈ (e∧ t, e∨ t),
whence we have that x ∈

⋃
t∈Ie(e ∧ t, e ∨ t).
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Thus, it is obtained that

KU =
⋃
t∈Ie

(e ∧ t, e ∨ t) = (e ∧ (
∧
i∈I

ti), e ∨ (
∨
i∈I

ti))

for any {ti|i ∈ I} ⊆ Ie. �

4. CONCLUSIONS

After the definition of T-partial order on a bounded lattice, studies on the order obtained
from uninorms have gained importance. In this paper, based on the U-partial order
obtained from a uninorm, we study on the equivalence classes of uninorms on bounded
lattice. In this respect, we present some relationships between the equivalence classes of
uninorms and the equivalence classes of their underlying t-norms and t-conorms and we
show that two idempotent uninorms are equivalent. Moreover, the equivalence classes of
the greatest and smallest uninorms are determined and also some relationships between
the sets admitting incomparability w.r.t. the U-partial order and its φ-conjugate are
given. Finally, the set admitting incomparability w.r.t. the U-partial order under some
special conditions is characterized.

(Received September 19, 2018)
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[1] E. Aşıcı and F. Karaçal: On the T-partial order and properties. Inform. Sci. 267 (2014),
323–333. DOI:10.1016/j.ins.2014.01.032
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[14] M. N. Kesicioğlu, F. Karaçal, and R. Mesiar: Order-equivalent triangular norms. Fuzzy
Sets and Systems 268 (2015), 59–71. DOI:10.1016/j.fss.2014.10.006
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