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Abstract. In 2012, Ananthnarayan, Avramov and Moore gave a new construction of
Gorenstein rings from two Gorenstein local rings, called their connected sum. In this
article, we investigate conditions on the associated graded ring of a Gorenstein Artin local
ring Q, which force it to be a connected sum over its residue field. In particular, we recover
some results regarding short, and stretched, Gorenstein Artin rings. Finally, using these
decompositions, we obtain results about the rationality of the Poincaré series of Q.
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1. Introduction

Given Gorenstein Artin local rings R and S with common residue field k, and the

natural surjective maps R
πR−→ k

πS←− S, a connected sum is an appropriate quotient

of the fibre product (or pullback) R ×k S = {(a, b) ∈ R × S : πR(a) = πS(b)}.

Lescot in [9] proves that the connected sum is also Gorenstein Artin. A more general

version of a connected sum of two Gorenstein local rings having the same dimension

is defined by Ananthnarayan, Avramov and Moore in [2]. They prove that this new

construction is also a Gorenstein local ring of the same dimension.

It is natural to ask when a given Gorenstein Artin local ring Q can be decomposed

as a connected sum over its residue field k. In the equicharacteristic case, this ques-

tion was studied by Smith and Stong in [12], Section 4 from a geometric point of

view for projective bundle ideals, and also by using inverse systems by Buczyńska et

al. in [5] using polynomials that are direct sums, corresponding to apolar Gorenstein
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algebras. The study of intrinsic properties of the ring, under which it is indecom-

posable as a connected sum, and other conditions on its defining ideal characterizing

decomposability, are given in [3].

In [3], Proposition 4.5, it is shown that if Q is a standard graded k-algebra, the

decomposability of Q as a connected sum over k can be characterized in terms of

the quotient of Q by its socle. This leads us to look at the nongraded case, and in

particular to the study of the associated graded ring. The main focus of this paper is

to understand the connections of properties of the associated graded ring of Q with

the decomposability of Q as a connected sum over k.

In Section 3, we study the associated graded ring G of a Gorenstein Artin local

ring Q which can be decomposed as a connected sum over its residue field k. In

particular, in Proposition 3.1, we see that if the components of Q have different

Loewy lengths, then G can be decomposed as a fibre product over k. As seen in

examples in Section 4, the converse is not necessarily true, i.e., if G decomposes as

a fibre product over k, then Q need not decompose as a connected sum over k.

In light of this, one can ask when the converse is true. In order to study this,

assuming G ≃ A×k B, we impose further conditions on A and B in Setup 4.3, and

investigate properties of Q in this case in Theorem 4.6. The motivation for Setup 4.3

comes from the following: In [11], Sally proves a structure theorem for stretched

Gorenstein rings and in [7], Elias and Rossi give a similar structure theorem for

short Gorenstein k-algebras with some assumptions on the residue field. In particular,

these structure theorems show that the ring Q can be written as a connected sum of

a graded Gorenstein Artin ring R with the same Loewy length as Q, and a Gorenstein

Artin ring S with Loewy length less than three. In either case, using a construction of

Iarrobino we see in Proposition 6.1 that G ≃ A×k B, where A is graded Gorenstein,

and B has Loewy length 1.

In Section 5, assuming Setup 4.3, we look for conditions on G ≃ A ×k B that

force Q to be a connected sum. Using the characterization of connected sums (The-

orem 2.10), and the results from Section 4, we show that Q is a connected sum, in

general, when the Loewy length of B is one, and in some special cases, when the

Loewy length of B is two. This gives us results regarding the Poincaré series of Q.

See Theorem 5.6, Corollary 5.11, and their corollaries in Section 6. Example 5.12

shows that if the Loewy length of B is at least 2, then Q need not be a connected

sum.

In Section 6, we use Theorem 5.6 to give applications to short and stretched

Gorenstein Artin local rings. In particular, we show that these rings, when they are

not graded, are nontrivial connected sums, and derive some consequences without

any restrictions on the residue field. We also identify some Gorenstein Artin local

rings with rational Poincaré series.
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The first section contains results regarding the main tools used in the rest of the

paper. It also contains results about fibre products and connected sums, including

a characterization of connected sums in terms of a minimal generating set of maximal

ideals (see Theorem 2.10).

2. Preliminaries

2.1. Notation.

(a) Convention: We use “⊂“ to denote subsets and “(” for proper subsets.

(b) The symbol k denotes a field, Q, R, and S are Artinian rings.

(c) If T is a local ring and M is a T -module, λ(M) and µ(M), respectively, denote

the length and the minimal number of generators of M as a T -module.

(d) Let (T,m, k) be an Artinian local ring. Then edim(T ) denotes the embedding

dimension of T which is equal to µ(m). The socle of T is soc(T ) = annT (m).

Moreover, the type of T is type(T ) = dimk(soc(T )), and the Loewy length of T is

ll(T ) = max{n : m
n 6= 0}.1 Observe that T is not a field if and only if ll(T ) > 1.

Furthermore, if T is Gorenstein, then soc(T ) ⊂ m
2 if and only if ll(T ) > 2.

(e) If k is a field, a graded k-algebra G is a graded ring G =
⊕
i>0

Gi with G0 = k. It

has a unique homogeneous maximal ideal, mG =
⊕
i>1

Gi. We say G is standard

graded if mG is generated by G1.

(f) For positive integers m and n, Y and Z denote the sets of indeterminates

{Y1, . . . , Ym} and {Z1, . . . , Zn}, respectively, and Y ·Z denotes {YiZj : 1 6 i 6

m, 1 6 j 6 n}.

2.2. Associated graded rings.

Definition 2.1. Let (T,m, k) be a Noetherian local ring.

(a) The graded ring associated to the maximal ideal m of T , denoted gr
m
(T ) (or

simply gr(T )), is defined as gr(T ) ≃
∞⊕
i=0

m
i/mi+1.

(b) We define the Hilbert function of T as HT (i) = dimk(m
i/mi+1) for i > 0.

(c) If T is an Artinian ring with ll(T ) = s, then we write the Hilbert function of T

as HT = (HT (0), . . . , HT (s)).

Furthermore, if T is Gorenstein, we say that T is stretched if HT = (1, h, 1, . . . , 1),

i.e., m2
T is principal and T is short if m4

T = 0. Note that stretched and short rings

are defined in the literature for local rings not necessarily Gorenstein, see [7], [11].

1 If T is also Gorenstein, its Loewy length is also referred to as socle degree in the literature.
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Remark 2.2. With notation as above, let G = gr(T ) and G>n =
∞⊕
i=n

m
i/mi+1

for n > 0.

(a) For each n > 0, G>n is the nth power of the homogeneous maximal ideal mG

of G and a minimal generating set ofG>n lifts to a minimal generating set of m
n.

In particular, if T is Artinian local, then so is G. Furthermore, λ(T ) = λ(G)

and ll(T ) = ll(G).

(b) For each x ∈ T \ {0}, there exists a unique i ∈ Z such that x ∈ m
i \mi+1. The

initial form of x is the element x∗ ∈ G of degree i, that is, the image of x in

m
i/mi+1.

(c) For an ideal K of T , K∗ denotes the ideal of G defined by 〈x∗ : x ∈ K〉. Note

that, if R ≃ T/K, then gr(R) ≃ G/K∗.

(d) If T is a regular local ring, m = 〈x1, . . . , xd〉, then x∗

1, . . . , x
∗

d ∈ G are alge-

braically independent, and hence G is isomorphic to a polynomial ring over k

in d variables.

Remark 2.3 (Iarrobino’s construction (see [8])). Let (Q,mQ, k) be a Gorenstein

Artin local ring with ll(Q) = s and let G = gr(Q) be its associated graded ring.

Iarrobino showed that

C =
⊕

i>0

(0 :Q m
s−i
Q ) ∩m

i
Q

(0 :Q m
s−i
Q ) ∩m

i+1
Q

is an ideal in G. He also proved that Q0 = G/C is a graded Gorenstein quotient

of G with ll(Q0) = s.

Note that HQ0
(i) = HG(i) for i > s− 1 since Ci = 0 for i > s− 1.

2.3. Poincaré series.

Definition 2.4. For a local ring (T,m, k), the Poincaré series of T is the formal

power series

PT (t) =
∑

i>0

βT
i t

i, with βT
i = dimk(Tor

T
i (k, k)).

Next we list some properties of the Poincaré series of a Gorenstein Artin local

ring.

Remark 2.5 (Poincaré series of Gorenstein rings). Let (T,m, k) be a Gorenstein

Artin local ring and let T represent the quotient T/ soc(T ).

(a) If edim(T ) 6 4, then PT (t) is rational. See [4], Theorem 6.4.

(b) If edim(T ) > 2, then [PT (t)]−1 = [PT (t)]−1 + t2, by [10], Theorem 2.

(c) If ll(T ) = 2 and edim(T ) = n, then PT (t) = (1 − t)−1 if n = 1. If n > 2, then

it is easy to see that PT (t) = (1 − nt)−1, and hence by (b), we get PT (t) =

(1− nt+ t2)−1. In particular, PT (t) is a rational function of t.
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2.4. Connected sums. We first define the fibre product of Artinian local rings

(R,mR, k) and (S,mS , k) over k. If neither of them is a field, then their fibre product

is not Gorenstein. Hence, we define an appropriate quotient called a connected sum

which is Gorenstein. For more details about the contents of this subsection, see [1],

Chapter 4, [2], Section 2, and [3].

Definition 2.6. Let (R,mR, k) and (S,mS , k) be Artinian local rings. The fibre

product of R and S over k is the ring R ×k S = {(a, b) ∈ R × S : πR(a) = πS(b)},

where πR and πS are the natural projections from R and S, respectively onto k.

Remark 2.7. A Noetherian local ring (P,mP , k) is decomposable as a fibre

product over k if and only if mP is minimally generated by {y1 . . . , ym, z1, . . . , zn :

m,n > 1}, where yizj = 0. In this case, we have P ≃ R×k S, where R ≃ P/〈z〉 and

S ≃ P/〈y〉.

On the other hand, with R and S as in Definition 2.6, if P = R ×k S, then,

by identifying mR with {(a, 0): a ∈ mR} and mS with {(0, b) : b ∈ mS}, we see

that P is a local ring with maximal ideal mP = mR × mS . Hence, we see that

edim(P ) = edim(R)+edim(S), soc(P ) = soc(R)⊕soc(S) and by [2], (1.0.3), gr(P ) ≃

gr(R) ×k gr(S). This implies that for i > 1, we have HP (i) = HR(i) + HS(i).

Furthermore, R ≃ P/mS and S ≃ P/mR.

Definition 2.8. Let (R,mR, k) and (S,mS , k) be Gorenstein Artin local rings

different from k. Let soc(R) = 〈δR〉, soc(S) = 〈δS〉. Identifying δR with (δR, 0)

and δS with (0, δS), a connected sum of R and S over k, denoted R#kS, is the ring

R#kS = (R×k S)/〈δR − δS〉.

A connected sum of R and S is Gorenstein, see [9], Proposition 4.4, or [2], Theorem

2.8. Connected sums of R and S also depend on the generators of the socles δR and δS

chosen. In [2], Example 3.1 it is shown that for R = Q[Y ]/〈Y 3〉 and S = Q[Z]/〈Z3〉,

the connected sums Q1 = (R ×k S)/〈y
2 − z2〉 and Q2 = (R ×k S)/〈y2 − 5z2〉 of

are not isomorphic as rings. Finally, observe that every Gorenstein Artin local ring

(Q,mQ, k) has a trivial decomposition over k, namely Q ≃ Q#kk[Z]/〈Z2〉. Hence

the following is defined in [3].

Definition 2.9. Let (Q,m, k) be a Gorenstein Artin local ring. We say that Q

decomposes as a connected sum over k if there exist Gorenstein Artin local rings R

and S such that Q ≃ R#kS and R 6≃ Q 6≃ S. In this case, we call R and S the

components in a connected sum decomposition of Q, and say that Q ≃ R#kS is

a nontrivial decomposition.

If Q cannot be decomposed as a connected sum over k, we say that Q is indecom-

posable as a connected sum over k.

265



Throughout the paper, the quotient T̃ /IT denotes a Cohen presentation of a local

ring T where (T̃ ,m
T̃
, k) is a complete regular local ring and IT ⊂ m

2
T̃
is an ideal in T̃

such that T ≃ T̃ /IT .

The following theorem gives a characterization of connected sums over k which

was proved in [3]; parts (a) through (d) have been established in [2] and [3]. In this

paper we prove part (e) in Proposition 3.1.

Theorem 2.10 (Connected sums over k). Let (Q,mQ, k) be a Gorenstein Artin

local ring with ll(Q) > 1. Then Q can be decomposed nontrivially as a connected

sum over k if and only if mQ = 〈y1, . . . , ym, z1, . . . , zn〉, m,n > 1, with y · z = 0.

If Q decomposes as a connected sum over k, then we can write Q ≃ R#kS, such

that R = Q̃/JR, S = Q̃/JS with JR = IQ ∩ 〈Y〉 + 〈Z〉, and JS = IQ ∩ 〈Z〉 + 〈Y〉,

where Q̃/IQ is a Cohen presentation of Q. Furthermore, the following assertions

hold:

(a) λ(Q) = λ(R) + λ(S)− 2 and edim(Q) = edim(R) + edim(S).

(b) For 0 < i < min{ll(S), ll(R)}, we haveHQ(i) = HR(i)+HS(i) 6
(
m+n−2+i

i

)
+1.

(c) IQ = JR∩〈Y〉+JS ∩〈Z〉+ 〈Y ·Z〉+ 〈∆R−∆S〉, where ∆R ∈ 〈Y〉 and ∆S ∈ 〈Z〉

are such that their respective images δR ∈ R and δS ∈ S generate the respective

socles.

(d) µ(IQ) = µ(JR/〈Z〉) + µ(JS/〈Y〉) + mn + ϕm,n, and 1/PQ(t) = 1/PR(t) +

1/PS(t) − 1 − ϕm,nt
2, where ϕm,n is 1 for m,n > 2, ϕ1,1 = −1, and ϕm,n = 0

otherwise.

(e) If ll(R) > ll(S) > 2, then gr(Q) ≃ gr(R)×k gr(S/ soc(S)).

Parts (b) and (d) of Theorem 2.10 give us some conditions to determine when

a Gorenstein ring is indecomposable as a connected sum.

Remark 2.11. Let (Q,mQ, k) be a Gorenstein Artin local ring with edim(Q)=d.

Then Q is indecomposable over k if one of the following conditions holds:

(a) Q is a complete intersection ring and d > 3 (see [3], Theorem 3.6).

(b) HQ(2) >
(
d
2

)
+ 2, (see [3], Theorem 3.9).

3. Associated graded rings and indecomposibility

The following basic property of the associated graded ring is used to obtain con-

ditions for indecomposibility.

Proposition 3.1. For Gorenstein Artin local rings (R,mR, k) and (S,mS , k), let

Q = R#kS. If ll(R) 6= ll(S), then the associated graded ring of Q is a fibre product

over k.
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Moreover, if R and S are standard graded k-algebras with ll(R), ll(S) > 2, then

the nontrivial connected sum R#kS is not standard graded.

P r o o f. Let P = R ×k S, soc(R) = 〈δR〉 and soc(S) = 〈δS〉. Since Q ≃

P/〈δR − uδS〉 for some unit u in S, we have gr(Q) ≃ gr(P )/〈δR − uδS〉
∗ by Re-

mark 2.2 (c). Recall that, by Remark 2.7, we have gr(P ) ≃ gr(R)×k gr(S).

Without loss of generality, we may assume that ll(R) > ll(S). Hence 〈δR−uδS〉
∗ =

〈uδS〉
∗. Thus we see that gr(Q) ≃ (gr(R)×k gr(S))/〈uδS〉

∗ ≃ gr(R)×k gr(S/〈δS〉).

Now, note that gr(R) 6= k 6= gr(S/〈δS〉) for standard graded k-algebras R and S

with ll(R) > ll(S) > 2. Since gr(Q) is decomposable nontrivially as a fibre product

over k, it is not Gorenstein. Thus Q 6≃ gr(Q), and hence Q is not standard graded.

�

The condition ll(R) 6= ll(S) is necessary in the above proposition. To see this,

observe that if R and S are standard graded k-algebras with ll(R) = ll(S) > 2,

then Q = R#kS is a nontrivial connected sum. However, since ll(R) = ll(S), Q is

standard graded (e.g. see Theorem 2.10 (c)), and therefore, gr(Q) ≃ Q is Gorenstein

and hence gr(Q) is indecomposable as a fibre product over k.

The following example shows that gr(Q) is indecomposable as a fibre product

over k and gr(Q) is not Gorenstein.

Example 3.2. Let R = Q[Y1, Y2]/〈Y
2
1 Y2, Y

3
1 − Y 2

2 〉, S = Q[Z]/〈Z5〉 and

Q ≃ R#QS. Note that gr(Q) ≃ Q[Y1, Y2, Z]/〈Y1Z, Y2Z, Y
2
1 Y2, Y

2
2 , Y

4
1 − Z4〉. Set

G = gr(Q). We see that G is not Gorenstein since soc(G) = 〈Y1Y2, Z
4〉. Note

that R is not standard graded and ll(R) = ll(S) = 4. We now show that G is

indecomposable as a fibre product over Q.

Suppose G ≃ A ×Q B is a nontrivial fibre product, for some Q-algebras A

and B. Since edim(G) = 3, by Remark 2.7, we may assume that edim(A) = 2 and

edim(B) = 1. Moreover, 2 = type(G) = type(A) + type(B) forces A and B to be

Gorenstein, and the fact that soc(G) = soc(A) ⊕ soc(B) implies that ll(A) = 4 and

ll(B) = 2 or vice versa.

If ll(B) = 4, then HB(i) = 1 for i 6 4. Since HG = (1, 3, 3, 2, 1), we get HA =

(1, 2, 2, 1) by Remark 2.7. This implies that ll(A) = 3 which cannot happen. Thus

we must have ll(A) = 4 and ll(B) = 2.

Thus, if G ≃ A×Q B is a nontrivial fibre product, we may assume that A and B

are Gorenstein, edim(A) = 2, ll(A) = 4 and B ≃ Q[V ]/〈V 3〉. Therefore, we can

write A ≃ Q[U1, U2]/〈f1, f2〉 where U1, U2 and V are indeterminates over Q and

G ≃ Q[U1, U2, V ]/〈U1V, U2V, V
3, f1, f2〉.
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Let lower case letters denote the respective images of the indeterminates in G

and let

ϕ : Q[U1, U2, V ]/〈U1V, U2V, V
3, f1, f2〉 → Q[Y1, Y2, Z]/〈Y1Z, Y2Z, Y

2
1 Y2, Y

2
2 , Y

4
1 − Z4〉

be an isomorphism. Write ϕ(u1) = a11y1+a12y2+a13z, ϕ(u2) = a21y1+a22y2+a23z

and ϕ(v) = a31y1 + a32y2 + a33z. The fact that ϕ(v
3) = 0 forces a31 = 0 = a33.

Hence a32 6= 0 and therefore, a11 = 0 = a21 since ϕ(u1v) = 0 = ϕ(u2v). This gives

us a contradiction as ai1 = 0 for all i implies that y1 6∈ im(ϕ). Hence G cannot be

written as a nontrivial fibre product over Q.

We record our observations from this section in the next remark:

Remark 3.3. Let (Q,mQ, k) be a Gorenstein Artin local ring and G = gr(Q).

(a) If G is indecomposable as a fibre product over k, then exactly one of the two

cases occurs:

(i) Q ≃ R#kS, where R and S are Gorenstein Artin local rings with ll(R) =

ll(S) > 2, or

(ii) Q is indecomposable as a connected sum over k.

(b) If G is Gorenstein, then either

(i) Q is standard graded, (i.e., Q ≃ G), or

(ii) Q is indecomposable as a connected sum over k. This follows from (a),

since, if G is Gorenstein, then it is indecomposable as a fibre product

over k.

(c) The two examples Q = Q[y, z]/〈yz, y2 − z2〉 ≃ Q[y]/〈y3〉#QQ[z]/〈z3〉, and Q =

Q[x]/〈x3〉, respectively, show that both, (i) and (ii), in (a) and (b) are possible

scenarios.

4. Associated graded rings as fibre products

Given a Gorenstein Artin local ring Q with gr(Q) = G, we identify conditions on G

that are necessary for Q to decompose as a connected sum. One such condition arises

out of Proposition 3.1, namely that, with some assumptions, G is a fibre product.

This leads to the following:

Question 4.1. Let Q be a Gorenstein Artin local ring such that gr(Q) is decom-

posable as a fibre product over k. Is Q decomposable as a connected sum over k?

Example 4.2 shows that the above question need not have a positive answer in

general.
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Example 4.2. Let Q = k[X,Y, Z]/I, where I = 〈X3 − Y Z, Y 3 − XZ,Z2〉.

Then Q is a complete intersection with edim(Q) = 3, and hence Q is inde-

composable as a connected sum over k by Remark 2.11 (a). However, gr(Q) ≃

k[X,Y ]/〈X4 − Y 4, X2Y 3, X3Y 2〉 ×k k[Z]/〈Z2〉.

In light of the above example, we impose a further restriction on gr(Q), and assume

the following setup.

Setup 4.3. Let (Q,mQ, k) be a Gorenstein Artin local ring with G = gr(Q) and

ll(Q) = s. Assume G ≃ A×k B, where A is Gorenstein. Let ll(A) = s and ll(B) = l

with s > l + 1.

The following remark offers some basic observations, used (often without reference)

throughout this section.

Remark 4.4. With notation as in the above setup, let mA, mB and mG be the

maximal ideals of A, B and G, respectively.

(a) LetK1 andK2 be ideals in Q. Since Q is Gorenstein, (0 :Q K1) can be identified

with a canonical module of Q/K1, and hence λ(Q/K1) = λ(0 :Q K1). Moreover,

(0 :Q (0 :Q K1)) = K1 and (0 :Q (K1 ∩ K2)) = (0 :Q K1) + (0 :Q K2). The

equality (0 :Q (K1+K2)) = (0 :Q K1)∩ (0 :Q K2) holds without the Gorenstein

assumption.

(b) The above properties also hold for ideals in A. Furthermore, since A is graded

Gorenstein and ll(A) = s, we have (0 :A m
i+1
A ) = m

s−i
A for 0 6 i 6 s− 1.

(c) By Remark 2.7, we have a natural projection π : G → A with ker(π) = mB.

Moreover, ker(π) ∩ (mG)
l+1 = 0 since m

l+1
B = 0. Thus mi

G = m
i
A for i =

l + 1, . . . , s. Finally, (0 :G m
i
A) = (0 :A m

i
A) +mB = m

s−i+1
A +mB for each i.

We begin with some observations that hold under the above setup.

Lemma 4.5. With notation as in Setup 4.3, we have the following:

(a) (0 :Q m
s−1
Q ) = m

2
Q + (0 :Q m

l+1
Q )

(b) λ((0 :Q m
s−1
Q )/m2

Q) = edim(B).

P r o o f. (a) By Remark 4.4 (a), it is enough to prove that ms−1
Q = (0 :Q m

2
Q) ∩

m
l+1
Q . Since s− 1 > l+ 1, we have ms−1

Q ⊂ (0 :Q m
2
Q) ∩m

l+1
Q .

In order to prove the other containment, let 0 6= z ∈ m
l+1
Q be such that zm2

Q = 0.

Then z∗ ∈ (0 :Gm
2
G)∩m

l+1
G =(0 :G (m2

A +m
2
B))∩m

l+1
G =(0 :Gm

2
A)∩ (0 :Gm

2
B)∩m

l+1
G .

Since ml+1
G ⊂ (0 :G m

2
B), we get z

∗ ∈ (0 :G m
2
A) ∩ m

l+1
G = ((0 :A m

2
A) + mB) ∩ m

l+1
A .

Thus, there exist homogeneous elements α ∈ (0 :A m
2
A), and β ∈ mB, such that

z∗ = α+ β. Since ml+1
B = 0, and deg(z∗) > l + 1, we see that β = 0.
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This shows that z∗ ∈ (0 :A m
2
A) = m

s−1
A = m

s−1
G , by Remark 4.4. Thus, z ∈ m

s−1
Q ,

which proves (a).

(b) Remark 4.4 implies that

λ((0 :Q m
s−1
Q )/m2

Q) = λ(Q/ms−1
Q )− λ(m2

Q) = λ(Q/m2
Q)− λ(ms−1

Q )

= λ(Q/m2
Q)− λ(ms−1

A ),

where the last equality follows since s − 1 > l + 1. Now, λ(ms−1
A ) = λ(0 :A m

2
A) =

λ(A/m2
A), and hence

λ((0 :Q m
s−1
Q )/m2

Q) = λ(Q/m2
Q)− λ(A/m2

A) = λl(B/m2
B)− 1,

proving (b), since edim(B) + 1 = λ(B/m2
B). �

Theorem 4.6. With notation as in Setup 4.3, let J = 〈z1 . . . , zn〉 ⊂ (0 :Q m
l+1
Q )

be such that the images of z1, . . . , zn form a k-basis of ((0 :Q m
l+1
Q ) +m

2
Q)/m

2
Q, and

let I = 〈y1, . . . , ym〉 be such that mA is minimally generated by {y
∗

1 , . . . , y
∗

m}. Then

the following hold:

(a) edim(B) = µ(J) = n, J + m
2
Q = (0 :Q m

s−1
Q ), and if l = 1, then (0 :Q m

s−1
Q ) ⊂

J + (0 :Q J).

(b) mB and mQ are minimally generated by {z
∗

1 , . . . , z
∗

n} and {y1, . . . , ym, z1, . . . , zn}

respectively. In particular, mQ = I + J .

(c) Jml
Q = soc(Q) and J l 6= 0.

(d) IJ ⊂ m
3
Q, I

lJ + J l+1 ⊂ soc(Q), and IaJb = 0 for a+ b = l + 1, 2 6 b 6 l.

(e) m
i
Q = Ii for i > l + 1.

P r o o f. (a) By the choice of the zi’s, the images of z1, . . . , zn are linearly indepen-

dent in mQ/m
2
Q, and hence in J/mQJ . Thus µ(J) = n. Moreover, by Lemma 4.5 (a)

we get J +m
2
Q = (0 :Q m

s−1
Q ), and hence Lemma 4.5 (b) gives µ(J) = edim(B).

Observe that if l = 1, then (0 : (J+m
l+1
Q )) = (0 : (J+m

2
Q)) = (0 :Q (0 :Q m

s−1
Q )) =

m
s−1
Q . Thus, we have (0 :Q J)∩J ⊂ (0 :Q J)∩(0 :Q m

l+1
Q ) ⊂ (0 :Q (J+m

l+1
Q )) = m

s−1
Q .

Since Q is Gorenstein, this shows that (0 :Q m
s−1
Q ) ⊂ J + (0 :Q J), proving (a).

(b) Note that if we prove mB is minimally generated by {z
∗

1 , . . . , z
∗

n}, then mG is

minimally generated by {y∗1 , . . . , y
∗

m, z∗1 , . . . , z
∗

n}, and hence mQ = 〈y, z〉. Thus, in or-

der to prove (b), since edim(B) = n, it is enough to show that {z∗1+m
2
B, . . . , z

∗

n+m
2
B}

is a linearly independent set in mB/m
2
B. Firstly, note that z

∗

j ∈ (0 :G m
l+1
G ) =

m
s−l
A +mB by Remark 4.4 (c). Since deg(z

∗

j ) = 1 and s− l > 1, we get z∗j ∈ mB.

Now, let α =
n∑

i=1

αiz
∗

i , where αi ∈ k. Then α = 0 or deg(α) = 1. Thus α ∈ m
2
B

implies α = 0 in mB, and hence mG. If ai ∈ Q is a lift of αi, this implies that
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n∑
i=1

aizi ∈ m
2
Q. In particular, ai ∈ mQ, by the independence of the images of the zi’s

modulo m
2
Q. This forces αi = 0 for each i, and hence {z∗1 + m

2
B, . . . , z

∗

n + m
2
B} is

a linearly independent set in mB/m
2
B. This proves (b).

(c) We first show that J l is not contained in ml+1
Q . If not, for non-negative integers

i1, . . . , in such that i1+ . . .+ in = l, we have (z∗1)
i1 . . . (z∗n)

in = 0, i.e, ml
B = 0, which

is a contradiction to ll(B) = l. In particular, since J l
m

2
Q = 0, it follows from

Lemma 4.5 that J l is not contained in m
s−1
Q = m

l+1
Q ∩ (0 :Q m

2
Q). This shows that

J l 6= 0.

Furthermore, since J l ⊂ m
l
Q ∩ (0 :Q m

2
Q), we see that m

s−1
Q ( m

l
Q ∩ (0 :Q m

2
Q).

Hence, by Remark 4.4 (a), we have (0 :Q m
l
Q) + m

2
Q ( (0 :Q m

s−1
Q ) = J + m

2
Q. In

particular, Jml
Q 6= 0, and hence, soc(Q) ⊂ Jml

Q. Since Jm
l+1
Q = 0, we get the other

containment, proving (c).

(d) Note that G ≃ A×k B implies y
∗

i z
∗

j = 0 in G, which forces yizj ∈ m
3
Q for all i

and j. Hence IJ ⊂ m
3
Q. Moreover, Jm

l
Q = soc(Q) implies that I lJ +J l+1 ⊂ soc(Q).

Finally, since a + b = l + 1, and 2 6 b 6 l, we have IaJb = J(IJ)(Ia−1Jb−2) ⊂

Jm3
Qm

l−2
Q = Jml+1

Q = 0, proving (d).

(e) It is enough to show that ml+1
Q = I l+1 as mQ = I + J , and Jml+1

Q = 0. Now,

by (d), we have ml+1
Q = I l+1 + soc(Q). We now claim that I l+1 6= 0. This is true

since if I l+1 = 0, then ml+2
Q = 0, which contradicts the fact that s > k+1. Since Q is

Gorenstein Artin, and I l+1 6= 0, we have soc(Q) ⊂ I l+1, and hence ml+1
Q = I l+1. �

5. Associated graded rings and decomposability

As seen in Example 4.2, given a Gorenstein Artin local ring Q, if gr(Q) ≃ A×k B

for graded rings A and B, then Q need not be decomposable as a connected sum

over k. However, if A is a graded Gorenstein quotient of gr(Q) with ll(A) > ll(B)+1,

and one of the following holds:

(i) ll(B) = 1 or

(ii) edim(A) = 1 and ll(B) = 2,

then the converse of Proposition 3.1 holds, as can be seen in Theorem 5.6 and

Corollary 5.11.

Before we head towards the proofs of these theorems, we show that such results

do not hold, without further hypotheses, for ll(B) > 3.

Example 5.1. Let Q = k[X,Y ]/〈X3 + Y 3 + XY, Y 4〉. Then we get gr(Q) ≃

A×kB, where A = k[X ]/〈X9〉 andB = k[Y ]/〈Y 4〉. Note that A is graded Gorenstein,

edim(A) = 1, ll(A) = 8 > ll(B) + 1 since ll(B) = 3.
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In this example, HQ(2) = 3 >
(
2
2

)
+2, so by Remark 2.11 (b), Q is indecomposable

as a connected sum over k.

5.1. The ll(B) = 1 case. We begin with the following proposition. Note that the

statement is true more generally, in particular, for any standard graded k-algebra G.

Proposition 5.2. Let (Q,mQ, k) be a Gorenstein Artin local ring with ll(Q) > 2

and G = gr(Q). Then the following conditions are equivalent:

(i) G is as in Setup 4.3, with ll(B) = 1.

(ii) There exists a graded Gorenstein ring A and a surjective ring homomorphism

π : G→ A such that ker(π) ∩ (mG)
2 = 0.

(iii) dimk(soc(G) ∩ (mG)
2) = 1.

In particular, if (i) holds, then we have A ≃ G/〈soc(G)∩G1〉, mB = 〈soc(G)∩G1〉,

λ(G) − λ(A) = edim(G)− edim(A) = type(G) − 1 = edim(B), and ll(A) = ll(G).

P r o o f. (i) ⇒ (ii): By Remark 2.7, A ≃ G/mB. Since m
2
B = 0, (ii) holds.

(ii) ⇒ (iii): By (ii), we see that π|(mG)i : (mG)
i −→ (mA)

i is an isomorphism for

each i > 2. In particular, if soc(A) = (mA)
s, then s = ll(A) = ll(G) > 2 and

dimk((mG)
s) = 1.

Suppose z ∈ soc(G) ∩ (mG)
2. Then π(z) ∈ soc(A) = (mA)

s. Since s > 2, this

forces z ∈ (mG)
s. Thus (mG)

s ⊂ soc(G) ∩ (mG)
2 ⊂ (mG)

s, proving (iii).

(iii) ⇒ (i): Since G ≃ A ×k B, where A 6≃ k 6≃ B, we see that G is not

Gorenstein. Hence (iii) implies that there is a k-basis, say {z1, . . . , zn}, for

(soc(G) + (mG)
2)/(mG)

2, where n = type(G) − 1 > 1. Extend this to a k-basis

{y1, . . . , ym, z1, . . . , zn} of mG/(mG)
2, and lift it to a minimal generating set {y, z}

of mG in G1. Since 〈y〉 ∩ 〈z〉 = 0 and 〈y〉 + 〈z〉 = mG, Remark 2.7 implies that

G ≃ A×k B, where A = G/〈z〉 and B = G/〈y〉 are graded k-algebras.

Since zi ∈ soc(G) for each i, their images in B, which are the generators of mB,

are in soc(B), and in particular, mB = soc(B). Thus m2
B = 0, and type(B) = n.

Therefore, by Remark 2.7, type(A) = 1, i.e., A is a graded Gorenstein k-algebra.

The last part follows from the proof above, Remark 2.7 and the facts that

type(A) = 1 and edim(B) = type(B) = λ(B) − 1. �

Remark 5.3. The proof of (iii) ⇒ (i) in the above proposition follows from [2],

Lemma 1.6. We reprove it here for the sake of completeness.

We now prove the following proposition, which is crucial in our proof of Theo-

rem 5.6.

Proposition 5.4. With notation as in Setup 4.3, let l = 1 and J = 〈z1, . . . , zn〉

be as in Theorem 4.6. Then J + (0 :Q J) = mQ and µ(0 :Q J) = edim(Q)− n.
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P r o o f. Let I = (0 :Q J). Since Q is Gorenstein, in order to prove J + I = mQ,

it is enough to show that I ∩ J = soc(Q), and since 0 6= J 6= Q, we only need to

prove I ∩ J ⊂ soc(Q).

Since s > 3, by Theorem 4.6 (a) it follows that I ∩ J ⊂ m
s−1
Q ⊂ m

2
Q. Therefore,

the linear independence of z1, . . . , zn modulo m
2
Q shows that if

n∑
i=1

aizi ∈ I ∩ J , then

ai ∈ mQ. Thus, I ∩ J ⊂ JmQ = soc(Q) by Theorem 4.6 (c), proving J + I = mQ.

Now JmQ = soc(Q) and µ(J) = n imply that λ(J) = λ(J/JmQ) + 1 = n + 1.

Furthermore, I + J = mQ and IJ = 0 show that m2
Q = ImQ + soc(Q). Since s > 3,

we have ImQ 6= 0, and hence m2
Q = ImQ. Thus, λ(0 :Q J) = λ(Q/J) gives

µ(I) = λ(I/m2
Q) = λ(I)− λ(m2

Q) = λ(Q/J)− λ(m2
Q) = λ(Q/m2

Q)− λ(J)

= (1 + edim(Q))− (n+ 1) = edim(Q)− n

proving the proposition. �

Remark 5.5. With notation as above, we see that 〈soc(G) ∩ G1〉 = mB =

〈z∗1 , . . . , z
∗

n〉 by Theorem 4.6 (b) and Proposition 5.2.

We are now ready to state and prove one of the main theorems of this section.

Theorem 5.6. Let (Q,mQ, k) be a Gorenstein Artin local ring, G = gr(Q) and l

as in Setup 4.3. If l = 1, then Q decomposes as a connected sum over k. Moreover,

we can write Q ≃ R#kS, where (R,mR, k) and (S,mS , k) are Gorenstein Artin local

rings such that:

(a) edim(S) = type(G)− 1 and ll(S) = 2.

(b) gr(R) ≃ G/〈soc(G) ∩ G1〉. In particular, ll(R) = s and HR(i) = HQ(i) for

2 6 i 6 s.

(c) If m = edim(R) and n = edim(S), then [PR(t)]−1 = [PQ(t)]−1 − [PS(t)]−1 +

1 − ϕm,nt
2, where ϕm,n is given as in Theorem 2.10 (d) and, PS(t) is as in

Remark 2.5 (c).

Thus, PQ(t) is rational in t if and only if PR(t) is so.

P r o o f. By Proposition 5.4, we have mQ = 〈y1, . . . , ym, z1, . . . , zn〉 where n =

type(G) − 1 > 1, y · z = 0 and 〈z〉2 6= 0 = 〈z〉3. Let Q̃/IQ be a Cohen presentation

of Q, where m
Q̃
= 〈Y,Z〉, 〈Y · Z〉 + 〈Z〉3 ⊂ IQ ⊂ m

2
Q̃
, and 〈Z〉2 6⊂ IQ. Observe that

〈z〉3 = 0 and s > 3 force m > 1.

Now, if JR = (IQ ∩ 〈Y〉) + 〈Z〉 and JS = (IQ ∩ 〈Z〉) + 〈Y〉, then by Theorem 2.10,

R = Q̃/JR and S = Q̃/JS are Gorenstein Artin such that Q ≃ R#kS. Moreover,

JS ∩ 〈Z〉 = IQ ∩ 〈Z〉. Hence, 〈Z〉
3 ⊂ JS and 〈Z〉

2 6⊂ JS . Thus m
3
S = 0 6= m

2
S , i.e.,

ll(S) = 2, proving (a).
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Since ll(Q) > 3 > ll(S), we see that ll(R) = ll(Q) 6= ll(S). Hence, by the proof of

Proposition 3.1, G ≃ gr(R)×k gr(S/ soc(S)). In particular, gr(R) ≃ G/〈z∗1 , . . . , z
∗

n〉.

By Remark 5.5, we get gr(R) ≃ G/〈soc(G) ∩G1〉, proving (b).

The remaining statements follow from Theorem 2.10. �

Remark 5.7. The condition that A is a graded Gorenstein ring is necessary

in the above theorem. Example 4.2 gives a counter-example when A is not graded

Gorenstein.

The next corollary, which gives a sufficient condition for gr(Q) to be Gorenstein,

is an immediate consequence of Proposition 5.2 and the above theorem.

Corollary 5.8. Let (Q,mQ, k) be a Gorenstein Artin local ring which is indecom-

posable as a connected sum and let G = gr(Q). If ll(Q) > 3 and dimk(soc(G) ∩

(mG)
2) = 1, then G is Gorenstein.

5.2. The edim(A) = 1 case. We now focus on the case where edim(A) = 1 in

Setup 4.3. We identify some conditions on the ideals I and J defined in Theorem 4.6,

which force Q to be a connected sum over k. As an immediate consequence, we see

that Q is a connected sum over k, where edim(A) = 1 and ll(B) = 2, assuming

ll(A) > 4.

Proposition 5.9. With the notation as in Setup 4.3, let edim(A) = 1, and let

I = 〈y〉 and J = 〈z1, . . . , zn〉 be the ideals defined in Theorem 4.6. If IJ ⊂ m
l+1
Q ,

then there is an ideal J ′ in Q such that IJ ′ = 0, I + J ′ = mQ, µ(J
′) = edim(Q)− 1

and (J ′)l+1 = soc(Q).

P r o o f. By Theorem 4.6 (c), we have I lJ ⊂ soc(Q) = 〈ys〉. Thus for each j =

1, . . . , n, there exists uj ∈ Q, such that ylzj = ujy
s. Define z′j = zj − ujy

s−l and set

J1 = 〈z′1, . . . , z
′

n〉.

Observe that Jml+1
Q = 0 implies J1m

l+1
Q = 0. Moreover, J+m

2
Q = J1+m

2
Q implies,

by the choice of J , that the images of z′1, . . . , z
′

n form a k-basis for ((0 :Q m
l+1
Q ) +

m
2
Q)/m

2
Q. Thus J1 satisfies the same hypotheses, and hence the same conclusions, of

Theorem 4.6 as J . Furthermore, we also have I lJ1 = 0.

We now claim that I l−1J1 ⊂ soc(Q). In order to see this, since mQ = I + J1 and

I lJ1 = 0, it is enough to show that I l−1J2
1 = 0. Now, I l−1J2

1 ⊂ I l−1(J + Is−l)J1 ⊂

m
l+1
Q J1 by the given hypotheses, since s > l + 1 and l > 2. But, by Theorem 4.6 (c)

applied to J1, we have J1m
l+1
Q = 0, proving I l−1J1 ⊂ soc(Q).

The same argument shows that there exists an ideal J2 satisfying the same hy-

potheses, and conclusions, as J in Theorem 4.6, such that I l−1J2 = 0. Repeating
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this process l times, we get ideals J1, . . . , Jl, each satisfying the same conclusions of

Theorem 4.6 as J , and further satisfying I l−i+1Ji = 0 for 1 6 i 6 l.

Thus, we have IJl = 0. Moreover, Theorem 4.6 applied to J ′ = Jl gives I + J ′ =

mQ and µ(J ′) = n = edim(Q) − 1 > 1. Finally, soc(Q) = J ′
m

l
Q = J ′(I + J ′)l =

(J ′)l+1, proving the result. �

The following important theorem is a consequence of Proposition 5.9 and Theo-

rem 2.10:

Theorem 5.10. With the notation as in Setup 4.3, let edim(A) = 1, and let I

and J be the ideals defined in Theorem 4.6. If IJ ⊂ m
l+1
Q , then there are Gorenstein

Artin local rings (R,mR, k) and (S,mS , k) such that Q ≃ R#kS, where

(a) R is a hypersurface, with ll(R) = s, gr(R) ≃ A and HR(i) = HQ(i) = 1 for

l + 1 6 i 6 s,

(b) ll(S) = l + 1 and 1/PQ(t) = 1/PS(t) − t. Thus, PQ(t) is rational in t if and

only if PS(t) is so.

P r o o f. By Proposition 5.9, letting I = 〈y〉, there exists an ideal J ′ = 〈z1, . . . , zn〉

with n = edim(Q) − 1 > 1, such that mQ = 〈y, z1, . . . , zn〉, where y · z = 0 and

〈z〉l+1 6= 0 = 〈z〉l+2. Let Q̃/IQ be a Cohen presentation of Q, where mQ̃
= 〈Y,Z〉,

where Y and Z are lifts of y and z, respectively. Then 〈Y · Z〉 + 〈Z〉l+2 ⊂ IQ ⊂ m
2
Q̃

and 〈Z〉l+1 6⊂ IQ.

Now, if JR = (IQ ∩ 〈Y 〉) + 〈Z〉 and JS = (IQ ∩ 〈Z〉) + 〈Y 〉, then by Theorem 2.10,

R = Q̃/JR and S = Q̃/JS are Gorenstein Artin such that Q ≃ R#kS. Moreover,

JS ∩ 〈Z〉 = IQ ∩ 〈Z〉. Hence, 〈Z〉
l+2 ⊂ JS and 〈Z〉

l+1 6⊂ JS . Thus m
l+2
S = 0 6= m

l+1
S ,

i.e., ll(S) = l+ 1.

Note that edim(R) = 1 andR is Gorenstein Artin, hence R is a hypersurface. Since

ll(Q) = s > l+1 = ll(S), we see that ll(R) = s 6= ll(S). Hence, by Theorem 2.10 (e),

we get G ≃ gr(R)×k gr(S/ soc(S)). In particular, gr(R) ≃ G/〈z∗1 , . . . , z
∗

n〉 ≃ A, since

mB = 〈z∗1 , . . . , z
∗

n〉 by Theorem 4.6.

The other conclusions follow from Theorem 2.10 (b) and (d). �

By Theorem 4.6 (d), IJ ⊂ m
3
Q. Hence, with l = 2 in the above theorem, the

following corollary is immediate.

Corollary 5.11. Let (Q,mQ, k) be a Gorenstein Artin ring with ll(Q) = s > 4.

Suppose G = gr(Q) ≃ A ×k B with edim(A) = 1 and ll(B) = 2. Then there

are Gorenstein Artin local rings (R,mR, k) and (S,mS , k) such that Q ≃ R#kS,

where R is a hypersurface and S is a short Gorenstein ring. Moreover, PQ(t) is

rational in t if and only if PS(t) is so.
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With notation as in Setup 4.3, the conditions IJ ⊂ m
l+1 and edim(A) = 1 are

both necessary in Theorem 5.10, as can be seen below. In both of the following

examples, we denote x, y, z as images of X , Y , Z respectively in Q. Note that Q is

indecomposable as a connected sum over Q by Remark 2.11 (a), since it is complete

intersection.

Example 5.12.

(a) In this example, we have s = 5, l = 3 and edim(A) = 1, but IJ 6⊂ m
4
Q. Let

Q = Q[X,Y, Z]/〈X4− Y Z, Y 3 −XZ,Z3 −XY 〉. Then gr(Q) ≃ A×k B, where

A ≃ Q[X ]/〈X6〉 and B ≃ Q[Y, Z]/〈Y 4, Y Z, Z4〉. Furthermore, we have I = 〈x〉,

J = 〈y, z〉, and hence IJ 6⊂ 〈x, y, z〉4.

(b) In this example, we have s = 5, l = 3, IJ ⊂ m
4
Q and edim(A) = 2. Let

Q = Q[X,Y, Z]/〈X4 − Y Z, Y 4 −XZ,Z3 −X2〉. Then gr(Q) = A ×k B, where

A = Q[X,Y ]/〈X2, Y 5〉 and B = Q[Z]/〈Z4〉. In this case, we have I = 〈x, y〉,

J = 〈z〉 and IJ ⊂ 〈x, y, z〉4.

6. Some applications

6.1. Short and stretched Gorenstein rings. In her paper on stretched Goren-

stein rings, Sally proved a structure theorem (see [11], Corollary 1.2) for a stretched

Gorenstein local ring (Q,mQ, k) when char(k) 6= 2. The description of the defining

ideal of Q shows that Q can be decomposed as a connected sum over k.

Elias and Rossi proved a similar structure theorem (see [7], Theorem 4.1) for

a short Gorenstein local k-algebra (Q,mQ, k) when k is algebraically closed and

char(k) = 0, which shows that Q decomposes as a connected sum over k.

Theorem 5.6 generalizes these two results, which can be seen as follows:

Proposition 6.1. Let (Q,mQ, k) be either a short or a stretched Gorenstein Artin

ring and G = gr(Q). Set ll(Q) = s. If s > 3, then edim(Q) = HQ(s−1)+type(G)−1

and dimk(soc(G) ∩m
2
G) = 1. In particular, G is as in Setup 4.3 with ll(B) = 1.

P r o o f. Let Q0 = G/C be the quotient of G as defined by Iarrobino (see Re-

mark 2.3). Note that C2 = 0. Since HG(i) = HQ0
(i) for i = s− 1, s by Remark 2.3,

the fact that the Hilbert function of a graded Gorenstein k-algebra is palindromic

gives us the following statements:

(i) LetQ be a short Gorenstein ring withHQ = (1, h, n, 1). ThenHQ0
= (1, n, n, 1).

(ii) If Q is stretched with HQ = (1, h, 1, . . . , 1), then HQ0
= (1, 1, 1, . . . , 1).

Thus if we take A to be Q0 in Proposition 5.2 (iii), we see that dimk(soc(G) ∩

m
2
G) = 1, and the formula for edim(Q) holds since edim(A) = HQ(s − 1). Finally,

by Proposition 5.2, G is as in Setup 4.3 with ll(B) = 1. �
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Theorem 6.2. Let (Q,mQ, k) be Gorenstein Artin with G = gr(Q) and ll(Q) > 3.

Then Q is stretched if and only if dimk(soc(G)∩m2
G) = 1 and type(G) = edim(Q). In

particular,Q decomposes as a connected sum over k and [PQ(t)]−1 = 1−edim(Q)t+t2

when edim(Q) > 2.

P r o o f. Note that if Q is stretched, the required properties of G hold by Propo-

sition 6.1. For the converse, assume that dimk(soc(G) ∩ m
2
G) = 1 with edim(Q) =

type(G). Then by Proposition 5.2, we have G ≃ A×kB with edim(B) = edim(Q)−1

and edim(A) = 1. Since ll(Q) > 3, Theorem 5.6 (b) and (c) show that Q is stretched,

and give the formula for PQ(t). �

Remark 6.3. It is shown in [6] that if (Q,mQ, k) is a short Gorenstein Artin

k-algebra with Hilbert function HQ = (1, h, n, 1), then PQ(t) is rational when n 6 4,

with the assumption that k is an algebraically closed field of characteristic zero. In

Theorem 6.4, we show the same is true for all Gorenstein Artin local rings with n 6 4.

Theorem 6.4. Let (Q,mQ, k) be a short Gorenstein Artin local ring with Hilbert

function HQ = (1, h, n, 1). Then Q is a connected sum. Furthermore, if n 6 4, then

PQ(t) is rational.

P r o o f. By Proposition 6.1 and Theorem 5.6, there exist Gorenstein Artin local

rings R and S such that Q ≃ R#kS, where ll(S) 6 2 and edim(R) = n 6 4. Thus,

Remark 2.5 (a) shows thatPR(t) is rational, and therefore, by Theorem 5.6 (c), PQ(t)

is rational. �

6.2. Rationality of Poincaré series. In this subsection, we see some conditions

which force the rationality of PQ(t). We begin with the following consequence of

Theorem 5.6.

Proposition 6.5. Let (Q,mQ, k) be a Gorenstein Artin local ring. If G = gr(Q)

and l are as in Setup 4.3 with l = 1, then PQ(t) is a rational function of t in the

following situations:

(i) edim(Q)− type(G) 6 3.

(ii) λ(Q)− type(G) 6 10.

P r o o f. By Theorem 5.6 (a), Q ≃ R#kS for Gorenstein Artin local rings

(R,mR, k) and (S,mS , k) with ll(S) 6 2 and gr(R) ≃ A = G/〈soc(G) ∩G1〉.

Now, by Proposition 5.2, A is a graded Gorenstein Artin k-algebra such that

ll(A) = ll(Q), edim(A) = edim(Q)− type(G) + 1 and λ(A) = λ(Q)− type(G) + 1.

(ii) The assumption that λ(Q) − type(G) 6 10 implies that λ(A) 6 11. Since A

is graded Gorenstein, and hence has a palindromic Hilbert function, the hypothesis

that ll(Q) > 3 forces edim(A) 6 4. Thus (ii) reduces to (i).
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(i) In this case, edim(R) = edim(A) 6 4. Hence, by Remark 2.5 (a), PR(t) is

rational. Thus, by Theorem 5.6 (c), PQ(t) is rational. �

Corollary 6.6. Let (Q,mQ, k) be a Gorenstein Artin local ring with ll(Q) > 4.

Suppose gr(Q) ≃ A ×k B with edim(A) = 1 and ll(A) > ll(B) = 2. If HQ(2) 6 5,

then PQ(t) is rational.

P r o o f. By Corollary 5.11 we have ll(S) = 3 < s = ll(R). It then follows from

Theorem 2.10 (b) that HQ(2) = HR(2)+HS(2). Since HR(2) = 1, we get HS(2) 6 4.

Now applying Theorem 6.4 for S, we get PS(t) is rational. Thus, PQ(t) is rational

by Corollary 5.11. �

We end this article by exhibiting another class of rings which are connected sums.

This is a natural extension of the case of stretched rings.

Proposition 6.7. Let (Q,mQ, k) be Gorenstein Artin and let G = gr(Q) be as

in Setup 4.3. Further, assume that ll(Q) > 4 and µ(m3
Q) = 1, i.e., HQ is of the

form (1, h, n, 1, 1, . . . , 1). Then Q can be decomposed as a connected sum over k. In

particular, if HQ(2) = n 6 5, then PQ(t) is rational.

P r o o f. We see that ll(B) = 2, since HG(i) = 1 = HA(i) +HB(i) for i > 3, and

ll(A) > ll(B). Thus, we have

HQ(s− 1) = HG(s− 1) = HA(s− 1) = edim(A),

where the last equality holds because A is graded Gorenstein. So, edim(A) = 1

because HQ(s− 1) = 1 as s− 1 > 3. Thus, by Corollary 5.11, Q is a connected sum.

If n 6 5, the rationality of PQ(t) follows from the previous corollary. �
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