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Wintgen inequalities on Legendrian

submanifolds of generalized Sasakian-space-forms

SayaMAL K. Hul, RICHARD S. LEMENCE, PRADIP MANDAL

Abstract. A submanifold M™ of a generalized Sasakian-space-form M2n+1(f1,

f2, f3) is said to be C-totally real submanifold if ¢ € T'(T+M) and X €
[(T+ M) for all X € T'(TM). In particular, if m = n, then M" is called
Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian
submanifolds of generalized Sasakian-space-forms with respect to different con-
nections; namely, quarter symmetric metric connection, Schouten—van Kampen
connection and Tanaka—Webster connection.

Keywords: generalized Sasakian-space-form; Legendrian submanifold

Classification: 53C25, 53C15

1. Introduction

A generalized Sasakian-space-form is an almost contact metric manifold M (¢,
€,m,9) whose curvature tensor R is of the form, see [1],

R(X,Y)Z = fi{g(Y,Z2)X — g(X,2)Y}
+ f2{9(X,02)pY — g(Y,0Z)pX +29(X, oY )pZ}
+ f3[0(2){n(X)Y —n(Y)X}
+{9(X, 2)n(Y) = g(Y, Z)n(X)}¢]
for all vector fields X, Y, Z on M, where f; € C(M), i = 1,2, 3. Such a manifold
of dimension (2n + 1), n > 1, is denoted by M 2"*L1(f1, fa, f3).
In particulara if fl = (C+ 3)/45 f2 = f3 = (Ci 1)/4 then M2n+1(f1af27f3)

reduces to the notion of Sasakian-space-forms. Many authors studied M2"+1(f;,
f2, f3) in different context such as ([2]-[5], and references therein).

(1.1)

Beside the Riemannian connection, there exist some other connections on
smooth manifolds. In 1975, S. Golab in [6] introduced the idea of quarter sym-
metric connection. The quarter symmetric connection is called metric connection
if the covariant derivative of such connection is zero.
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The Schouten—van Kampen connection (SVKC) introduced for the study of
non-holomorphic manifolds, see [11]. In 2006, A. Bejancu in [3] studied SVKC
connection on foliated manifolds. Recently Z. Olszak in [10] studied SVKC on
almost (para) contact metric structure.

The Tanaka—Webster connection (TWC), see [12], [14], is the canonical affine
connection defined on a non-degenerate pseudo-Hermitian CR-manifold. S. Tanno
in [13] defined the TWC for contact metric manifolds. Here we denote quarter
symmetric metric connection (QSMC), SVKC and TWC on M2"+1(fy, fa, f3) by

o %
V, V, V, respectively.

After introducing Wintgen inequality in [15], I. Mihai derived Wintgen in-
equality for submanifolds of complex-space-form, see [8], and Sasakian-space-form,
see [9]. In this paper we derive Wintgen inequality for Legendrian submanifolds

of M?"+1(f1, fa, f3) with respect to V, T and V.

2. Preliminaries

On an almost contact metric manifold M (¢, &, 7, g), we have in [4]

(2.1) P(X)=-X+n(X)§,  w£=0,
(2.2) n€) =1,  g(X,§) =n(X), nleX)=0,
(2.3) 9(pX,Y) = g(X,Y) = n(X)n(Y),

(2.4) g(eX,Y) = —g(X, pY).

On M2 *1(f1, fa, f3), we have in [1]

(2.5) (Vxo)(Y) = (f1 — f3)[9(X,Y)¢ —n(Y)X].

The relations of %, % and V with V on M%H(fl, f2, f3) are

(2.6) VY =VxY + n(Y)pX — g(pX,Y)E,
(2.7) VY = VxY + (fi = fa)n(V)pX — (f1 — fa)g(@X,Y)E
and

(2.8) %XY = VxY +9(X)eY + (f1 — fa)n(Y)eX — (f1 — f3)g(¢X,Y)E.
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Let R (or R R) be the curvature tensor of M2"+1(fy, fa, f3) with respect to v
(V V respectively). Then

R(X,Y,Z,W) = R(X,Y, Z,W) + g(¢X, Z)g(pY, W)

—9(pY, 2)g(pX, W) + (f1 = f3) [{n(X)g(Y, W)
—n(Y)g(X,W)in(Z) +{g(X, Z)n(Y)

—g(Y, Z)n(X)In(W)].

(2.9)

Also, we have

R(X.Y.ZW)= filg(Y.Z)g(X,W) — g(X. Z)g(Y, W)}
+ fo{g(X, 0 Z)g(eY, W) — g(Y, 0Z)g(p X, W)
(2.10) +29(X, @Y )g(pZ, W)} + {fs + (f1 — f3)*} [n(X)n(Z)g(Y, W)
—n(Y)n(2)g(X, W) + {g(X, Z)n(Y) — g(Y, Z)n(X)}n(W)]
+ (f1 = f3)? [9(X,02)g(pY, W) — g(Y, 0Z)g( X, W)],

R(X.Y.Z.W) = f{g(Y. 2)g(X, W) - g(X. Z)g(¥, W)}

+ fo{9(X, 92)g(pY, W) — g(Y, 0Z)g( X, W)
+29(X,0Y)g(pZ, W)} + {f3 + (f1 — f3)*}

(211) < [n(X)n(Z)g (Y. W) - <Y> (2)9(X.W)

+ {g(X Z)n(Y) = g(Y. Z)n(X) }n(W)]

+ (i = f3)?[9(X,0Z)g(0Y, W) = g(Y, 0Z)g(0 X, W)]
+2(fl*f3)9( pY)g(pZ, W),

where (f; — f3) is a constant function.

Let M be a submanifold of M2"*L(fy, fa, f3). If V and V* are the induced

connections on I'(T'M) and I'(T+ M), respectively, then the Gauss and Weingarten
formulas are given by [17]

(2.12) VxY =VxY +h(X,Y), VxV=-AyX+VxV

forall X, Y € I'(TM) and V € T'(T+M), where h and Ay are second fundamental
form and shape operator respectively and they are related by [17] g(h(X,Y),V) =
g(Av X,)Y).

Let R (or R, R, ]*%) be the curvature tensor of M for the induced connection V
(%, %, %, respectively) and h (or il, Z) be the second fundamental forms and ZV
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—~ * ~ —~ *
(or Ay, Ay) shape operators with respect to the induced connection V (V,V,
respectively).
From (2.12), we have the Gauss and Ricci equations as

R(X,Y,Z,W) = R(X,Y, Z,W) — g(h(X, W), h(Y, Z))

(2.13)
+ 9(M(X, Z2), h(Y,W))
and
(2.14) RL(X,Y,‘LL,I/):R(X,Y,‘LL,I/)+Q([A#,AV]X,Y)

where p,v € I(T+M). In a similar way, we have

R(X,Y,Z,W) = R(X,Y,Z,W) + g(h(X, W), (Y, Z))

(2.15) K K
- g(h(Xv Z)a h(Ya W))a
(2'16) él(vauaV):ﬁ(XaYMU’vV)+g([gM’AVV]X7Y)a
- R(X,Y,Z,W) = R(X,Y, Z,W) + g(h(X, W), (Y, Z))
' — g(h(X, Z), h(Y, W),
(2'18) él(vauaV):ﬁ(XaYMU’vV)+g([A\M’A\V]X7Y)a
210 R(X,Y, Z.W) = R(X,Y, Z.W) — g(h(X, W), h(Y, 2))
+ g(h(X, Z), h(Y, W),
(2.20) RE(X Y, 1,0) = ROG Y, ) + 9 AJX,Y).

Let p € M™ and {es, ..., ey} be an orthonormal basis of T, M and {em+1,-. .,
€an, €2n+1 = £} be an orthonormal basis of TL-M™. We define the mean curvature
vector as

1 m
Hp) == hes, ).
()= 2 e
Following [16], we define

2n—m-+1
(2.21) Ky=-= Y Tr[A,AJ,

r,s=1
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where A, = A, ., 7€ {1,...,2n—m+1} and call it the scalar normal curvature
of M™. The normalized scalar normal curvature is given by on = %\/K N-
Since A¢ = 0, it follows that

1 2
Ky =3 > T[4, Al

1<r<s<2n—m

> S (oA, Adlei e)2.

1<r<s<2n—-m 1<i<j<m

(2.22)

Also we can express Ky as

(2.23) Ex= Y. Yo (Wi = i)
1<r<s<2n—-m 1<i<j<m
Again we define

(2.24) gNﬁ{ > > (k

1<r<s<2n—m 1<i<j<n =1

211/2
(i — h:kh;w) } |

The normalized scalar curvature is given by

2T 2
2.25 = = = — R iy €5, C5,Ci ),
( ) 0 m(m _ 1) Z m(m _ 1) (6 6] e] € )
1<i<j<m
where 7 is the scalar curvature and {e;: ¢ = 1,2,...,m} is an orthonormal basis
of TM™.

The normalized normal scalar curvature is given by

TJ_
226) o"= = S Y (R uaun)?

m(m m(m
1<i<j<m 1<a<pf<m

where R and Rt are the curvature tensor and normal curvature of M™.
In similar of (2.25) and (2.26) we can define , o*; 9, o= and 0, 0+ with respect

to %; %and% as

5 27 2 ~
(2.27) 0= T = Z mR(eiaej;ej;ei)a
1<i<j<m

(228) gt= 2T = Y (Benesuaug)),

1<i<j<m 1<a<fB<m
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27 2 5
(229) é: — 0 = 7R(€i,€»‘,€‘,€i),
m(m —1) 19%;7” m(m — 1) 7

A 274 5
(2.30) ot = = Z Z (R (ei, €5, Uas up))?,

1<i<j<m 1<a<fB<m

*

\ 2
(2.31) 0 =———= Y. fl)R(ei,ej,ej,ei),

£~ m(m
1<i<j<m

. 27+ -
(2.32) ot = = > > (R (eirej, ua, up)).

m(m —1 m(m
( ) 1<i<j<m 1<a<B<m

A submanifold M™ of M2"*1(f, fa, f3) is said to be C-totally real submanifold
if £ € T(T+*M) and X € T'(T+M) for all X € I'(TM). In particular, if m = n,
then M™ is called Legendrian submanifold.

3. Some basic results
Proposition 3.1. Let M be a C-totally real submanifold of M?*"*1(fy, fa, f3)
with respect to V. Then following relations hold on M :

(i) h(X,Y)=h(X,Y), H = H;

(ii) Ay X = Ay X.

PRrROOF: From (2.12), we have

(3.1) VxY = VxY +h(X,Y)
and
(3.2) VxV = ViV — Ay X.

From (2.6), (2.12) and (3.1) we have
(3.3) VxY +h(X,Y) =VxY +h(X,Y) +n(Y)eX — g(¢X,Y)¢

for any X, Y € T'(TM).
Since ¢ € T(T+M) and X € T'(T+M) for all X, then from (3.3) we have

VxY =VxY and «(X,Y)=h(X,Y).
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Again from (2.6), (2.12) and (3.2)
(3.4) ViV — Ay X = V%V — Ay X +(V)eX — g(pX, V)E.
Equating tangential and normal part of (3.4) we have
Ay X = Ay X, ViV =V%V +7(V)pX — g(eX,V)E.
O

Proposition 3.2. Let M be a C-totally real submanifold of M?*"*1(f1, fa, f3)
with respect to V. Then following relations hold on M :

(i) M(X,Y)=h(X,Y), H=H;

(ii) Ay X = Ay X.
PROOF: The proof is similar to the proof of Proposition 3.1. (]

Proposition 3.3. Let M be a C-totally real submanifold of M?*"*1(f1, fa, f3)

with respect to V. Then following relations hold on M :

(i) A(X,Y) = h(X,Y), H = H;

(i) AyX = Ay X.

PROOF: The proof is similar to the proof of Proposition 3.1. (]

4. Wintgen inequality on Legendrian submanifolds of M?"*1(f1, fa, f3)
with respect to V

Proposition 4.1. Let M™ be a C-totally real submanifold of M?*"**(f1, f2, f3)
with respect to V. Then

(4.1) |H|?+ f1 > 6+ on.

PROOF: We see that

2n—m

2n—m m 2
LIS OIARE-LD S SN G

r=1 i=1 r=1 1<i<j<m

2n—m

2 .
S z; S hph.

= 1<i<j<m
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From [7] we have the inequality

2n—m 2n—m
2 § : r r § : 2 royr
(hii - h + 2 hlJ hlJ
r=1 1<i<j<m r=1 1<i<j<m

(4.3)

2[ )OS @awm—m@ﬁr%

1<r<s<2n—m 1<i<j<m k=1
From (2.24), (4.2) and (4.3), we get

2n—m

2m o hr
(44) 2HHH2 _m ON > Z Z huh]] j)Q]'

r=1 1<i<j<m

Now from (2.9) and (2.15) we have

2n—m
= —-1) I
(45) 7= R(eiej,¢j,ei) = ( f1+ o> [hphy - (R
r=1 1<i<j<m

Substituting (4.5) in (4.4) we get (4.1). O

Theorem 4.1. Let M™ be a Legendrian submanifold of M?"*1(fy, fa, f3) with
respect to V. Then

2 4
4.6) (o9 < (|H|? -2 ———(fo— 1)+ ————(fo = 13— f1)
(46) (@ < (M =5+ 1) + s (o= 0P+ s (o= (= )
PROOF: Let us consider {ej,...,e,} be an orthonormal basis of TM™ and
{ent1 = @e1,. .., = Pen,eanr1 = £} be orthonormal basis of T+M™. Now

from (2.9) and (2.16) we have

g(R*(eirej)entr ents)
= falg(pei, ents)g(pej, entr) — g(pes, entr)g(pe;), €nts)]
(4.7) +{9(pei, entr)g(we), ents) — glwe), entr)g(pei enys)}
+ 9([Ar, Asles, e5)
= (f2 — 1)(0is0jr — 6ird5s) + g([Ar, Asles, €;5).
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Contracting (4.7) and using (2.28) we have

(?J—)2 = Z Z QQ(EJ_(Gia ej)enJrra enJrS)

1<r<s<n 1<i<j<n

= Z Z fa—1)( 0is0jr — 5ir5j5) +g([Ar, Aslei, ej)]2

1<r<s<n 1<l<J<TL

(4.8) = DY [PUA Aderseg) + (f2 = 1)*(Bisyr — 0irys)?

1<r<s<n 1<i<j<n
+ 2(f2 - 1)(5i55jr - 5ir6js)g([Ar; As]eia ej)]

R I R

+ (f2 = D[ H|.

From (2.9), (2.15) and (2.27) we have

27 = n?||H||* — ||h|* + n(n — 1) f
or equivalently,

(4.9) n?|H|I* = [2]* = n(n — 1)(2 - fr).

Substituting (4.9) in (4.8) and using (2.28) we get

. 4 2(fo - 1)°
4.10 <o+ ——(o— 1)
By virtue of Proposition 4.1 and (4.10), we obtain the inequality (4.6). O

5. Wintgen inequality on Legendrian submanifolds of M2"*1(f,, fa, f3)
with respect to V

Proposition 5.1. Let M™ be a C-totally real submanifold of M?*"**(f1, f2, f3)
with respect to V. Then

(5.1) IH|* + fr = 0+ on-

PROOF: The proof is similar to the proof of Proposition 4.1 (I
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Theorem 5.1. Let M™ be a Legendrian submanifold of M?"*t1(f, f, f3) with
respect toV. Then

(@) < (HI* ~ o+ fi) + %(ﬁ +(f1 = f3)%)?
(5.2) A n(n—1)
T ot (= £ = ).

PRroOOF: Now from (2.10) and (2.18) we have

9(R* (i ¢j)en+trs enss)
= falg(wei, ents)g(pes, entr) — g(pei, entr)g(pe;, €nts)]
(5.3) + (fi = f3)*{9(pej; entr)g(peis ents)
— g(pei, enyr)g(pej, enys)t + g([Ar, Aslei, €5)
=(fo+(fr — f3)2)(5i55jr —0ir0js) + g([Ar, Aslei, e5).

From (2.30) and (5.3) we have

(?L)Q = Z Z 61, ej Cn+r, en+s)2

1<r<s<n 1<i<j<n
= Z Z f2+ fl f3) )( ]7 _5i7'6js)
1<r<s<n 1<i<j<n
+g([AT7A ]eivej)]Q
(5.4) = Z Z 2([Ar, Adleise) + (fa + (fr = f3)?)?

1<r<s<n 1<i<j<n
X (8i50jr — 6ir0js)? + 2(f2 + (f1 — f3)?)(6is0jr — 6irGjs)
X g([A,., AS]ei’ ej)]

_ n2(n4f 1)29% L =1 ; (f1 — f3)%)?

= (f2 + (f1 = f2)?) LI + for®[|H|1*.

From (2.10) and (2.17) we have

27 = n?|H|* — |[2]* +n(n — 1) fy
or equivalently,

(5-5) n?[H | = [[h]* = n(n - 1)(2 - fr).
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Substituting (5.5) in (5.4) and using (2.30) we get

~1\2 2 4 ~ 2 2(f2+(f17f3)2)2
(5.6) (27) SQNer(Q*fﬂ(fer(fl*fS) )+ nln—1) -
By virtue of Proposition 5.1 and (5.6) we have the inequality (5.2). O

6. Wintgen inequality on Legendrian submanifolds of M?"*1(f1, fa, f3)
with respect to V
Proposition 6.1. Let M™ be a C-totally real submanifold of M?*"**(f1, f2, f3)

with respect to V. Then
(6.1) IH|?+ f1 > 0+ ow-

PROOF: The proof is similar to the proof of Proposition 4.1. (Il

Theorem 6.1. Let M™ be a Legendrian submanifold of M?"*1(f, f, f3) with

respect to V. Then

] \9 9 . 2 212
62 (6" < (I1H] *9+f1)+m(fz+(flff3) )
’ 4
+ m(fQ +(f1 — fS)Q)(@ — f1)-
PROOF: The proof is similar to the proof of Theorem 5.1. O

7. Summary

Here, we present a summary of the results obtained on submanifolds of M2"+1(f;,
f2, f3) with respect to the three connections considered; namely, quarter sym-

metric metric connection V, Schouten—van Kampen connection V and Tanaka—

*

Webster connection V.
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Connection | C-totally inequality | Wintgen inequality

N (@) <(IHII” o+ f1)
v ||H||2+f12@+QN +ﬁ(f2—1)2
+omi (o= D@ = f)

(@) < (H[* =2+ f)

v VHIP+fi> 0+ on | +acdr(fo+ (i — fa)?)?
+tom(f2+ (L = f3)°)(0 = fr)
(01 < (IH|* = o+ fr)
v IHI?+f1> o+on |+ (fo+ (fi = f5)?)?

+ﬁ(f2 + (A= f)2)e— f)
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