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Split extensions and semidirect products of unitary magmas

Marino Gran, George Janelidze, Manuela Sobral

Dedicated to the memory of Věra Trnková

Abstract. We develop a theory of split extensions of unitary magmas, which in-
cludes defining such extensions and describing them via suitably defined semidi-
rect product, yielding an equivalence between the categories of split extensions
and of (suitably defined) actions of unitary magmas on unitary magmas. The
class of split extensions is pullback stable but not closed under composition. We
introduce two subclasses of it that have both of these properties.

Keywords: unitary magma; split extension; firm split extension; semidirect prod-
uct

Classification: 20N02, 08C05, 18G50

Introduction

As one knows from any first course of group theory, every split epimorphism
of groups is, up to isomorphism, a semidirect product projection. A more refined
categorical formulation says that there is a category equivalence between:

◦ the category of split extensions

X
κ // A

α
// B

βoo

of groups, and
◦ the category of group actions.

Here a split extension is a diagram above in the category of groups with αβ = 1
and κ being a kernel of α, while a group action is a triple (B,X, h), in which B
is a group acting on a group X , and h : B × X → X is its action. Under this
equivalence, an action (B,X, h) corresponds to the split extension

X
ι1 // X ⋊B

π2

// B,
ι2oo

involving the semidirect product X ⋊ B, in which ι1, ι2, and π2 are defined by
ι1(x) = (x, 0), ι2(b) = (0, b), and π2(x, b) = b, respectively (in additive notation).
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We shall refer to this category equivalence as the theory of split extensions of

groups.

Based on Bourn’s theory of protomodular categories (see [3] and [1]) and the
theory of monads, the theory of split extensions was extended to the context
of abstract semi-abelian categories in the sense of [8] (see [4] and [2]). This
widely generalizes not only the group case but also more general algebraic cases
considered by G. Orzech in [13] and T. Porter in [15].

Going beyond the semi-abelian context is also possible, but then split exten-
sions should be defined differently, involving an additional structure and proper-
ties. Specifically, in the case of monoids (see [5] and references therein), a split
extension (called a Schreier split extension) should be defined as a diagram

X
κ

// A
α

//
λoo

B,
βoo

in which α, β, and κ are as before, and λ is a map (not necessarily a monoid
homomorphism) with κλ + βα = 1 and λ(κ(x) + β(b)) = x for all x ∈ X and
b ∈ B (using additive notation again). The context of monoids is not more
general than the semi-abelian one of course, but it easily extends to cover the
situations considered in [13] and [15] (see [11]). Note that Schreier split extensions
of monoids had implicitly been used in the work of A. Patchkoria on Schreier
internal categories in monoids [14].

The purpose of the present paper is to develop another generalization of the
theory of split extensions, namely from monoids to unitary magmas, that is, to
algebraic structures of the form M = (M, 0,+), where the only axiom required is
0 + x = x = x + 0 for all x ∈ M . It turns out that this is indeed possible (see
Theorem 2.8) with various surprising and less surprising additional observations,
some of which are:

◦ Defining a split extension one needs not just to involve a map denoted by λ
above, but also to require unusual new conditions of partial associativity.
These conditions are harmless in the sense that every two unitary magmas
B and X admit a split extension involving them. These conditions are
the equalities (15)–(17) in Definition 1.4 (although (15) and (17) in fact
imply (16)).

◦ On the other hand, defining an action of B on X we do not require
any properties involving addition (see Definition 1.1). Still, requiring
such properties would be natural, and they give nicer classes of split
extensions/epimorphisms (see Definition 3.5, Corollary 3.6, Theorem 3.7,
and Subsection 4.3).

◦ The above-mentioned “nicer classes” are not only pullback stable in the
class of all split extensions, but also closed under composition (see Sub-
section 4.3 again).
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◦ Just as for groups and monoids, all our definitions, constructions, and
results can be copied for internal unitary magmas in abstract categories
(see Subsection 4.6).

◦ Just as for monoids, our split extensions satisfy some forms of Short Five
Lemma (see Subsection 4.4) but not the strongest form valid for groups
(see 4.4 (c)), since we are generalizing the monoid case.

Convention: All magmas we consider below are supposed to be unitary and

all maps between them are supposed to preserve zero, but not necessarily addition,

unless stated otherwise.

1. Introducing semidirect products and split extensions

Definition 1.1. Let B and X be magmas. A map B × X → X written as
(b, x) 7→ bx is said to be an action of B on X if

(1) 0x = x, b0 = 0

for all x ∈ X and b ∈ B.

Definition 1.2. For magmas B and X and an action of B on X , the semidirect
product diagram is the diagram

(2) X
ι1

// X ⋊B
π2

//
π1oo

B
ι2oo

in which:

(a) X ⋊B is a magma whose underlying set is X ×B and whose addition is
defined by (x, b) + (x′, b′) = (x+ bx′, b+ b′) (thus making (0, 0) its zero);

(b) the maps involved are defined by ι1(x) = (x, 0), ι2(b) = (0, b), π1(x, b) = x,
and π2(x, b) = b.

Lemma 1.3. The semidirect product diagram (2) satisfies the following condi-
tions:

(a) all maps involved in it preserve zero, and, moreover, the maps ι1, ι2, and
π2 are magma homomorphisms;

(b) the equalities

π1ι1 = 1, π2ι2 = 1,(3)

π1ι2 = 0, π2ι1 = 0,(4)

ι1π1 + ι2π2 = 1,(5)

π1(ι1(x) + ι2(b)) = x,(6)

(x, 0) + ((0, b) + (x′, b′)) = ((x, 0) + (0, b)) + (x′, b′),(7)
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(x, 0) + ((x′, b′) + (0, b)) = ((x, 0) + (x′, b′)) + (0, b),(8)

(x′, b′) + ((x, 0) + (0, b)) = ((x′, b′) + (x, 0)) + (0, b)(9)

hold for all x, x′ ∈ X and b, b′ ∈ B.

Definition 1.4. A split extension of magmas is a diagram

(10) X
κ

// A
α

//
λoo

B
βoo

in which:

(a) X , A, and B are magmas, α, β, and κ are magma homomorphisms, and
λ preserves zero;

(b) the equalities

λκ = 1, αβ = 1,(11)

λβ = 0, ακ = 0,(12)

κλ+ βα = 1,(13)

λ(κ(x) + β(b)) = x,(14)

κ(x) + (β(b) + a) = (κ(x) + β(b)) + a,(15)

κ(x) + (a+ β(b)) = (κ(x) + a) + β(b),(16)

a+ (κ(x) + β(b)) = (a+ κ(x)) + β(b),(17)

hold for all x, x′ ∈ X , a ∈ A and b, b′ ∈ B.

Definition 1.5. Given a split extension (10), the associated action of B on X is
defined by bx = λ(β(b) + κ(x)).

Consider the diagram

(18) X
κ

// A
α

//
λoo

ϕ

��

B
βoo

X
ι1

// X ⋊B
π2

//
π1oo

ψ

OO

B
ι2oo

in which:

◦ the top row is a split extension of magmas;
◦ the bottom row is a semidirect product diagram in which B acts on X as
in Definition 1.5;

◦ the map ϕ is defined by ϕ(a) = (λ(a), α(a));
◦ the map ψ is defined by ψ(x, b) = κ(x) + β(b).

We are going to prove several lemmas involving this diagram:

Lemma 1.6. The maps ϕ and ψ are bijections, inverse to each other.
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Proof: For x ∈ X and b ∈ B, we have:

ϕψ(x, b) = ϕ(κ(x) + β(b)) = (λ(κ(x) + β(b)), α(κ(x) + β(b))) = (x, b),

where λ(κ(x) + β(b)) = x by (14), while α(κ(x) + β(b)) = b follows from (12),
(11), and the fact α is a magma homomorphism.

For a ∈ A, we have:

ψϕ(a) = ψ(λ(a), α(a)) = κλ(a) + βα(a) = a,

where the last equality holds by (13). �

Lemma 1.7. For x ∈ X and b ∈ B, we have β(b) + κ(x) = κ(bx) + β(b).

Proof: Using Lemma 1.6, we calculate:

β(b) + κ(x) = ψϕ(β(b) + κ(x)) = ψ(λ(β(b) + κ(x)), α(β(b) + κ(x)))

= ψ(bx, b) = κ(bx) + β(b),

where λ(β(b) + κ(x)) = bx by Definition 1.5, while α(β(b) + κ(x)) = b follows
from (11), (12), and the fact α is a magma homomorphism. �

Lemma 1.8. The map ψ is a magma homomorphism.

Proof: The map ψ obviously preserves zero, and to prove that it preserves ad-
dition, we calculate:

ψ((x, b) + (x′, b′)) = ψ(x+ bx′, b+ b′)
(by 1.2 (a))

= κ(x+ bx′) + β(b + b′)
(by definition of ψ)

= κ(x+ bx′) + (β(b) + β(b′))

(since β is a magma homomorphism)

= (κ(x+ bx′) + β(b)) + β(b′)
(by (15), or by (16))

= ((κ(x) + κ(bx′)) + β(b)) + β(b′)

(since κ is a magma homomorphism)

= (κ(x) + (κ(bx′) + β(b))) + β(b′)
(by (16), or by (17))

= (κ(x) + (β(b) + κ(x′))) + β(b′)
(by Lemma 1.7)

= ((κ(x) + β(b)) + κ(x′)) + β(b′)
(by (15))

= (κ(x) + β(b)) + (κ(x′) + β(b′))
(by (17))

= ψ(x, b) + ψ(x′, b′)
(by definition of ψ). �
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Remark 1.9. Lemmas 1.6 and 1.7 do not use the magma structure of X⋊B, and
so one might prefer not to introduce Definitions 1.2 and 1.5 before Lemma 1.6,
but to begin with Lemma 1.6 as the motivation of introducing the semidirect
products as cartesian products with modified structure.

Lemma 1.10. The diagram (18) reasonably commutes, in the sense that

ϕκ = ι1, ϕβ = ι2, π1ϕ = λ, π2ϕ = α,(19)

ψι1 = κ, ψι2 = β, λψ = π1, αψ = π2.(20)

Remark 1.11. As Lemmas 1.6, 1.8, and 1.10 show, a split extension of magmas is
nothing but a semidirect product diagram up to an isomorphism (cf. Remark 1.9).
Using this, note:

(a) The formulas (11)–(17) are straightforward translations of the formulas
(3)–(9). However, the formulas (11)–(17) are not logically independent
from each other. In particular, (14) immediately implies the first equali-
ties of (11) and (12). Note also, that (16) can be deduced from (13), (15),
and (17).

(b) The counterpart of the addition formula from Definition 1.2 (a) for the
addition in A is

(21) (κ(x) + β(b)) + (κ(x′) + β(b′)) = κ(x+ bx′) + β(b+ b′),

which just repeats Lemma 1.8. The reason why it works as such coun-
terpart is that every element of A can be uniquely presented as a sum
of an element from κ(X) and an element from β(B); explicitly, a =
(κλ+ βα)(a) = κλ(a) + βα(a) for each a ∈ A.

Our last lemma of this section collects purely categorical properties of a split
extension (10).

Lemma 1.12. (a) the maps κ and β are jointly strongly epimorphic in the
category of magmas;

(b) the map λ and α form a product diagram in the category of sets;
(c) the map κ is a kernel of α in the category of magmas;
(d) the map α is a cokernel of κ in the category of magmas.

Proof: All these assertions easily follow from Lemmas 1.6 and 1.8. Nevertheless
let us give a direct rather categorical proof of (d), which we will also need later.
We have to show that for every magma C and magma homomorphism s : A→ C

with sκ = 0, there exists a magma homomorphism t : B → C with tα = s. For
that, we take t = sβ and calculate:

tα = sβα = sβα(κλ+ βα) = sβακλ + sβαβα

= 0 + sβα = sκλ+ sβα = s(κλ+ βα) = s.

Equivalently, the same could be deduced from (a) without using λ, making the
argument even ‘more categorical’. �
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Remark 1.13. In [10] N. Martins-Ferreira and A. Montoli considered the class S
of Schreier split epimorphisms of unitary magmas, whose category can be identi-
fied (up to a canonical equivalence) with the category of diagrams (10) satisfying
conditions (11) to (14) in this paper. As observed in [10] (Proposition 2.5) any
Jónsson–Tarski variety is S-protomodular in the sense of [6] for S the class of
Schreier split epimorphisms. In particular, this fact implies that any Jónsson–
Tarski variety satisfies the S-relative version of the Split Short Five Lemma.
Adding conditions (15) to (17) does not change that of course. However, in Sub-
section 4.4 below, a different approach will be used and some further observations
on the validity of the Split Short Five Lemma in our context will be made.

2. The equivalence

Let us present a split extension (10) as the seven-tuple E = (B,X,A, α, β, κ, λ).
This order of letters has a good reason:

◦ at the level of objects, we think of E as a split extension of B with
kernel X , and of A as the object part of the extension;

◦ the pair (α, β) is what makes A a split extension of B;
◦ the pair (κ, λ) completes the structure by making X the kernel of the
extension.

Definition 2.1. Let E = (B,X,A, α, β, κ, λ) and E′ = (B′, X ′, A′, α′, β′, κ′, λ′)
be split extensions of magmas. A morphism E → E′ is a diagram morphism
formed by magma homomorphisms, that is, it is a triple (f, u, p) such that:

(a) f : B → B′, u : X → X ′, and p : A→ A′ are magma homomorphisms;
(b) the diagram

(22) X

u

��

κ
// A

α
//

λoo

p

��

B
βoo

f

��
X ′

κ′

// A′

α′

//
λ′

oo
B′

β′

oo

reasonably commutes, in the sense that

(23) pκ = κ′u, pβ = β′f, λ′p = uλ, α′p = fα.

The category whose objects are all split extensions of magmas and morphisms are
defined above and composed componentwise will be called the category of split
extensions of magmas and denoted by SplExt.

Remark 2.2. Again (cf. Remark 1.11 (a)), while requiring the four equalities (23)
is natural of course, these equalities are not logically independent. In particular,
the first two of them are equivalent to the last two. Indeed:
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◦ Assuming pκ = κ′u and pβ = β′f , we have:

λ′p = λ′p(κλ+ βα) = λ′(pκλ+ pβα) = λ′(κ′uλ+ β′fα) = uλ,

where the last equality follows from (14) applied to E′;

α′p = α′p(κλ+ βα) = α′pκλ+ α′pβα = α′κ′uλ+ α′β′fα = 0 + fα = fα.

◦ On the other hand, assuming λ′p = uλ and α′p = fα, we have:

pκ = (κ′λ′ + β′α′)pκ = κ′λ′pκ+ β′α′pκ = κ′uλκ+ β′fακ = κ′u+ 0 = κ′u;

pβ = (κ′λ′ + β′α′)pβ = κ′λ′pβ + β′α′pβ = κ′uλβ + β′fαβ = 0 + β′f = β′f.

Lemma 2.3. Let E = (B,X,A, α, β, κ, λ) and E′ = (B′, X ′, A′, α′, β′, κ′, λ′) be
split extensions of magmas with X and X ′ being equipped with the associated
actions of B and B′, respectively. If (f, u, p) : E → E′ is a morphism of split
extensions, then for all b ∈ B and x ∈ X , we have

(24) u(bx) = f(b)u(x).

Proof: We have:
u(bx) = uλ(β(b) + κ(x))

(by Definition 1.5)
= λ′p(β(b) + κ(x))

(by the third equality in (23))

= λ′(pβ(b) + pκ(x))

(since p is a magma homomorphism)

= λ′(β′f(b) + κ′u(x))

(by the first two equalities of (23))

= f(b)u(x)
(by Definition 1.5 applied to E′). �

Remark 2.4. Rephrasing the first sentence of Remark 1.11, we can say now:
As follows from Lemmas 1.6 and 1.8, the maps ϕ and ψ involved in diagram
(18) determine inverse to each other isomorphisms (1B, 1X , ϕ) and (1B, 1X , ψ)
between E = (B,X,A, α, β, κ, λ) and the bottom row of (18) seen as another
split extension.

Furthermore, now we can add:
Applying Lemma 2.3 to these isomorphisms, we see that the action of B on X

associated to E is the same as the action h associated to that bottom row. This,
however, can be deduced also from Definition 1.5 directly. Indeed, using Defini-
tion 1.5, we obtain h(b, x) = π1(ι2(b)+ι1(x)) = π1((0, b)+(x, 0)) = π1(bx, b) = bx.
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Lemma 2.5. Let E = (B,X,A, α, β, κ, λ) and E′ = (B′, X ′, A′, α′, β′, κ′, λ′) be
split extensions of magmas, with X and X ′ equipped with the associated actions
of B and B′, respectively. For magma homomorphisms f : B → B′, u : X → X ′,
the following conditions are equivalent:

(a) there exists a magma homomorphism p : A → A′ such that (f, u, p) :
E → E′ is a morphism of split extensions;

(b) there exists a unique magma homomorphism p : A→ A′ such that (f, u, p):
E → E′ is a morphism of split extensions;

(c) for all b ∈ B and x ∈ X , we have

(25) u(bx) = f(b)u(x).

Proof: (a) ⇔ (b) immediately follows from any of the two first assertions of
Lemma 1.12.

(a) ⇒ (c) follows from Lemma 2.3.
(c) ⇒ (a): Putting p = κ′uλ+ β′fα, we calculate:

pκ = (κ′uλ+ β′fα)κ = κ′uλκ+ β′fακ = κ′u+ 0 = κ′u,

pβ = (κ′uλ+ β′fα)β = κ′uλβ + β′fαβ = 0 + β′f = β′f.

Having in mind Remark 2.2, this would complete the proof if we knew that p is
a magma homomorphism. However, we have

p(a+ a′) = p((κλ(a) + βα(a)) + (κλ(a′) + βα(a′)))

(see Remark 1.11 (b))

= p(κ(λ(a) + α(a)λ(a′)) + β(α(a) + α(a′)))
(by (21))

= κ′uλ(κ(λ(a) + α(a)λ(a′)) + β(α(a) + α(a′)))

+ β′fα(κ(λ(a) + α(a)λ(a′)) + β(α(a) + α(a′)))

(by definition of p)

= κ′u(λ(a) + α(a)λ(a′)) + β′f(α(a) + α(a′))

(by (14), the fact that α is a magma homomorphism, and the second equalities
of (11) and (12))

= κ′(uλ(a) + f(α(a))u(λ(a′))) + β′(fα(a) + fα(a′))

(since u and f are magma homomorphisms, and using (25))

= (κ′uλ(a) + β′fα(a)) + (κ′uλ(a′) + β′fα(a′))

(by (21) applied to E′)
= p(a) + p(a′)

(by definition of p). �
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Remark 2.6. We could make the last calculation look shorter by using the
semidirect product notation. In that notation p would be defined by p(x, b) =
(u(x), f(b)), and the calculation would become

p((x, b) + (x′, b′)) = p(x+ bx′, b+ b′) = (u(x+ bx′), f(b+ b′))

= (u(x) + f(b)u(x′), f(b) + f(b′)) = (u(x), f(b)) + (u(x′), f(b′))

= p(x, b) + p(x′ + b′).

Definition 2.7. Let h : B×X → X and h′ : B′×X ′ → X ′ be actions of magmas,
B on X and B′ on X ′, respectively. A morphism (B,X, h) → (B′, X ′, h′) is a pair
(f, u) such that:

(a) f : B → B′ and u : X → X ′ are magma homomorphisms;
(b) the diagram

(26) B ×X

f×u

��

h // X

u

��
B′ ×X ′

h′

// X ′

commutes, or, equivalently, in the notation of Lemma 2.3, the equality
(24) holds for all b ∈ B and x ∈ X . The resulting category of actions of
magmas will be denoted by Act.

From Lemma 2.5 and previous results, we obtain:

Theorem 2.8. There is an equivalence between the category SplExt of split ex-
tensions of magmas and the category Act of actions of magmas, constructed as
follows:

(a) the functor SplExt → Act carries a morphism

(f, u, p) : (B,X,A, α, β, κ, λ) → (B′, X ′, A′, α′, β′, κ′, λ′)

of split extensions to the morphism (f, u) : (B,X, h) → (B′, X ′, h′) of the
associated actions;

(b) the functor Act → SplExt carries a morphism

(f, u) : (B,X, h) → (B′, X ′, h′)

of actions to the corresponding morphism (f, u, p) between semidirect
product diagrams seen as split extensions, where p is defined by

p(x, b) = (u(x), f(b)).
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3. Composition of split extensions

Consider a diagram of the form

(27) Z

µ′

��

α′

// Y

µ

��

β′

oo

X
κ

// A

ν′

OO

α
//

λoo
B

ν

OO

βoo
γ

// D
δoo

in which:

◦ (B,X,A, α, β, κ, λ) and (D,Y,B, γ, δ, µ, ν) are split extensions of magmas;
◦ Z = α−1(Y ) with µ′ being the inclusion map and α′ and β′ being induced
by α and β, respectively;

◦ ν′ is defined by ν′(a) = κλ(a) + βµνα(a).

Definition 3.1. In the notation above, with E = (B,X,A, α, β, κ, λ) and F =
(D,Y,B, γ, δ, µ, ν), we will say that the split extensions F and E compose and call
(F,E) a composable pair of split extensions, if the seven-tuple G = (D,Z,A, γα,
βδ, µ′, ν′) is a split extension (of magmas). If it is the case, we shall write G = FE

and call G the composite of F and E.

Thanks to Theorem 2.8, diagram (27) can be identified, up to isomorphism,
with

(28) X ⋊ (Y × {0})

µ′

��

α′

// Y

µ

��

β′

oo

X
κ

// X ⋊ (Y ⋊D)

ν′

OO

α
//

λoo
Y ⋊D

ν

OO

βoo
γ

// D
δoo

where:

◦ we assume that D acts on Y and Y ⋊D acts on X , that is, some actions
of D on Y and of Y ⋊D on X are given;

◦ since Y ×{0} is a submagma of Y ⋊D, the action of Y ⋊D on X induces
the action of Y ⋊ {0} on X ;

◦ the maps involved are defined in the straightforward way, that is, by

α(x, (y, d)) = (y, d), β(y, d) = (0, (y, d)), κ(x) = (x, (0, 0)), λ(x, (y, d)) = x,

γ(y, d) = d, δ(d) = (0, d), µ(y) = (y, 0), ν(y, d) = y,

with µ′ being the inclusion map, α′ and β′ induced by α and β, respec-
tively, and

ν′(x, (y, d)) = κλ(x, (y, d)) + βµνα(x, (y, d)) = (x, (0, 0)) + (0, (y, 0)) = (x, (y, 0)).
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Accordingly, the seven-tuple (D,Z,A, γα, βδ, µ′, ν′) becomes now (D,X ⋊

(Y × {0}), X ⋊ (Y ⋊D), γα, βδ, µ′, ν′).

Lemma 3.2. The seven-tuple (D,X ⋊ (Y × {0}), X ⋊ (Y ⋊ D), γα, βδ, µ′, ν′)
satisfies the counterparts of equalities (11)–(14), (16), and (17).

Proof: These counterparts are, respectively:

ν′µ′ = 1, γαβδ = 1,(29)

ν′βδ = 0, γαµ′ = 0,(30)

µ′ν′ + βδγα = 1,(31)

ν′(µ′(x, (y, 0)) + βδ(d)) = (x, (y, 0)),(32)

µ′(x′, (y′, 0))+((x, (y, d))+βδ(d′)) = (µ′(x′, (y′, 0))+(x, (y, d)))+βδ(d′),(33)

(x, (y, d))+(µ′(x′, (y′, 0))+βδ(d′)) = ((x, (y, d))+µ′(x′, (y′, 0)))+βδ(d′),(34)

required for all x and x′ in X , y and y′ in Y , and d and d′ in D. Here (29) and
(30) are obvious, and we have:

(31): (µ′ν′ + βδγα)(x, (y, d)) = (x, (y, 0)) + (0, (0, d)) = (x, (y, d)),

(32): ν′(µ′(x, (y, 0)) + βδ(d)) = ν′((x, (y, 0)) + (0, (0, d)))

= ν′(x, (y, d)) = (x, (y, 0)),

(33): µ′(x′, (y′, 0)) + ((x, (y, d)) + βδ(d′))

= (x′, (y′, 0)) + ((x, (y, d)) + (0, (0, d′))

= (x′, (y′, 0)) + ((x, (y, d+ d′))

= (x′ + (y′, 0)x, (y′ + y, d+ d′))

= (x′ + (y′, 0)x, (y′ + y, d)) + (0, (0, d′))

= ((x′, (y′, 0)) + (x, (y, d))) + (0, (0, d′))

= (µ′(x′, (y′, 0)) + (x, (y, d))) + βδ(d′),

(34): (x, (y, d)) + (µ′(x′, (y′, 0)) + βδ(d′))

= (x, (y, d)) + ((x′, (y′, 0)) + (0, (0, d′)))

= (x, (y, d)) + (x′, (y′, d′))

= (x+ (y, d)x′, (y + dy′, d+ d′))

= (x+ (y, d)x′, (y + dy′, d)) + (0, (0, d′))

= ((x, (y, d)) + (x′, (y′, 0))) + (0, (0, d′))

= ((x, (y, d)) + µ′(x′, (y′, 0))) + βδ(d′).

�
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Lemma 3.3. The following conditions are equivalent:

(a) (D,X ⋊ (Y × {0}), X ⋊ (Y ⋊ D), γα, βδ, µ′, ν′) is a split extension (of
magmas);

(b) (D,X⋊ (Y ×{0}), X⋊ (Y ⋊D), γα, βδ, µ′, ν′) satisfies the counterpart of
equality (15);

(c) the equality

(35) (y, 0)((0, d)x) = (y, d)x

holds for all x in X , y in Y , and d in D.

Proof: (a) ⇔ (b) follows from Definition 1.4 and Lemma 3.2.
(b) ⇔ (c): To say that (D,X ⋊ (Y ×{0}), X ⋊ (Y ⋊D), γα, βδ, µ′, ν′) satisfies

the counterpart of equality (15) is to say that

(36) µ′(x, (y, 0)) + (βδ(d) + (x′, (y′, d′))) = (µ′(x, (y, 0)) + βδ(d)) + (x′, (y′, d′)),

or, equivalently,

(x, (y, 0)) + ((0, (0, d)) + (x′, (y′, d′))) = ((x, (y, 0)) + (0, (0, d))) + (x′, (y′, d′)),

holds for all x and x′ in X , y and y′ in Y , and d and d′ in D. We have

(x, (y, 0)) + ((0, (0, d)) + (x′, (y′, d′)))

= (x, (y, 0)) + ((0, d)x′, (dy′, d+ d′))

= (x+ (y, 0)((0, d)x′), (y + dy′, d+ d′))

and

((x, (y, 0)) + (0, (0, d))) + (x′, (y′, d′))

= (x, (y, d)) + (x′, (y′, d′))

= (x+ (y, d)x′, (y + dy′, d+ d′)),

and these two expressions are equal for all x and x′ in X , y and y′ in Y , and d
and d′ in D if and only if (y, 0)((0, d)x) = (y, d)x for all x in X , y in Y , and d

in D. �

Translating Lemma 3.3 into the context of general split extensions with the
notation of Definition 3.1, we obtain:

Corollary 3.4. Given split extensions E = (B,X,A, α, β, κ, λ) and F = (D,Y,
B, γ, δ, µ, ν), the following conditions are equivalent:

(a) (F,E) is a composable pair;
(b) the equality

(37) µ′(z) + (βδ(d) + a) = (µ′(z) + βδ(d)) + a,

holds for all z ∈ Z, d ∈ D, and a ∈ A;
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(c) the equality

(38) µ(y)(δ(d)x) = (µ(y) + δ(d))x,

holds for all y ∈ Y , d ∈ D, and x ∈ X ; this formula uses the action B

on X given in Definition 1.5.

Definition 3.5. Let B and X be magmas. An action of B on X will be called
firm if

(39) b′(bx) = (b′ + b)x,

for all b, b′ ∈ B and x ∈ X . Accordingly, a split extension of magmas will be
called firm if its associated action is firm.

Corollary 3.4 immediately implies

Corollary 3.6. Given split extensions E = (B,X,A, α, β, κ, λ) and F = (D,Y,
B, γ, δ, µ, ν), as in diagram (27), the pair (F,E) is composable whenever E is firm.

Furthermore, we have:

Theorem 3.7. If the split extensions E = (B,X,A, α, β, κ, λ) and F = (D,Y,
B, γ, δ, µ, ν), as in diagram (27), are firm, then so is their composite FE =
(D,Z,A, γα, βδ, µ′, ν′).

Proof: Again, without loss of generality, we can replace diagram (27) with dia-
gram (28), and then we will have to prove that

(40) d′(d(x, (y, 0))) = (d′ + d)(x, (y, 0)),

for all d and d′ in D, x in X , and y in Y . Using Definition 1.5 and the fact that
E and F are firm, we calculate:

d′(d(x, (y, 0))) = d′(ν′(βδ(d) + µ′(x, (y, 0))))

= d′(ν′((0, (0, d)) + (x, (y, 0))))

= d′(ν′((0, d)x, (dy, d)))

= d′((0, d)x, (dy, 0))

= ((0, d′)((0, d)x), (d′(dy), 0))

= (((0, d) + (0, d′))x, ((d′ + d)y, 0))

= ((0, d+ d′)x, ((d′ + d)y, 0))

= (d′ + d)(x, (y, 0)).

�
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4. Conclusions and additional remarks

4.1 Cotranslations = Cartesian liftings = Pullbacks. Given a split ex-
tension E = (B,X,A, α, β, κ, λ) (of magmas) and a magma homomorphism f :
B′ → B (we could also consider the case where f merely preserves zero, but let
us omit that), we can construct, uniquely up to isomorphism, a diagram of the
form

(41) X
κ′

// A′

α′

//
λ′

oo

p

��

B′

β′

oo

f

��
X

κ
// A

α
//

λoo
B,

βoo

with the top row being a split extension, which we will denote by Ef , and
(f, 1, p) : Ef → E being a morphism in SplExt. Moreover, this diagram will
satisfy the usual universal property. This follows from Theorem 2.8 and the fact
that the equivalence described there agrees with the forgetful functors to the cat-
egory of magmas, both defined by (B, . . .) 7→ B. This construction is, of course,
a cotranslation of E along f in the sense of N. Yoneda in [16], which is the same as
to say that it is a cartesian lifting of f in the sense of the theory of Grothendieck
fibrations. In particular, α′ is a pullback of α along f . The reason why this is easy
is that so is making cartesian liftings for the fibration of actions: given an action
h : B × X → X and f above, just use the composite h(f × X) : B′ × X → X .
This also tells us that E′ is firm whenever so is E. In the language of semidirect
products the diagram (41) is (up to canonical isomorphisms) the same as

(42) X
ι′
1

// X ⋊B′

π′

2

//
π′

1oo

X×f

��

B′

ι′
2oo

f

��
X

ι1
// X ⋊B

π2

//
π1oo

B,
ι2oo

in obvious notation, with B′ acting on X via b′x = f(b′)x. Note also, that these
cartesian liftings do not change the kernel X and so instead of the equivalence
SplExt ∼ Act of Theorem 2.8 we could use its restriction SplExt(−, X) ∼ Act(−, X)
on split extensions and actions with the fixed “X part”.

4.2 Translations = Cocartesian liftings = “Pushforwards”. It is well
known, already for ordinary split extensions of groups, that the functors asso-
ciating to split extensions their kernels are neither fibrations nor opfibrations.
However (which is also well known for groups), as follows from Theorem 2.8, the
forgetful functor SplExt(B,−) → Act(B,−) is a category equivalence. This gives
us trivial cocartesian and trivial cartesian liftings of morphisms in Act(B,−) with
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respect to that functor, the same as translations and cotranslations in the sense
of N. Yoneda in [16] with respect to the span, which N. Yoneda would write as
SplExt(B,−) → 1 × Act(B,−) (if he would use our notation for the categories
involved, with 1 being a terminal category). In some recent papers similar kinds
of translations are called “pushforwards” (e.g. [7], [12]). There is also an ob-
vious relationship between translations here and cotranslations in the sense of
Subsection 4.1, which we shall not describe since it copies what is well known for
groups.

4.3 What are ‘good’ split epimorphisms of magmas? One might think of
three such classes:

◦ The class E of all magma homomorphisms α, for which there exists a split
extension E = (B,X,A, α, β, κ, λ) with same α.

◦ The class E′ defined in the same way except that E is required to be firm
in the sense of Definition 3.5.

◦ The class E′′ defined in the same way except that E is required not only
to be firm, but also to satisfy the equality

(43) b(x+ x′) = bx+ bx′

for all b ∈ B and x, x′ ∈ X .

We observe:

(a) As in fact explained in Subsection 4.1, Theorem 2.8 implies that the
classes E and E

′ are pullback stable. The same is true for E
′′: for note

that, in the notation of 4.1, if the action h : B × X → X satisfies (43),
then the action h(f ×X) : B′ ×X → X also does.

(b) It is a triviality to construct an example where condition 3.4 (c) does
not hold. Therefore Corollary 3.4 implies that the class E is not closed
under composition. On the other hand, as follows from Corollary 3.6 and
Theorem 3.7, the class E′ is closed under composition.

(c) The class E′′ is also closed under composition. To prove this, we have to
prove that, in the situation of Definition 3.1 with E, F ∈ E

′′, the action
of D on X ⋊ (Y × 0) associated to G = FE satisfies (43). That is, we
need to prove that, under the assumptions above,

(44) d((x, (y, 0)) + (x′, (y′, 0))) = d(x, (y, 0)) + d(x′, (y′, 0))

for all d in D, x and x′ in X , and y and y′ in Y . Going back to the
calculation in the proof of Theorem 3.7, and having in mind that

(x, (y, 0)) + (x′, (y′, 0)) = (x+ (y, 0)x′, (y + y′, 0)),

we see that to prove (44) is to prove

(45) ((0, d)(x + (y, 0)x′), (d(y + y′), 0)) = ((0, d)x, (dy, 0)) + ((0, d)x′, (dy′, 0)).
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We have

((0, d)x, (dy, 0)) + ((0, d)x′, (dy′, 0))

= ((0, d)x+ (dy, 0)((0, d)x′), (dy + dy′, 0))

= ((0, d)x+ ((dy, 0) + (0, d))x′, (d(y + y′), 0))

= ((0, d)x+ (dy, d)x′, (d(y + y′), 0))

= ((0, d)x+ ((0, d) + (y, 0))x′, (d(y + y′), 0))

= ((0, d)x+ (0, d)((y, 0)x′), (d(y + y′), 0))

= ((0, d)(x + (y, 0)x′), (d(y + y′), 0)),

as desired. Note that this calculation used (39), which suggests that
requiring (43) without (39) would be less natural than requiring (39)
without (43).

4.4 Split Short Five Lemma. In our context the Split Short Five Lemma
should say that, in diagram (22), p is an isomorphism whenever so are f and u. If
one uses this formulation, then the Split Short Five Lemma immediately follows
from Theorem 2.8. But what if we make the assumptions on p weaker omitting
some of the equalities in (23)? Thanks to Theorem 2.8, this question is equivalent
to the following one: let

(46) X
ι1

// X ⋊B
π2

//
π1oo

p

��

B
ι2oo

X
ι1

// X ⋊B
π2

//
π1oo

B
ι2oo

be a diagram with the rows being semidirect diagrams of magmas (although the
actions of B on X in them might be different from each other), and p being
a magma homomorphism; which of the equalities (23) do we need to prove that
p is an isomorphism?

Let us consider three cases:

(a) Suppose π1p = π1 and π2p = π2. This case is trivial: by the universal
property of the bottom product diagram p becomes a bijection (in fact
the identity map) of the underlying sets, and since it was required to be
a magma homomorphism, this makes it an isomorphism.

(b) Suppose pι1 = ι1 and pι2 = ι2. This case is “next to trivial”: we have
p(x, b) = p((x, 0) + (0, b)) = p(x, 0) + p(0, b) = pι1(x) + pι2(b) = ι1(x) +
ι2(b) = (x, 0) + (0, b) = (x, b), and so p is an isomorphism again.

(c) Suppose pι1 = ι1 and π2p = π2. When X is a commutative monoid and
both actions of B on X are trivial for any homomorphism s : B → X , one
could define p by p(x, b) = (x + s(b), b). It is then very easy to construct
an example where such p is not an isomorphism.
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4.5 Involving additional operations. One could try to repeat our story in-
volving additional operations on magmas, satisfying rather strong equational ax-
ioms. One seemingly straightforward way to do it is to follow N. Martins-Ferreira,
A. Montoli, and M. Sobral in [11], where the axioms are monoid counterparts of
Porter’s axioms for what he called “groups with operations”, see [15].

4.6 “Internalization”. All definitions, constructions, and results of Sections 2
and 3, and everything we already said in this Section (except 4.4 (c)) can be
extended from ordinary magmas to internal magmas in a category C via the
Yoneda embedding. Doing so it is better to assume, for simplicity, that C has
finite products, although even that could be avoided (cf. the last paragraph of
Section III.6 in [9]). The reason for such assumption is that is preferable to have
semidirect products of magmas inside C. Let us also point out that constructing
diagrams (27) and (28) internally in C, obviously, one should:

◦ Define Z, µ′, and α′ in (27) by requiring the square formed by them
and α and µ to be a pullback square, and then make other replacements
accordingly.

◦ Constructing diagram (28), define the actions of Y on X using the action
of Y ⋊ D on X and the morphism 〈1, 0〉 : Y → Y ⋊ D; after that it is
more convenient to write X⋊Y instead of X⋊(Y ×{0}) and again, make
other replacements accordingly.

4.7 Monoids and groups. Almost every word we say becomes well known when
we replace magmas with monoids (see [5] and references therein). In particular,
in the case of monoids we have:

◦ The equalities (15)–(17) in Definition 1.4 hold automatically. The same is
true for (39) and (43), and so all split extensions are firm, and the monoid
counterparts of the classes E, E′, and E

′′ of Subsection 4.3 coincide with
each other.

◦ The split extensions in the sense of Definition 1.4 become nothing but
Schreier split sequences in the sense of [5].

In the classical case of groups, more ingredients of Definition 1.4 are redundant,
and whole its data reduces to giving an arbitrary split epimorphism together with
its splitting and kernel. The group-theoretic case of our Theorem 2.8 is nothing
but a categorical formulation of what is well known in homological algebra as
a first step towards cohomological description on group extensions.
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