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Abstract. We present the full descriptive characterizations of the strong McShane integral
(or the variational McShane integral) of a Banach space valued function f : W → X defined
on a non-degenerate closed subinterval W of Rm in terms of strong absolute continuity or,
equivalently, in terms of McShane variational measure VMF generated by the primitive
F : IW → X of f , where IW is the family of all closed non-degenerate subintervals of W .
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1. Introduction and preliminaries

In the monograph [21] of Štefan Schwabik and Ye Guoju, a full characterization of

the strong McShane integral of Banach-space valued functions defined on a compact

non-degenerate subinterval of R is given, see Theorem 7.4.14. There is also a full

descriptive characterization of the variational McShane integral in [12], Theorem 2.5.

In [13], Yeong gives some full characterizations of the strong McShane integral

of Banach-space valued functions defined on a compact non-degenerate subinterval

of Rm.

In this paper, we present the full descriptive characterizations of the strong Mc-

Shane integral of a Banach space valued function f : W → X defined on a non-

degenerate closed subinterval W of Rm in terms of strong absolute continuity or,

equivalently, in terms of McShane variational measure VMF generated by the prim-

itive F : IW → X of f , see Theorem 2.8.
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Throughout this paper, X denotes a real Banach space with the dual X∗ and W

denotes a compact non-degenerate subinterval of the m-dimensional Euclidean

space Rm. The Euclidean space Rm is equipped with the maximum norm. Bm(t, r)

is the open ball in R
m with center t and radius r > 0. We denote by B(Rm) the

Borel σ-algebra on Rm and by L(Rm) the σ-algebra of Lebesgue measurable subsets

of Rm. We put

L(W ) = {W ∩E : E ∈ L(Rm)} and B(W ) = {W ∩B : B ∈ B(Rm)}.

The Lebesgue measure on L(W ) is denoted by λ and the Lebesgue measure of a

Lebesgue measurable set E ∈ L(W ) is denoted by |E|. The phrase “at almost all”

always referes to λ.

If µ is a measure on L(W ), then by µ ≪ λ we mean that |E| = 0 implies µ(E) = 0.

A vector measure ν : L(W ) → X is said to be a countable additive vector measure

if ν is countable additive in the norm topology of X . A countable additive vector

measure ν is said to be λ-continuous if |E| = 0 implies ν(E) = 0. The variation of

a countable additive vector measure ν is denoted by |ν|; ν is said to be of bounded

variation on W if |ν|(W ) < ∞.

Let α = (a1, . . . , am) and β = (b1, . . . , bm) with −∞ < aj < bj < ∞ for

j = 1, . . . ,m. The set [α, β] =
m
∏

j=1

[aj , bj ] is called a closed non-degenerate inter-

val in R
m, while [α, β) =

m
∏

j=1

[aj, bj) is said to be a half-closed interval (or brick)

in R
m. By Br(R

m), the family of all bricks in R
m is denoted. In particular, if

b1 − a1 = . . . = bm − am, then I = [α, β] is called a cube and we set lI = b1 − a1.

In this case, |I| = (lI)
m. We denote by IW the family of all closed non-degenerate

subintervals of W .

Two intervals I, J ∈ IW are said to be non-overlapping if I◦ ∩ J◦ = ∅, where I◦

denotes the interior of I. A function F : IW → X is said to be an additive interval

function if for each pair of non-overlapping intervals I, J ∈ IW with I ∪ J ∈ IW , we

have

F (I ∪ J) = F (I) + F (J).

Definition 1.1. An additive interval function F : IW → X is said to be strongly

absolutely continuous (sAC) on W if for each ε > 0 there exists η > 0 such that for

each finite collection {I1, . . . , Ip} of pairwise non-overlapping subintervals in IW we

have
p

∑

i=1

|Ii| < η ⇒

p
∑

i=1

‖F (Ii)‖ < ε.

Replacing the last inequality with
∥

∥

∥

p
∑

i=1

F (Ii)
∥

∥

∥
< ε, we obtain the notion of absolute

continuity (AC) on W .
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Definition 1.2. A finite collection {I1, . . . , Ip} of pairwise non-overlapping in-

tervals in IW is said to be a division of W if
p
⋃

i=1

Ii = W . DW denotes the family

of all divisions of interval W . The total variation VF (W ) of an additive interval

function F : IW → X on W is defined as

VF (W ) = sup

{

∑

J∈D

‖F (J)‖ : D ∈ DW

}

.

If VF (W ) < ∞, then F is said to be of bounded variation on W .

The following lemma has been proven in [14], Lemma 10.3.7 for the real valued

functions, but the proof works also for Banach-space valued functions after trivial

changes.

Lemma 1.3. Let F : IW → X be an additive interval function. If F is sAC

on W , then F is of bounded variation on W .

Definition 1.4. Assume that a point t ∈ W and a function F : IW → X are

given. We set

IW (t) = {I ∈ IW : t ∈ I, I is a cube}.

We say that F is cubic derivable at t if there exists a vector F ′
c(t) ∈ X such that

lim
I∈IW (t)
|I|→0

F (I)

|I|
= F ′

c(t).

F ′
c(t) is said to be the cubic derivative of F at t. The cubic derivative of F at t is a

generalization of the derivative F ′(t) defined in [13], Definition 3.2.

A function f : R
m → R is called locally integrable if f is Borel measurable function

and ∫

K

|f(s)| dλ < ∞ for every bounded measurable set K ∈ B(Rm).

The following theorem is the Lebesgue Differentiation Theorem, c.f. Theorem 3.21

in [7].

Theorem 1.5. If a function f : R
m → R is locally integrable, then there exists

Z ∈ B(Rm) with |Z| = 0 such that

lim
r→0

1

|Er|

∫

Er

|f(s)− f(t)| dλ(s) = 0 for all t ∈ R
m \ Z

whenever (Er)r>0 is a family that shrinks nicely to t.
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A family (Er)r>0 of Borel subsets of Rm is said to shrink nicely to t ∈ R
m if

⊲ Er ⊂ Bm(t, r) for each r,

⊲ there is a constant α > 0, independent of r, such that |Er| > α|Bm(t, r)|,

c.f. [7], page 98.

A pair (t, I) of a point t ∈ W and an interval I ∈ IW is called anM-tagged interval

inW , t is the tag of I. A finite collection {(ti, Ii) : i = 1, . . . , p} ofM-tagged intervals

in W is called anM-partition in W if {Ii : i = 1, . . . , p} is a collection of pairwise

non-overlapping intervals in IW . Given Z ⊂ W , a positive function δ : Z → (0,∞) is

called a gauge on Z. We say that anM-partition π = {(ti, Ii) : i = 1, . . . , p} in W is

⊲ a partition of W if
p
⋃

i=1

Ii = W ;

⊲ Z-tagged if {t1, . . . , tp} ⊂ Z;

⊲ δ-fine if for each (t, I) ∈ π we have I ⊂ Bm(t, δ(t)).

Definition 1.6. A function f : W → X is said to be McShane integrable on W

if there is a vector xf ∈ X such that for every ε > 0 there exists a gauge δ on W

such that for every δ-fineM-partition π of W we have
∥

∥

∥

∥

∑

(t,I)∈π

f(t)|I| − xf

∥

∥

∥

∥

< ε.

In this case, the vector xf is said to be the McShane integral of f on W and we set

xf = (M)
∫

W
f dλ. The function f is said to be McShane integrable over a subset

A ⊂ W if the function f · bA : W → X is McShane integrable on W , where bA

is the characteristic function of the set A. The McShane integral of f over A will

be denoted by (M)
∫

A
f dλ. If f : W → X is McShane integrable on W , then by

Theorem 4.1.6 in [21] the function f is McShane integrable on each E ∈ L(W ).

Definition 1.7. The function f : W → X is said to be variationally McShane

integrable (or strongly McShane integrable) on W if there exists an additive interval

function F : IW → X such that for every ε > 0 there exists a gauge δ on W such

that for every δ-fineM-partition π of W we have

∑

(t,I)∈π

‖f(t)|I| − F (I)‖ < ε.

The function F is said to be the primitive of f . Clearly, if f is variationally Mc-

Shane integrable with the primitive F , then f is McShane integrable, and by Propo-

sition 3.6.16 in [21] we also have

F (I) = (M)

∫

I

f dλ for every I ∈ IW .
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For more information about the McShane integral we refer to [21], [25], [5], [8],

[9]–[11], [16], [15], [26] and [1].

Definition 1.8. Given an additive interval function F : IW → X , a subset

Z ⊂ W and a gauge δ on Z, we define

VMF (Z, δ) = sup

{

∑

(t,I)∈π

‖F (I)‖ : π is a Z-tagged δ-fineM-partition in W

}

.

Then we set

VMF (Z) = inf{VMF (Z, δ) : δ is a gauge on Z}.

The set function VMF is said to be theMcShane variational measure generated by F .

The set function VMF is a Borel metric outer measure on W , see [4] or [23]. The

McShane variational measure have been used extensively for studying the primi-

tives (indefinite integrals) of real functions. See e.g. the paper [4] of Di Piazza, the

book [14] of Lee Tuo-Yeong, [20] of Pfeffer for relations to integration and the funda-

mental general work [24] of Thomson. The following lemma has been proven by Di

Piazza in [4], Proposition 1 (there she considers real valued functions, but the proof

works also for vector valued functions, after trivial changes).

Lemma 1.9. Let F : IW → X be an additive interval function. Then the follow-

ing statements are equivalent:

(i) F is sAC on W ;

(ii) VMF ≪ λ.

A function f : W → X is said to be weakly measurable if for each x∗ ∈ X∗ the

real function x∗ ◦ f is Lebesgue measurable; f is said to be measurable if there is a

sequence fn : W → X of simple measurable functions such that

lim
n→∞

‖fn(t)− f(t)‖ = 0 at almost all t ∈ W.

The function f : W → X is said to be Bochner integrable on W if f is measurable

and there exists a sequence (fn) of simple measurable functions such that

lim
n→∞

∫

W

‖f(t)− fn(t)‖ dλ = 0.

In this case, (B)
∫

E
f dλ is defined for each Lebesgue measurable set E ∈ L(W ) as

(B)

∫

E

f dλ = lim
n→∞

(B)

∫

E

fn dλ,

where (B)
∫

E
fn dλ is defined in the usual way.
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The function f : W → X is said to be Pettis integrable on W if x∗ ◦ f is Lebesgue

integrable on W for each x∗ ∈ X∗ and for every Lebesgue measurable set E ∈ L(W )

there is a vector ν(E) ∈ X such that

x∗(ν(E)) =

∫

E

(x∗ ◦ f) dλ for all x∗ ∈ X∗.

The vector ν(E) is then called the Pettis integral of f over E and we set ν(E) =

(P )
∫

E
f dλ. We refer to [3], [17]–[19], [22] and [2] for Pettis integral.

2. The main result

The main result is Theorem 2.8. Let us start with some auxiliary lemmas.

Lemma 2.1. If a function f : W → R is Lebesgue integrable on W , then

lim
I∈IW (t)
|I|→0

1

|I|

∫

I

|f(s)− f(t)| dλ(s) = 0 for almost all t ∈ W.

Consequently,

(2.1) lim
I∈IW (t)
|I|→0

1

|I|

∫

I

f(s) dλ(s) = f(t) for almost all t ∈ W.

P r o o f. Since f is Lebesgue integrable on W , there exists a Borel measurable

function h : W → R such that it is Lebesgue integrable on W and h(t) = f(t) for

almost all t ∈ W . Consider a function g : R
m → R defined as

g(t) =

{

h(t) if t ∈ W,

0 if t ∈ R
m \W.

Since g is locally integrable, by Theorem 1.5 there exists Z ∈ B(Rm) with |Z| = 0

such that

lim
r→0

1

|Er|

∫

Er

|g(s)− g(t)| dλ(s) = 0 for all t ∈ R
m \ Z,

whenever (Er)r>0 is a family that shrinks nicely to t.

Fix an arbitrary t ∈ W \ Z. For each real positive number r > 0 we can choose

an arbitrary cube Ir ∈ IW (t) such that r = l(Ir). Note that

Ir ⊂ B(t, r) and |Ir | = rm >
1

2m+1
|Bm(t, r)|

344



whenever r > 0. Thus, the family (Ir)r>0 shrinks nicely to t. Therefore

lim
r→0

1

|Ir|

∫

Ir

|g(s)− g(t)| dλ(s) = 0,

and since t and (Ir)r>0 are arbitrary, it follows that

lim
I∈IW (t)
|I|→0

1

|I|

∫

I

|g(s)− g(t)| dλ(s) = 0 for all t ∈ W \ Z.

Hence,

lim
I∈IW (t)
|I|→0

1

|I|

∫

I

|h(s)− h(t)| dλ(s) = 0 for all t ∈ W \ Z.

Further, since h(t) = f(t) for almost all t ∈ W , it follows that

lim
I∈IW (t)
|I|→0

1

|I|

∫

I

|f(s)− f(t)| dλ(s) = 0 for almost all t ∈ W.

The last result together with

∣

∣

∣

∣

1

|I|

∫

I

f(s) dλ(s)− f(t)

∣

∣

∣

∣

6
1

|I|

∫

I

|f(s)− f(t)| dλ(s)

yields (2.1), and this ends the proof. �

As in [6], page 156, define a function ̺ : L(W )× L(W ) → [0,∞) by

̺(U, V ) = |U∆V | for each (U, V ) ∈ L(W )× L(W ).

It is not difficult to check that ̺ is a semimetric in L(W ), i.e. ̺ satisfies the following

conditions:

⊲ ̺(U,U) = 0,

⊲ ̺(U, V ) = ̺(V, U),

⊲ ̺(U, V ) 6 ̺(U,H) + ̺(H,V ),

whenever U, V,H ∈ L(W ).

Lemma 2.2. If ν : L(W ) → X is a countably additive λ-continuous vector mea-

sure, then

ν(IW ) = {ν(I) : I ∈ IW }

is a separable set in X .
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P r o o f. We denote by QW the family of all intervals in IW with vertices having

rational coordinates. It is easy to see that

(2.2) IW ⊂ Q
̺

W ,

where Q
̺

W is the closure of QW in the semimetric space (L(W ), ̺). We are going to

show that

(2.3) ν(IW ) ⊂ ν(QW )
‖·‖

,

where

ν(QW ) = {ν(I) : I ∈ QW }

and ν(QW )
‖·‖
is the closure of ν(QW ) in the Banach space X . To see this, let

ν(I) ∈ ν(IW ). Then by (2.2), there exists a sequence (Ik) ⊂ QW such that

lim
k→∞

(|I \ Ik|+ |Ik \ I|) = lim
k→∞

̺(Ik, I) = 0

and therefore by Theorem I.2.1 in [3], we obtain

(2.4) lim
k→∞

ν(I \ Ik) = 0 and lim
k→∞

ν(Ik \ I) = 0.

Since

I = (I \ Ik) ∪ (I ∩ Ik) and Ik = (Ik \ I) ∪ (I ∩ Ik),

it follows that

‖ν(I)− ν(Ik)‖ = ‖ν(I \ Ik)− ν(Ik \ I)‖ 6 ‖ν(I \ Ik)‖+ ‖ν(Ik \ I)‖.

The last result together with (2.4) yields that

lim
k→∞

‖ν(I)− ν(Ik)‖ = 0.

This means that (2.3) holds, and this ends the proof. �

The next lemma is proved by using Caratheodory-Hahn-Kluvanek Extension the-

orem, see Theorem I.5.2 in [3]. We recall that a collection E of subsets of W is said

to be an elementary family if

⊲ ∅ ∈ E ,

⊲ if E,F ∈ E , then E ∩ F ∈ E ,

⊲ if E ∈ E , then Ec = W \ E is a finite disjoint union of members of E ,

c.f. [7], page 23.
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Lemma 2.3. Let F : IW → X be an additive interval function. If F is AC

on W , then there exists a unique countably additive λ-continuous vector measure

FL : L(W ) → X such that

F (I) = FL(I) for all I ∈ IW .

Moreover, if F is sAC on W , then FL is of bounded variation on W .

P r o o f. We set

Br(W ) = {W ∩Br : Br ∈ Br(R
m)}.

It is easy to see that E = Br(W ) ∪ {∅} is an elementary family. Therefore, by

Proposition 1.7 in [7], it follows that the collection A of finite disjoint unions of

members of E is an algebra. Since

B(W ) = σ(A ),

where σ(A ) is the σ-algebra generated by A , and since the closure of A with respect

to ̺ is a σ-algebra, it follows that A is a dense subset of B(W ) with respect to ̺.

Assume that an arbitrary nonempty set A ∈ A is given. If {I1, . . . , Ip} and

{J1, . . . , Jq} are finite collections of pairwise disjoint bricks in Br(W ) such that

A = I1 ∪ . . . ∪ Ip = J1 ∪ . . . ∪ Jq,

then

B = {Ii ∩ Jj : Ii ∩ Jj 6= ∅, i = 1, . . . , p, j = 1, . . . , q}

is a finite collection of pairwise disjoint bricks in Br(W ) and A =
⋃

I∈B

I. Then,

since F is additive and any two representations of A as a finite disjoint union of

bricks have a common refinement, the sum

F (I1) + . . .+ F (Ip)

is independent of the particular family {I1, . . . , Ip} of pairwise disjoint bricks whose

union is A, where Ii is the closure of Ii. Thus, we can define vector FA (A) by

equation

FA (A) = F (I1) + . . .+ F (Ip).

In particular, we define FA (∅) = 0.

From the fact that F is AC it follows that

lim
(A∈A )
|A|→0

FA (A) = 0.
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Hence, FA is a strongly additive and countably additive vector measure on A .

Therefore by Caratheodory-Hahn-Kluvanek Extension theorem, Theorem I.5.2 in [3],

FA has a unique countable additive λ-continuous extension FB : B(W ) → X , and

since

FB(B′)− FB(B′′) = FB(B′ \B′′)− FA (B′′ \B′), B′, B′′ ∈ B(W ),

it follows that FB is uniformly continuous on B(W ) with respect to ̺.

Since FB is a countably additive λ-continuous vector measure on B(W ), it has a

unique countable additive λ-continuous extension FL : L(W ) → X .

We now assume that F is sAC on W . It is enough to show that FB is of bounded

variation onW . To see this, let us consider a finite collection {Bi : i = 1, 2, . . . , p} of

pairwise disjoint members of B(W ). Since FB is uniformly continuous with respect

to ̺ on B(W ), given 0 < ε < 1 there exists δ > 0 such that for each B,B′ ∈ B(W )

we have

̺(B,B′) = |B∆B′| < δ ⇒ ‖FB(B)− FB(B′)‖ <
ε

2p2
.

Since A is dense in B(W ) with respect to ̺, for each Bi there exists an Ai ∈ A

such that

̺(Bi, Ai) = |Bi∆Ai| <
δ

2
,

and since

(Ai ∩ Aj) \Bi ⊂ Ai∆Bi, (Ai ∩Aj) \Bj ⊂ Aj∆Bj

and

Ai ∩ Aj ⊂ ((Ai ∩ Aj) \Bi) ∪ ((Ai ∩ Aj) \Bj),

it follows that

̺((Ai ∩Aj), ∅) = |Ai ∩Aj | < δ, i 6= j.

Therefore, if we set

C1 = A1, C2 = A2 \A1, . . . , Cp = Ap \

p−1
⋃

k=1

Ak,

then

p
∑

i=1

‖FB(Bi)‖ 6

p
∑

i=1

‖FB(Bi)− FB(Ai)‖+

p
∑

i=1

‖FB(Ai)‖ <

p
∑

i=1

‖FA (Ai)‖+
ε

2

6

p
∑

i=1

‖FA (Ci)‖+
∑

i6=j
i,j

‖FA (Ai ∩ Aj)‖ +
ε

2

< VF (W ) +
ε

2
+

ε

2
= VF (W ) + ε < VF (W ) + 1.
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Since F is sAC on W , the last result together with Lemma 1.3 yields

|FB|(W ) 6 VF (W ) + 1 < ∞.

Thus, FB is of bounded variation on W , and this ends the proof. �

The next lemma gives full descriptive characterizations of Lebesgue integral.

Lemma 2.4. Let F : IW → R be an additive interval function and let f : W → R

be a function. Then the following statements are equivalent:

(i) F is AC on W ;

(ii) F is sAC on W ;

(iii) VM ≪ λ;

(iv) F is AC on W , F ′
c(t) exists and F ′

c(t) = f(t) for almost all t ∈ W ;

(v) F is sAC on W , F ′
c(t) exists and F ′

c(t) = f(t) for almost all t ∈ W ;

(vi) VM ≪ λ, F ′
c(t) exists and F ′

c(t) = f(t) for almost all t ∈ W ;

(vii) f is Lebesgue integrable on W with the primitive F , i.e.

F (I) =

∫

I

f dλ for all I ∈ IW .

P r o o f. Since F is a real valued function, it is easy to see that if F is AC on W ,

then F is sAC on W . Therefore (i) ⇔ (ii) and (iv) ⇔ (v). By virtue of Lemma 1.9

it follows that (ii) ⇔ (iii) and (v) ⇔ (vi).

(ii) ⇒ (vii): Assume that F is sAC on W . Then by Lemma 2.3 there exists a

unique countably additive λ-continuous vector measure FL : L(W ) → R of bounded

variation on W such that FL(I) = F (I) for all I ∈ IW . Therefore, by Lebesgue-

Radon-Nikodym theorem, see Theorem 3.8 in [7], there exists a Lebesgue integrable

function f : W → R such that FL(E) =
∫

E
f dλ for all E ∈ L(W ). In particular, we

have F (I) =
∫

I
f dλ for all I ∈ IW .

(vii)⇒ (iv): Assume that (vii) holds. Then by Corollary 3.6 in [7], F is AC onW .

Also, since F (I) =
∫

I
f dλ for all I ∈ IW , by Lemma 2.1 it follows that F ′

c(t) exists

and F ′
c(t) = f(t) for almost all t ∈ W .

Clearly, (iv) ⇒ (i), and this ends the proof. �

We now show full descriptive characterizations of Pettis integral.

Lemma 2.5. Let F : IW → X be an additive interval function and let f : W → X

be a function. Then the following statements are equivalent:
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(i) f is Pettis integrable on W with the primitive F , i.e.

F (I) = (P )

∫

I

f dλ for all I ∈ IW ;

(ii) F is AC on W and for each x∗ ∈ X∗, (x∗ ◦ F )′c(t) exists and

(x∗ ◦ F )′c(t) = (x∗ ◦ f)(t) for almost all t ∈ W

(the exceptional set may vary with x∗).

P r o o f. (i) ⇒ (ii): Assume that (i) holds. Then each (x∗ ◦ f) is Lebesgue inte-

grable onW with the primitive (x∗ ◦F ). Therefore for each x∗ ∈ X∗, by Lemma 2.4,

(x∗ ◦ F )′c(t) exists and (x∗ ◦ F )′c(t) = (x∗ ◦ f)(t) for almost all t ∈ W .

Since f is Pettis integrable on W , by Theorem II.3.5 in [3], the vector measure

ν : L(W ) → X defined as

ν(E) = (P )

∫

E

f dλ for all E ∈ L(W )

is a countably additive λ-continuous vector measure on L(W ), and since λ is a finite

measure on L(W ), we obtain by Theorem I.2.1 in [3] that F is AC.

(ii) ⇒ (i): Assume that (ii) holds. Then by Lemma 2.4, each (x∗ ◦ f) is Lebesgue

integrable on W with the primitive (x∗ ◦ F ), i.e.

(x∗ ◦ F )(I) =

∫

I

(x∗ ◦ f) dλ for all I ∈ IW .

Since F is AC on W , by Lemma 2.3 there exists a unique countably additive

λ-continuous vector measure ν : L(W ) → X such that F (I) = ν(I) for all I ∈ IW .

It follows that for each x∗ ∈ X∗ we have

x∗(ν(I)) =

∫

I

(x∗ ◦ f) dλ for all I ∈ IW .

It is easy to see that the family

C =

{

B ∈ B(W ) : ∀x∗ ∈ X∗,

[

x∗(ν(B)) =

∫

B

(x∗ ◦ f) dλ

]}

is a σ-algebra such that

IW ⊂ C ⊂ B(W ),
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and since B(W ) = σ(IW ), it follows that C = B(W ). Thus, for each B ∈ B(W ) we

have

x∗(ν(B)) =

∫

B

(x∗ ◦ f) dλ for all x∗ ∈ X∗.

Hence, since ν is λ-continuous, for each E ∈ L(W ) we have

x∗(ν(E)) =

∫

E

(x∗ ◦ f) dλ for all x∗ ∈ X∗.

This means that f is Pettis integrable on W , and this ends the proof. �

By Theorem 3.5 in [13] it follows that if VMF ≪ λ, F ′(t) exists and F ′(t) = f(t)

for almost all t ∈ W , then f : W → X is variationally McShane integrable on W

with the primitive F : IW → X . Since F ′
c(t) is a generalization of F

′(t), we need to

prove the following theorem.

Theorem 2.6. Let F : IW → X be an additive interval function and let

f : W → X be a function. Assume that F is sAC onW , F ′
c(t) exists and F

′
c(t) = f(t)

for almost all t ∈ W . Then f is variationally McShane integrable function with the

primitive F , i.e.

F (I) = (M)

∫

I

f dλ for all I ∈ IW .

P r o o f. By hypothesis, for all x∗ ∈ X∗ we have (x∗ ◦ F )′c(t) exists and

(x∗ ◦ F )′c(t) = (x∗ ◦ f)(t) for almost all t ∈ W.

Therefore, by Lemma 2.5, f is Pettis integrable on W with the primitive F . Hence,

by Theorem II.3.5 in [3], the vector measure ν : L(W ) → X defined by

ν(E) = (P )

∫

E

f dλ for all E ∈ L(W )

is a countably additive λ-continuous vector measure. Since F is sAC onW and since

ν(I) = F (I) for all I ∈ IW ,

we obtain by Lemma 2.3 that ν is of bounded variation.

We obtain by Lemma 2.2 that Y0 = {F (I) : I ∈ IW } is a separable subset of X .

If Y is the closed linear subspace spanned by Y0, then Y is also a separable subset

of X . Since F (I)/|I| ∈ Y for all I ∈ IW (t), we obtain that f(t) ∈ Y for almost all

t ∈ W . Hence, f is λ-essentially separably valued. Since f is Pettis integrable onW ,
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we have also that f is weakly measurable. Therefore by Theorem II.1.2 in [3], the

function f is measurable. Hence, by Remark 4.1 in [18] it follows that

|ν|(E) =

∫

E

‖f(t)‖ dλ for each E ∈ L(W ),

and since ν is of bounded variation, the function ‖f(·)‖ is Lebesgue integrable onW .

Further, by Theorem II.2.2 in [3], function f is Bochner integrable on W . Since

the Bochner and Pettis integrals coincide whenever they coexist, we have F (I) =

(B)
∫

I
f dλ for all I ∈ IW . Thus, function f is Bochner integrable and therefore

by Theorem 5.1.4 in [21], f is variationally McShane integrable on W with the

primitive F , and this ends the proof. �

According to Theorem 3.1 in [13], if F : IW → X is the primitive of a variationally

McShane integrable function f : W → X , then VMF ≪ λ. Therefore, to prove

(i) ⇒ (ii) in Theorem 2.8, it is enough to prove that if F is the primitive of a

variationally McShane integrable function f , then F ′
c(t) exists and F ′

c(t) = f(t)

for almost all t ∈ W .

Theorem 2.7. Let F : IW → X be an additive interval function. Assume that a

function f : W → X is variationally McShane integrable onW with the primitive F ,

i.e.

F (I) = (M)

∫

I

f dλ for all I ∈ IW .

Then F ′
c(t) exists and F ′

c(t) = f(t) for almost all t ∈ W .

P r o o f. By Theorem 5.1.4 in [21], f is Bochner integrable on W and

F (I) = (B)

∫

I

f dλ for all I ∈ IW .

Since f is measurable, we assume without loss of generality that f is separably

valued. Then there exists a countable set

Y = {xk ∈ X : k ∈ N}

such that Y is a dense subset of f(W ). By virtue of Theorem II.2.2 in [3], ‖f(·)−xk‖

is Lebesgue integrable on W . Hence, by Lemma 2.1 there exists a subset Zk ⊂ W

with |Zk| = 0 such that for all t ∈ W \ Zk we have

lim
I∈IW (t)
|I|→0

1

|I|

∫

I

‖f(s)− xk‖ dλ(s) = ‖f(t)− xk‖.
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Fix an arbitrary t ∈ W \ Z, where Z =
∞
⋃

k=1

Zk. Since

1

|I|

∫

I

‖f(s)− f(t)‖ dλ(s) 6
1

|I|

∫

I

‖f(s)− xk‖ dλ(s) + ‖xk − f(t)‖,

we obtain

lim sup
I∈IW (t)
|I|→0

1

|I|

∫

I

‖f(s)− f(t)‖ dλ(s) 6 2‖xk − f(t)‖ for all k ∈ N.

The last inequality together with the fact that Y is a dense subset of f(W ) yields

lim sup
I∈IW (t)
|I|→0

1

|I|

∫

I

‖f(s)− f(t)‖ dλ(s) = 0

and therefore

lim
I∈IW (t)
|I|→0

1

|I|

∫

I

‖f(s)− f(t)‖ dλ(s) = 0.

The last result together with

∥

∥

∥

∥

1

|I|
(B)

∫

I

f(s) dλ(s)− f(t)

∥

∥

∥

∥

6
1

|I|

∫

I

‖f(s)− f(t)‖ dλ(s)

yields

lim
I∈IW (t)
|I|→0

1

|I|
(B)

∫

I

f(s) dλ(s) = f(t).

Since t is arbitrary, the last equality holds at all t ∈ W \ Z. Thus, F ′
c(t) exists and

F ′
c(t) = f(t) for almost all t ∈ W , and this ends the proof. �

We are now ready to present the main result.

Theorem 2.8. Let F : IW → X be an additive interval function and let f :

W → X be a function. Then the following statements are equivalent:

(i) f is variationally McShane integrable on W with the primitive F , i.e.

F (I) = (M)

∫

I

f dλ for all I ∈ IW ;

(ii) F is sAC on W , F ′
c(t) exists and F ′

c(t) = f(t) for almost all t ∈ W ;

(iii) VMF ≪ λ, F ′
c(t) exists and F ′

c(t) = f(t) for almost all t ∈ W .
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P r o o f. By virtue of Lemma 1.9, we obtain immediately that (ii) ⇔ (iii). By

Theorem 2.6 it follows that (ii) ⇒ (i). Theorem 2.7 together with Theorem 3.1

in [13] yields that (i) ⇒ (iii), and this ends the proof. �

References

[1] D. Candeloro, L. Di Piazza, K. Musia l, A. R. Sambucini: Gauge integrals and selections
of weakly compact valued multifunctions. J. Math. Anal. Appl. 441 (2016), 293–308. zbl MR doi

[2] D. Candeloro, L. Di Piazza, K. Musia l, A. R. Sambucini: Relations among gauge and
Pettis integrals for cwk(X)-valued multifunctions. Ann. Mat. Pura Appl. (4) 197 (2018),
171–183. zbl MR doi

[3] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15. AMS, Providence,
1977. zbl MR

[4] L. Di Piazza: Variational measures in the theory of the integration in R
m. Czech.

Math. J. 51 (2001), 95–110. zbl MR doi
[5] L. Di Piazza, K. Musia l: A characterization of variationally McShane integrable Ba-
nach-space valued functions. Ill. J. Math. 45 (2001), 279–289. zbl MR

[6] N. Dunford, J. T. Schwartz: Linear Operators I. General Theory. Pure and Applied
Mathematics. Vol. 7. Interscience Publishers, New York, 1958. zbl MR

[7] G. B. Folland: Real Analysis. Modern Techniques and Their Applications. Pure and
Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts.
Wiley, New York, 1999. zbl MR

[8] D. H. Fremlin: The generalized McShane integral. Ill. J. Math. 39 (1995), 39–67. zbl MR
[9] R. A. Gordon: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Stud.
Math. 92 (1989), 73–91. zbl MR doi

[10] R. A. Gordon: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990),
557–567. zbl MR

[11] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Stud-
ies in Mathematics 4. AMS, Providence, 1994. zbl MR doi

[12] S. B. Kaliaj: Descriptive characterizations of Pettis and strongly McShane integrals. Real
Anal. Exch. 39 (2014), 227–238. zbl MR doi

[13] T.-Y. Lee: Some full characterizations of the strong McShane integral. Math. Bohem.
129 (2004), 305–312. zbl MR

[14] T. Y. Lee: Henstock-Kurzweil Integration on Euclidean Spaces. Series in Real Analy-
sis 12. World Scientific, Hackensack, 2011. zbl MR doi

[15] V. Marraffa: The variational McShane integral in locally convex spaces. Rocky Mt. J.
Math. 39 (2009), 1993–2013. zbl MR doi

[16] E. J. McShane: Unified Integration. Pure and Applied Mathematics 107. Academic
Press, Orlando (Harcourt Brace Jovanovich, Publishers), 1983. zbl MR

[17] K. Musia l: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex
spaces. Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159–165. zbl MR

[18] K. Musia l: Topics in the theory of Pettis integration. Rend. Ist. Math. Univ. Trieste 23
(1991), 177–262. zbl MR

[19] K. Musia l: Pettis integral. Handbook of Measure Theory. Vol. I. and II. (E. Pap, ed.).
North-Holland, Amsterdam, 2002, pp. 531–586. zbl MR doi

[20] W. F. Pfeffer: Derivation and Integration. Cambridge Tracts in Mathematics 140. Cam-
bridge University Press, Cambridge, 2001. zbl MR doi

[21] Š. Schwabik, G. Ye: Topics in Banach Space Integration. Series in Real Analysis 10.
World Scientific, Hackensack, 2005. zbl MR doi

354

https://zbmath.org/?q=an:1339.28016
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3488058
http://dx.doi.org/10.1016/j.jmaa.2016.04.009
https://zbmath.org/?q=an:06837507
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3747527
http://dx.doi.org/10.1007/s10231-017-0674-z
https://zbmath.org/?q=an:0369.46039
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0453964
https://zbmath.org/?q=an:1079.28500
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1814635
http://dx.doi.org/10.1023/A:1013705821657
https://zbmath.org/?q=an:0999.28006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1849999
https://zbmath.org/?q=an:0084.10402
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0117523
https://zbmath.org/?q=an:0924.28001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1681462
https://zbmath.org/?q=an:0810.28006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1299648
https://zbmath.org/?q=an:0681.28006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0984851
http://dx.doi.org/10.4064/sm-92-1-73-91
https://zbmath.org/?q=an:0685.28003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1053562
https://zbmath.org/?q=an:0807.26004
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1288751
http://dx.doi.org/10.1090/gsm/004
https://zbmath.org/?q=an:1298.28025
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3261908
http://dx.doi.org/10.14321/realanalexch.39.1.0227
https://zbmath.org/?q=an:1080.26006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2092716
https://zbmath.org/?q=an:1246.26002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2789724
http://dx.doi.org/10.1142/7933
https://zbmath.org/?q=an:1187.28019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2575890
http://dx.doi.org/10.1216/RMJ-2009-39-6-1993
https://zbmath.org/?q=an:0551.28001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0740710
https://zbmath.org/?q=an:0636.28005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0922998
https://zbmath.org/?q=an:0798.46042
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1248654
https://zbmath.org/?q=an:1043.28010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1954622
http://dx.doi.org/10.1016/B978-044450263-6/50013-0
https://zbmath.org/?q=an:0980.26008
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1816996
http://dx.doi.org/10.1017/CBO9780511574764
https://zbmath.org/?q=an:1088.28008
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2167754
http://dx.doi.org/10.1142/9789812703286


[22] M. Talagrand: Pettis integral and measure theory. Mem. Am. Math. Soc. 51 (1984),
224 pages. zbl MR doi

[23] B. S. Thomson: Derivates of interval functions. Mem. Am. Math. Soc. 452 (1991),
96 pages. zbl MR doi

[24] B. S. Thomson: Differentiation. Handbook of Measure Theory. Volume I. and II.
(E. Pap, ed.). North-Holland, Amsterdam, 2002, pp. 179–247. zbl MR doi

[25] C. Wu, X. Yao: A Riemann-type definition of the Bochner integral. J. Math. Study 27
(1994), 32–36. zbl MR

[26] G. Ye: On Henstock-Kurzweil and McShane integrals of Banach space-valued functions.
J. Math. Anal. Appl. 330 (2007), 753–765. zbl MR doi

Author’s address: Sokol Bush Kaliaj, Department of Mathematics, Faculty of Nat-
ural Science, Aleksander Xhuvani University, Rruga Rinia, Elbasan, Albania, e-mail:
sokolkaliaj@yahoo.com.

355

https://zbmath.org/?q=an:0582.46049
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0756174
http://dx.doi.org/10.1090/memo/0307
https://zbmath.org/?q=an:0734.26003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1078198
http://dx.doi.org/10.1090/memo/0452
https://zbmath.org/?q=an:1028.28001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1954615
http://dx.doi.org/10.1016/B978-044450263-6/50006-3
https://zbmath.org/?q=an:0947.28010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1318255
https://zbmath.org/?q=an:1160.46028
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2308405
http://dx.doi.org/10.1016/j.jmaa.2006.08.020

		webmaster@dml.cz
	2020-08-14T08:47:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




