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True preimages of compact or separable sets

for functional analysts

Lech Drewnowski

To Krystyna – with love since 1962

Abstract. We discuss various results on the existence of ‘true’ preimages un-
der continuous open maps between F -spaces, F -lattices and some other spaces.
The aim of the paper is to provide accessible proofs of this sort of results for
functional-analysts.
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1. Introduction and main results on compact preimages

The topological and functional-analytic terminology, and the relevant facts we

use, are standard, as in [6], [7], and [1]; precise references or additional expla-

nations will be given when necessary. Throughout, we agree that in any metric

space, d denotes the metric, and K(z, r) and B(z, r) stand for the open and closed

balls with center z and radius r, respectively. When dealing with an F -space, i.e.,

a complete metrizable topological vector space (tvs), or merely an F -normed

space, we assume that its metric and topology are defined by an F -norm ‖·‖ (cf.

[7, Sections 2.7, 2.8.]. After K. Nagami [13], given a map f from a space X to

a space Y , whatever ‘space’ means, by a preimage under f , or an f -preimage of

a set B ⊂ Y , we shall understand any set A ⊂ X such that f(A) = B. Like ways

of saying may be used in the case of sequences, series, or functions in place of sets.

We are especially interested in true preimages—those which are of the same type

as their originals. If f is onto, f−1(B) is clearly the largest preimage of B but, in

general, is not a true preimage. We will be dealing, mostly, with continuous and

open maps. The following two facts about maps f between Hausdorff spaces X,Y

will be useful. Both are easy and maybe even of a ‘folklore’ status. A somewhat

surprising application of the equivalence of (a) and (c) in the fact below will be

seen in the proof of Theorem 4.2 (b).
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Fact 1.1. Let f : X → Y be onto and consider the conditions:

(a) f : X → Y is open;

(b) for each x ∈ X and each neighborhood U of x, f(U) is a neighborhood

of f(x);

(c) for each x ∈ X and each sequence (yn) in Y converging to f(x), there is

a sequence (xn) in X converging to x such that yn = f(xn) for all n ∈ N.

Then (a) and (b) mean the same; (b) implies (c) when X is first countable;

(c) implies (b) when Y is first countable. When both X and Y are tvs’s and

f is linear, one can use x = 0 in (b) and (c), and replace ‘first countable’ by

‘metrizable’.

Proof: We only show that (b) =⇒ (c) and (c) =⇒ (b) when X respectively

Y is first countable. The first implication: Let x ∈ X , y = f(x), and let (yn) be

any sequence in Y converging to y. Fix a decreasing base (Uk) of neighborhoods

of x. Then one can find a strictly increasing sequence (nk) of positive integers

such that for each k, yn ∈ f(Uk) for all n > nk. From this, and since f is onto,

we easily deduce the existence of a sequence (xn) in X such that f(xn) = yn for

all n, with xn ∈ Uk whenever nk < n 6 nk+1, k ∈ N. It is evident that (xn) is

as required in (c). The second implication: Suppose it is false so that for a point

x ∈ X and some its neighborhood U the image f(U) is not a neighborhood of

y = f(x). Hence, if (Vn) is a decreasing local base at y, then for every n there is

a point yn ∈ Vn \ f(U). Clearly, this contradicts (c). �

Fact 1.2. Let f : X → Y be continuous.

(a) If B is a closed subset of Y , and B = f(A) for a set A ⊂ X , then also

B = f(A).

(b) If f is also open and onto, then for each set B ⊂ Y and A =: f−1(B) one

has f(A) = B.

Proof: (a) We have B = f(A) ⊂ f(A) ⊂ f(A) = B.

(b) Since B = f(A), the inclusion ‘⊂’ holds by the continuity of f . For the

converse inclusion, take any y ∈ B, then choose x ∈ X with f(x) = y, and

a neighborhood U of x. Since f is open, f(U) is a neighborhood of y. Select any

v ∈ B ∩ f(U), and next u ∈ U so that v = f(u). Clearly, u ∈ A. Thus A∩U 6= ∅.

Consequently, x ∈A, and we are done. �

In this paper, we concentrate on results similar in spirit to the following.

Theorem 1.3. If f is a continuous linear operator from an F -space X onto an

F -space Y , then every compact set C in Y has a compact preimage K in X . If

X is a locally convex F -space (i.e., a Fréchet space) and C is, moreover, convex

or absolutely convex, then also K may be chosen of the same type.
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In Section 3, analogous results on separable preimages are given, and in Sec-

tion 4 we move our setting to the case of F -lattices. At this point let us pause to

recall that, by the open mapping theorem, a surjection f as in the theorem above

is always open. This will be crucial for all what follows. As a simple application

of Theorem 1.3, we note

Corollary 1.4. Let X be an F -space, and E1, . . . , En be its closed subspaces

with X = E1 + · · ·+ En. Then for every compact set C in X there are compact

sets Ki ⊂ Ei, i = 1, . . . , n, such that C ⊂ K1 + · · ·+Kn.

Proof: The addition map A : E1 × · · ·×En → X is linear, continuous and onto.

Applying Theorem 1.3, we find a compact setK ⊂ E1×· · ·×En so that C = A(K).

To finish, define Ki to be the projection of K into Ei, i = 1, . . . , n. �

We now make a few comments on Theorem 1.3. It may rightly be considered

well-known, at least when one restricts to Fréchet spaces. Indeed, its occurrences

in the standard functional-analytic texts are limited to such spaces. Let us also

note that Fact 1.1 (c) and Theorem 1.3 are often stated only for the case of

quotient maps X → X/N , see e.g., [7, 9.4.5] or [8, Section 22.2 (7)]. But the

general case follows from this easily due to the factorization f = f̂◦q, where

q : X → X/ ker f is the quotient map, and f̂ : X/ ker f → Y is the isomorphism

associated with f . Of course, the assertion of Theorem 1.3 is trivial when f is

one-to-one, because then its inverse f−1 is continuous and it is enough to set

K = f−1(C). Another ‘quick’ proof when both X and Y are Fréchet spaces or,

more generally, when just ker f is a locally convex subspace of the F -space X , can

be given by using a deep selection theorem of Bartle and Graves or its extension

due to Michael, see [2, Chapter II, Corollary 7.1 and Proposition 7.1]. It asserts

that in that case the map f has a continuous right inverse, that is, there is

a continuous (one-to-one) map g : Y → X such that f◦g = idY . Once this is

known, it is enough to set K = g(C). For a very simple instance of a situation of

this sort, see Fact 5.1 and its proof.

The usual proofs of Theorem 1.3 in the functional-analytic literature as, for

instance, in [7, 9.4.5] depend strongly on a result (attributed to Grothendieck in

[4, page 6] in the normed case, and to Dieudonné and Robertson-Robertson in [7,

page 194] in the locally convex case), which in its most general form given in [7,

9.4.2] reads as follows.

Proposition 1.5. For every precompact subset E of a metrizable tvs Z, there is

a null sequence (zn) in Z such that E is contained in its closed convex hull co(zn).

See also [4, Chapter I, Theorem 5], noting that the proof given there for normed

spaces can easily be adapted to the general situation. One may also consult our
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proof of Theorem 1.3 given in the next section. In order to make it easier for the

reader to see what’s new in our proof, let us recall how Proposition 1.5 was used

in the usual proofs of Theorem 1.3 when X , and hence Y as well, were Fréchet

spaces. First, applying that Proposition to the compact set C, one finds a null

sequence (yn) in Y so that C ⊂ F := co(yn). Next, using Fact 1.1 (c), one further

finds a null sequence (xn) inX such that f(xn) = yn for each n. Then E := co(xn)

is a compact set in X (see [7, 6.7.2] or [8, Section 20.6 (3)]), and it follows easily

that f(E) = F . Finally, K := E ∩ f−1(C) is as desired. This argument fails for

general F -spaces for in that case one cannot be sure that the set E is compact and,

consequently, one would only have f(E) ⊂ F . However, there is a way out of this

difficulty, and thus our first contribution will be a modification of the argument

just presented resulting in a ‘functional-analytic’ proof of Theorem 1.3 in its full

generality. Finally, the status of Theorem 1.3 becomes completely clear when

one consults the general topological literature, and with a bit of luck comes upon

a remarkable result of N. Bourbaki [3, Chapter IX, Section 1, Proposition 18]. We

state it, in the form most suitable for us, as the first theorem below. The other

two theorems are close relatives of the first. We postpone the proofs to the next

section. They are fairly elementary and quite similar, though not identical, to the

original proof of Bourbaki. Additionally note that each of these theorems readily

implies Theorem 1.3, modulo the open mapping theorem.

Theorem 1.6. Let f be a continuous open map from a complete metric space X

onto a Hausdorff space Y . Then every compact set in Y has a compact preimage

in X .

Theorem 1.7. Let X be a complete metric space and Y a Hausdorff space.

If F : Y → X is a lower semicontinuous set-valued map with nonempty closed

values, then for every compact subset C of Y there is a compact subset K of X

such that C ⊂ F−1(K).

Recall that F is lower semicontinuous if for every open set U ⊂ X , the set

F−1(U) := {y ∈ Y : F (y) ∩ U 6= ∅} is open in Y . Before proceeding, let us agree

to say that a map f from a metric space X to a metric space Y is uniformly open

if for each ε > 0 there is δ > 0 such that B(f(x), δ) ⊂ f
(

B(x, ε)
)

for all x ∈ X .

Clearly, f is then an open map; in particular, its range f(X) is an open subset

of Y . In fact, f(X) is also closed because, for δ as above, d(f(x), Y \ f(X)) > δ

for all x ∈ X . Evidently, every open linear map between F -normed spaces is

uniformly open. In view of Theorem 1.6 only the completeness of Y in the next

result is of importance, but a direct proof of it would not be much shorter. We

refer the reader to [6, Problem 5.5.8 (d)] for historical information on related

earlier results, in particular, a 1934 theorem of F. Hausdorff.
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Theorem 1.8. Let f be a continuous and uniformly open map from a complete

metric space X onto a metric space Y . Then for every precompact set C in Y

one can find a compact set K in X such that C ⊂ f(K). In consequence, the

space Y is complete.

Remarks 1.9.

(a) Theorem 1.6 follows right from Theorem 1.7 by taking F (y) := f−1({y})

for y ∈ Y , then noting that for this F the condition C ⊂ F−1(K) trans-

lates into C ⊂ f(K), and finally replacing the provided compact set

K ⊂ X with K∩f−1(C). As will be seen, to get a compact set K ⊂ X so

that C ⊂ f(K) we only need to know that f is open and that f−1({y})

is closed for all y ∈ C.

(b) It is standard that a Hausdorff quotient X/N of an F -space X is an F -

space, see e.g. [7, Section 4.4, Proposition 1]. Note that this also is a direct

consequence of Theorem 1.8 applied to the quotient map q : X → X/N .

(c) Theorem 1.6 was strengthened by E. Michael in [9, Corollary 1.2] who

removed the continuity of f and replaced the completeness of X with

a weaker requirement (M): fibers f−1({y}) for y ∈ Y are complete sub-

sets of X . He also introduced the concept of compact-covering maps,

see [11], which was later intensively studied; for a sample of references see

[10], [12], [13]. However, we will not use Michael’s result in this paper,

the reason being that its proof requires quite a deep knowledge of gen-

eral topology while, on the other hand, it is hard to imagine situations

involving the assumption (M) in the functional-analytic practice.

2. Proofs of the main results on compact preimages

Proof of Theorem 1.3: Fix a sequence (εk) of positive reals with
∑

k εk < ∞.

Since f is open, there is a sequence (δk) of positive reals with
∑

k δk < ∞ and

such that B(0, 2δk−1) ⊂ f(B(0, εk)) for k > 2. Now, given a compact set C

in Y , we repeat the proof of [4, Chapter I, Theorem 5] making only a few minor

changes. For the sake of clarity, we include details of the two inductive procedures,

(1) and (2), used in that proof. Part (3) is our own, and essential, ingredient of

the reasoning.

(1) The set 2C is compact, hence admits a finite δ1-net (yj : j ∈ J1) so that

2C ⊂
⋃

j∈J1
B(yj , δ1). Clearly, also the set

C1 :=
⋃

j∈J1

(2C ∩B(yj , δ1)− yj)
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is compact and, obviously, C1 ⊂ B(0, δ1). Assume that for some k > 1 the

compact set Ck ⊂ B(0, δk) has already been defined. Then to proceed, choose

any finite δk+1-net (yj : j ∈ Jk+1) in the compact set 2Ck, and put

Ck+1 :=
⋃

j∈Jk+1

(2Ck ∩B(yj , δk+1)− yj).

This completes the first inductive procedure. Of course, we may assume that the

finite index sets Jk occurring above form a sequence of consecutive intervals in N

covering all of N. We thus obtain a sequence (yn) in Y such that yn ∈ B(0, δk−1)

for all n ∈ Jk and k > 2. Hence (yn) is a null sequence.

(2) Take any y ∈ C. Then there exists j1 ∈ J1 such that 2y−yj1 ∈ C1. Likewise,

there is j2 ∈ J2 such that 2(2y− yj1)− yj2 ∈ C2. Continue. This yields, for every

y ∈ C indices jk ∈ Jk, k > 1, such that y −
∑m

k=1 2
−kyjk ∈ 2−mCm ⊂ B(0, δm)

for all m > 1. Hence y =
∑

∞

k=1 2
−kyjk . In consequence, C ⊂ co(yn), but this is

of no importance in the proof.

(3) Finally, choose (xn) in X so that xn ∈ B(0, εk) whenever n ∈ Jk and k > 2,

and f(xn) = yn for all n ∈ N. Note that for any choice of indices jk ∈ Jk, k > 1,

the series
∑

∞

k=1 2
−kxjk converges in X . It is so because ‖2−kxjk‖ 6 ‖xjk‖ 6 εk,

and
∑

k εk < ∞. This gives rise to a map

h : J :=

∞
∏

k=1

Jk → X, with h((jk)) :=

∞
∑

k=1

2−kxjk ,

where the product space is compact (its factors are considered with the discrete

topology), and h is easily verified to be continuous. HenceK ′ := h(J) is a compact

subset of X and f(K ′) ⊃ C. We finish by setting K := K ′ ∩ f−1(C). The

‘moreover’ part follows by replacingK with its closed [absolutely] convex hull. �

We now proceed to the other results on compact preimages from Section 1.

The basic technical ingredient is the following.

Lemma 2.1. Let X be a complete metric space, (εk) a sequence of positive reals

with
∑

k εk < ∞, and denote ε′k =
∑

∞

r=k εr. Moreover, let (Fk) be a sequence of

closed subsets of X of the form

Fk =
⋃

j∈Jk

B(xk j , εk),

where each Jk is a nonempty finite set of indices. Assume that for each k the

‘components’ B(xk+1 j , εk+1) of Fk+1 are linked to those of Fk so that

(∗) B(xk+1 j , εk+1) ∩ Fk 6= ∅ for all j ∈ Jk+1.



True preimages of compact or separable sets for functional analysts 75

Write

K =
∞
⋂

k=1

Fk.

Then every sequence (xk) such that xk ∈ Fk for each k (in particular, every

sequence (xk) in K) has a subsequence convergent in X to a point, say x. Further,

this x belongs to the set

K ′ :=

∞
⋂

k=1

F ′

k, where F ′

k =
⋃

j∈Jk

B(xk j , 2ε
′

k),

and is also the limit of a sequence (xk rk) for some rk ∈ Jk, k ∈ N. Clearly, when

(xk) ⊂ K, x also belongs to K. Consequently, the set K is compact.

The reader has certainly noticed that compactness of both K and K ′ could be

inferred directly from Hausdorff’s compactness criterion. However, the assertions

involving sequences will also be of importance for us in the forthcoming proofs.

Proof: It follows from (∗) that if k < l and x ∈ Fl, then x is linked to one of

the points xk i, i ∈ Jk, in the sense that there are indices i = jk, jk+1, . . . , jl = j

such that x ∈ B(xl jl , εl) and B(xr jr , εr) ∩ B(xr−1 jr−1
, εr−1) 6= ∅ for k < r 6 l.

It is then easily seen that

(∗∗) d(xk i, x) 6 2ε′k.

In consequence, for every k each of the points xl with l > k is linked to one of

the points xk j for some j ∈ Jk. Hence, since the set Jk is finite, for every infinite

set M ⊂ N with minM > k there is an index j ∈ Jk and an infinite set N ⊂ M

such that xl is linked to xk j for every l ∈ N . Proceeding by induction, we find

a sequence of indices (rk) with rk ∈ Jk, k ∈ N, and a sequence of infinite sets

N1 ⊃ N2 ⊃ . . . with k < minNk < minNk+1, k ∈ N, such that xl is linked to

xk rk for all l ∈ Nk, k ∈ N. Let lk := minNk; note that then lk < lk+1 < . . . are

all in Nk. By the estimate (∗∗) above for each k and all n > k

(+) d(xk rk , xln) 6 2ε′k,

hence d(xln , xlm) 6 4ε′k for all m,n > k so that the sequence (xln) is Cauchy.

Let x be its limit in the space X . Then from (+) it follows that x ∈ B(xk rk , 2ε
′

k)

for each k, hence x ∈ K ′ and xk rk → x. �

Remark 2.2. If the condition (∗) holds in a stronger form: xk+1 j ∈ Fk for all

j ∈ Jk+1, then 2ε′k appearing in the definition of the set K ′, in (∗∗) and in (+)

can be replaced with ε′k.
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Proof of Theorem 1.6: For each k ∈ N, let εk = 2−k; note that then ε′k = 2εk.

Next, let F0 = f−1(C) and note that f(F0) = C. Proceed to construct, by

induction, a sequence (Fk)k>1 of closed subsets of X such that for each k ∈ N

Fk :=
⋃

j∈Jk

B(xkj , εk) and C ⊂ f(Fk),

where Jk is a finite set of indices, and xkj ∈ Fk−1 for all j ∈ Jk. Then our

sequence (Fk) will satisfy the assumption (∗) of Lemma 2.1. The inductive step

from k to k+1 is performed as follows. Assume that Fk has already been defined

for some k > 0. Since C ⊂ f(Fk) and f is an open map, the sets f(K(x, εk+1))

for x ∈ Fk are open and cover the compact set C. Hence, there is a finite number

of points xk+1 j ∈ Fk, j ∈ Jk+1, such that C ⊂ f(Fk+1), where

Fk+1 :=
⋃

j∈Jk+1

B(xk+1 j , εk+1).

By the Hausdorff compactness criterion, the set

K :=

∞
⋂

k=1

⋃

j∈Jk

B(xkj , ε
′

k)

is compact. (This also follows from Lemma 2.1, because
∑

k ε
′

k < ∞.) We are

going to show that C ⊂ f(K). Take any point y ∈ C. Then, for each k, since

C ⊂ f(Fk), we may choose a point xk ∈ Fk such that y = f(xk). By Lemma 2.1

and Remark 2.2, the sequence (xk) has a convergent subsequence (xln), and its

limit, say x, belongs to K. On the other hand, since (xk) ⊂ f−1({y}) and the

latter set is closed in X , f(x) = y. Thus C ⊂ f(K), and to finish just replace K

with (f |K)−1(C) = K ∩ f−1(C). �

Proof of Theorem 1.7: As in the proof of Theorem 1.6, we let εk = 2−k for

each k ∈ N and using the fact that {F−1(K(x, εk) : x ∈ X} is an open cover of X ,

hence of C as well, arrive at a closed set

Ek =
⋃

j∈Jk

B(xkj , εk)

in X so that xkj ∈ Ek−1 for all j ∈ Jk (with E0 = X) and C ⊂ F−1(Ek). Now,

take any point y ∈ C. Next, for every k select a point xk in F (y) ∩ Ek. By

Lemma 2.1, there is a subsequence (xln) convergent to a point x that belongs to

the compact set

K :=

∞
⋂

k=1

⋃

j∈Jk

B(xkj , 2εk).

Since (xk) ⊂ F (y) and F (y) is closed, x ∈ F (y). Hence, K ∩ F (y) 6= ∅. �
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Proof of Theorem 1.8: The proof is very much like those above. Start by

letting εk = 2−k for each k and by choosing δk > 0 such that B(f(x), δk) ⊂

f(B(x, εk)) for all x ∈ X . Then, using precompactness, select a finite number of

points ykj ∈ C, j ∈ Jk, so that

C ⊂
⋃

j∈Jk

B(ykj , δk).

For k > 2 and j ∈ Jk pick p(k, j) ∈ Jk−1 so that ykj ∈ B(yk−1 p(k,j), δk−1).

Construct by induction a sequence (Fk) of subsets of X such that for each k ∈ N

Fk =
⋃

j∈Jk

B(xkj , εk),

where xkj ∈ B(xk−1 p(k,j), εk−1) and f(xkj) = ykj for all j ∈ Jk. Note that then

the assumptions of Lemma 2.1 are satisfied.

Step 1. Select points x1j ∈ X so that f(x1j) = y1j for j ∈ J1.

Step k → k + 1. Since, for each j ∈ Jk+1

yk+1 j ∈ B(yk p(k+1,j), δk) ⊂ f(B(xk p(k+1,j), εk)),

it is obvious that one may find points xk+1 j , as required. By the Hausdorff

compactness criterion, the set

K :=

∞
⋂

k=1

⋃

j∈Jk

B(xkj , 2εk)

is compact. We show that C ⊂ f(K). Take any point y ∈ C. Then, for every k,

since

C ⊂
⋃

j∈Jk

B(ykj , δk) ⊂ f(Fk),

there is a point xk ∈ Fk such that y = f(xk). By Lemma 2.1 and Remark 2.2, the

sequence (xk) has a convergent subsequence (xln), and its limit, say x, belongs

to K. Moreover, as in the preceding proof, y = f(x). Thus C ⊂ f(K), and

hence C is relatively compact, i.e., its closure is compact. In consequence, any

Cauchy sequence in Y is relatively compact, hence convergent. �

3. Separable preimages

Theorem 3.1. Let f be a continuous linear operator from an F -space X onto an

F -space Y . Then for every closed separable subset F of Y there exists a closed

separable subset E of X such that f(E) = F . If, in addition, F is a linear

subspace or a convex set, then E may be required to be of the same type.
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Proof: We first show that for every closed separable linear subspace M in Y

there is a closed separable linear subspace L in X such that f(L) = M . Fix any

sequence εk > 0 with
∑

k εk < ∞. Since f is an open map, there is a decreasing

sequence 0 < δk → 0 such that for each k

f(K(0, εk)) ⊃ K(0, δk).

Choose a countable dense subset S of M , and then select a countable subset D0

of X with f(D0) = S. Applying the condition displayed above, we construct

a sequence (Dk) of countable subsets of X so that for k > 1

Dk ⊂ K(0, εk) and f(Dk) = S ∩K(0, δk).

Now, take any y ∈ M . Then there is y0 ∈ S with ‖y − y0‖ < δ1, and next there

is y1 ∈ S ∩K(0, δ1) with ‖y − y0 − y1‖ < δ2. Continuing in this manner, we find

a sequence (yk) in S such that yk ∈ S∩K(0, δk) and ‖y−(y0+y1+· · ·+yk)‖ < δk+1

for each k > 1. By the construction of the sets Dk, there is a sequence (xk) in X

such that xk ∈ Dk and f(xk) = yk for each k > 0. Since ‖xk‖ < εk for k > 1

the series
∑

∞

k=0 xk converges in X , and denoting by x its sum we obviously have

f(x) = y. Let L denote the (separable) closed linear span of the unionD of the sets

Dk for k > 0. We have just shown above that f(L) ⊃ M . Since f(D) ⊂ S ⊂ M ,

we conclude that f(L) = M . In the general case, let M denote the closed linear

span of the set F . By what was proved above, there is a closed separable linear

subspace L in X with f(L) = M . Then E := L ∩ f−1(F ) is as required. �

Theorem 3.2. Let f be a continuous and uniformly open map from a complete

metric space X onto a metric space Y . Then for every separable subset F of Y

there is a separable subset E of X such that f(E) = F . If, in addition, F is

closed, also E may be chosen to be closed.

Proof: Fix any sequence εk > 0 with
∑

k εk < ∞, and next choose a decreasing

sequence 0 < δk → 0 so that

K(f(x), 2δk) ⊂ f(K(x, εk)) for all x ∈ X.

Choose a countable dense subset S in F , and then a countable subset D0 of X

such that f(D0) = S. Applying the condition displayed above, we construct

a sequence (Dk) of countable subsets of X of the form

Dk =
⋃

x∈Dk−1

Dk(x),

where Dk(x) ⊂ K(x, εk) and f(Dk(x)) = S ∩ K(f(x), 2δk) for each x ∈ Dk−1,

k > 1. Now, take any y ∈ F . Then there is a sequence (yk) in S such that
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d(y, yk) < δk, and hence d(yk, yk+1) < δk + δk+1 6 2δk for each k > 1. Select

any x1 ∈ D0 so that f(x1) = y1. Then, since y2 ∈ S ∩ K(f(x1), 2δ1), select

x2 ∈ D1(x1) so that f(x2) = y2. Continuing in this manner, we find a sequence

(xk) such that for each k > 2

xk ∈ Dk−1(xk−1) ⊂ K(xk−1, εk−1) and f(xk) = yk.

Thus d(xk−1, xk) < εk, hence the sequence (xk) is Cauchy in X , and has a limit,

say x. Since f is continuous, yk = f(xk) → f(x) = y. We have thus shown that

if D denotes the union of the sets Dk for k > 0, then f(D) ⊃ F . It follows that

the set E := D ∩ f−1(F ) is as required. �

Remark 3.3. An inspection of the proofs reveals that in the two results above

one may replace ‘separable’ by ‘of density character m > ℵ0’.

4. True preimages in F -lattices

We now turn our attention to F -lattices, i.e., complete metrizable topological

vector lattices, or Riesz spaces. In this case the most specific type of linear

operators f between F -lattices X and Y that comes to mind are the positive

ones, i.e., those for which f(X+) ⊂ Y+, and as our main goal we see proving the

existence of true preimages in X+ of compact subsets of Y+. In view of this,

a stronger requirement on f ’s pops up immediately: f(X+) = Y+; as was pointed

out to me by W. Wnuk, it appears for instance in [14, Corollary on page 60]. We

shall call such operators surpositive (the term suggested by I. Labuda). So far that

goal has not been reached, cf. Problem 4.4. Our only results in this direction are

nothing but simple observations, see the proposition right below and Section 5.

Proposition 4.1. Let f be a surpositive linear operator from an F -lattice X to

an F -lattice Y . Then f is continuous and onto, hence also open. Therefore, for

each compact set C ⊂ Y there is a compact set K ⊂ X such that C = f(K). If,

additionally, f is one-to one on X+ or, equivalently, on X , then each compact set

in Y+ has a compact preimage in X+.

Proof: Both statements are easily justified with the help of equalities x =

x+ − x−, y = y+ − y−, and f(x) = f(x+)− f(x−), x ∈ X , y ∈ Y , and an appeal

to Theorem 1.3. �

In our next result, we assume more on f , and derive stronger conclusions.

Part (b) deserves a special attention; it seems to be a new property of vector

lattice homomorphisms.
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Theorem 4.2. Let f be a vector lattice (or Riesz) homomorphism from an F -

lattice X onto another F -lattice Y . Then:

(a) Vector lattice homomorphism f is surpositive, continuous and open.

(b) Moreover, also the map f |X+ : X+ → Y+ is open.

(c) In consequence, for every compact set C ⊂ Y+ there exists a compact set

K ⊂ X+ such that C = f(K).

Proof: Recalling that f(|x|) = |f(x)| for all x ∈ X , (a) is clear. To see (c),

apply the preceding result or Theorem 1.3 to get a compact set L in X with

C = f(L). Since the map x → |x| is continuous in X , the set K := {|x| : x ∈ L}

is compact, and is as required. To see (b), use Fact 1.1 twice: Take any x ∈ X+,

and any sequence (yn) in Y+ converging to y = f(x). As f : X → Y is open, there

is a sequence (xn) in X converging to x and such that yn = f(xn) for all n. Then

(|xn|) ⊂ X+, |xn| → x, and f(|xn|) = yn for all n. One may also arrive at (c)

from (b) by using Theorem 1.6. �

Remarks 4.3.

(a) A surjective positive operator between F -lattices need not be surpositive.

The following simple example to this effect has kindly been provided by

W. Wnuk: Define f : R2 → R
2 by f(u, v) = (u+v, v). Then f is a positive

linear bijection. But it is not surpositive for whenever 0 6 u < v, then

(u, v) = f(u− v, v) ∈ R
2
+ \ f(R2

+).

(b) Important: The theorem above is in particular applicable to the quotient

map q : X → X/I, where I is a closed ideal in the F -lattice X .

Problem 4.4. In the setting of Proposition 4.1, is f : X+ → Y+ open or, does

every compact subset of Y+ have a compact preimage in X+?

We conclude with a result on separable preimages in the context of F -lattices.

Theorem 4.5. Let f be a vector lattice homomorphism from an F -lattice X

onto another F -lattice Y . Then for every closed separable vector sublattice W

of Y there is a closed separable vector sublattice V of X such that W = f(V ).

Proof: By Theorem 3.2, there is a closed separable linear subspace L in X such

that f(L) = W . Denote by U the closed vector sublattice of X generated by L.

Applying [5, Proposition 2.6], one easily verifies that U is separable. Obviously,

W ⊂ f(U). Finally, V := (f |U)−1(W ) = U ∩ f−1(W ) is as required. �

5. Compact preimages in finite dimensions

The elementary fact below could well be placed at the very beginning of the

Introduction; we have chosen to state it here for the editorial reasons. Surely, the
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reader will have no difficulty in extending it to complex euclidean spaces, as well

as to general finite-dimensional Hausdorff topological vector spaces or lattices, in

the latter case making use of Yudin’s theorem, see e.g., [5, Theorem 2.7]. Note

that this gives a partial positive answer to Problem 4.4.

Fact 5.1. Let f be a linear map from X = R
m into Y = R

n, m,n ∈ N. If f is

onto, then every compact set C in Y has a compact preimage K in X . Likewise,

if Y+ ⊂ f(X+), then every compact set C in Y+ has a compact preimage K

in X+.

Proof: Denote by (vk) the standard basis in Y , and by (v∗k) the corresponding

coordinate functionals. By the assumption on f , for each k there exists uk in X

or in X+, respectively, such that f(uk) = vk. Define g : Rn → R
m by g(y) =

∑

k v
∗

k(y)uk. Then g is linear, continuous, and f ◦ g = idY , obviously, K = f(C)

is as desired. �
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[3] Bourbaki N., Éléments de mathématique. I: Les structures fondamentales de l’analyse.

Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels
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