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A NOVEL LMI-BASED ROBUST MODEL
PREDICTIVE CONTROL FOR DFIG-BASED
WIND ENERGY CONVERSION SYSTEMS

Amir Gholami, Alireza Sahab, Abdolreza Tavakoli and Behnam Alizadeh

The optimal and reliable performance of doubly fed induction generator is essential for the
efficient and optimal operation of wind energy conversion systems. This paper considers the
nonlinear dynamic of a DFIG linked to a power grid and presents a new robust model predic-
tive control technique of active and reactive power by the use of the linear matrix inequality
in DFIG-based WECS. The control law is obtained through the LMI-based model predictive
control that allows considering both economic and tracking factors by optimization of an ob-
jective function, constraints on control signal and states of system and effects of nonlinearities,
generator parameter uncertainties and external disturbances. Robust stability in the face of
bounded disturbances and generator uncertainty is shown using Lyapunov technique. Numeri-
cal simulations show that the proposed control method is able to meet the desired specification
in active and reactive power control in the presence of varieties of wind speed and pitch angle.

Keywords: linear matrix inequality, robust model predictive control, doubly fed induction
generator, active and reactive power, optimization

Classification: 93C10, 93D09, 93C40, 93C42, 37N35

1. INTRODUCTION

In recent years, the ever-developing international interest in renewable energy resources
is attracting massive consideration from both industry and academics due to the inter-
national increase in power demand, as well as the restriction of fossil fuels and their
destructive impact on the environment. Of the many renewable generation resources,
wind generation is considered as the most promising one and hence receiving interna-
tional attentions [19]. Wind energy conversion systems (WECS) based on doubly fed
induction generators (DFIGs) are the most used configuration nowadays, accounting for
50% of the wind energy generation market [14]. Doubly fed induction generators are
widely used in modern wind turbines due to their full power control capability, variable
speed operation, low converter cost, and reduced power loss compared to other solutions
such as fixed speed induction generators or fully rated converter systems. From the
view of the power system operation, it is desirable to regulate the active and reactive
power of the DFIG under various wind conditions. Therefore, the control issues of the
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DFIG are of great importance to be properly investigated. With many various purposes,
the DFIG is controlled through many different control methods. For example, vector
control is used based on either a stator voltage oriented [3, 11] or stator flux oriented
vector [9, 10, 16] by using a d-q synchronous frame for separately controlling the active
and reactive power through a current controller. In the mid-1980s, direct torque control
(DTC) was studied in literature [4, 21, 26] to directly control the electromagnetic torque
and the rotor flux of the DFIG by selecting the voltage vector from a predefined lookup
table based on the stator flux and torque information. Based on the same fundamentals
of the DTC technique, direct power control (DPC) was suggested to independently and
directly control the active and reactive power of DFIG based on the estimated reactive
and active power and their errors. For improving the power control, the authors in
[12, 27] have proposed the scheme using the model-based predictive DPC technique.

Despite of the mentioned advanced control techniques, the changes of the dynamic
parameters and external influences cause that DFIG is very difficult to control. Changing
the dynamic parameters during operation will lead to a change in the output efficiency of
the system. Another problem is the existence of a saturation phenomenon in controlling
this system. Therefore, for the stability of the DFIG system, it is necessary to consider
the combination of generator nonlinearity and the parameter uncertainty, the model
dynamics, the velocity variability, and the saturation constraint on the control inputs
in the controller design. So the designed controller should be able to consider changes
to the system parameters and is designed in a way that it is not sensitive to parameter
and structural variation of system model. In addition, the controller must be able
to react against the wind changes and reduce disturbance and get the most efficiency
of the DFIG system. Also, for optimal control, it is necessary to consider both the
economic factors and the desired power track under realistic constraints. Accordingly,
to increase DFIG-WCES’s transient and steady state performance, in order to provide
a satisfactory response to the output power with respect to the desired values, due to
the errors caused by the disturbances of parameters and external disturbances, in this
paper, a robust predictive control method is suggested as a tool for achieving the above
objectives. The first attempt in robust MPC (RMPC) is the famous method of Min-
Max MPC. In this method, the optimal control rule is designed for the worst uncertainty.
This method was initially proposed as open loop control in [2], and its more complete
solutions were presented in [15, 13]. In [13], a method for RMPC designed for systems
with multidimensional and structural uncertainties is provided in the feedback loop. The
problem of minimizing of upper bound on an infinite horizon, despite of constraints in
the system at any sample time, is converted into a convex optimization problem in the
linear matrix inequality (LMI) substrate. The most important features of the controller
are: 1. simplicity of calculation and implementation; 2. the infinite prediction horizon
that gives the best prediction of the future of the system. This method provides a
systematic solution to the RMPC problem, which leads to a faster solution due to the
use of LMI.

RMPC performs an optimization procedure to calculate optimal control actions at
each sampling interval. It uses a model of the process explicitly to obtain the control
signal by minimizing the objective function. So far, RMPC may be the advanced control
strategy that can handle constraints, i. e., it can manipulate and control system vari-



1036 A. GHOLAMI, A. SAHAB, A. TAVAKOLI, AND B. ALIZADEH

Fig. 1. The layout of a DFIG linked to a power network.

ables in predefined ranges. This feature is perfect for coping with the abrupt change in
the rotor currents, the torque and other maneuver necessary for regulation service. In
addition, the ability to incorporate economic objectives as a part of control requirements
makes it even more attractive for DFIG control.

According to the combinatorial effect of generator nonlinearities and parameter un-
certainties, un-modelled dynamics and wind speed variation, this paper introduces a new
RMPC scheme for the DFIG system. The key technical novelty of this paper can be
classified as follows. 1) The proposed RMPC scheme has the abilities of online optimal
control, explicitly handling constraints, and directly generating the control signals for
DFIG. 2) Optimization problem solved by using the linear matrix inequality (LMI) in
RMPC, so the computation time is significantly reduced. 3) The reduction in compu-
tation time enables RMPC with longer prediction horizons, thus yielding better control
performance. The rest of this paper is prepared as follows: Section 2 introduces model
of DFIG-based wind turbine while Section 3 gives the RMPC scheme. In Section 4,
simulation results are presented. Finally, some conclusions are summarized in Section 5.

2. MODEL OF DFIG-BASED WIND TURBINE

The layout of a DFIG linked to a power network is schematically outlined in Figure 1. An
induction generator and a wind turbine are related with a mechanical shaft framework.
The RSC controller points to adjust the rotor speed and reactive power; whereas the grid
side converter (GSC) controller endeavors to preserve a consistent DC connect voltage
from the variety of rotor power [23]. Note that this paper emphases on active power
control and the modelling of GSC is overlooked. As a result, only the RSC controller
proposal is taken into consideration.
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2.1. Wind Turbine Model

The extracted mechanical power by means of wind turbine can be written as [7, 22]:

Pm =
1

2
ρπR2Cp(λ, β)v2wind, (1)

where ρ indicates the air density, R signifies the radius of the rotor of the turbine, and
vwind means the wind speed, Cp(λ, β) represents the power coefficient and it is a function
of tip-speed-ratio λ and blade pitch angle β. A particular wind speed compares to a
wind turbine rotational speed to get CPmax, namely, the maximum power coefficient,
and so tracks the most extreme mechanical (wind) power. In common, the wind turbine
works within the variable speed mode if wind speed does not exceed its rated value, then
the rotational speed is adjusted by DFIG speed control so that Cp(λ, β) can be keep on
at the CPmax point. However, in case wind turbine works over the rated wind speed,
the pitch angle will be adjusted to ensure the operation safety of the wind turbine. At
last, the tip-speed-ratio λ can be characterized as:

λ =
ωmR

vwind
, (2)

where ωm signifies the wind turbine rotational speed. According to the wind turbine
characteristics, a generic equation of Cp(λ, β) can be defined by;

Cp(λ, β) = c1(
c2
λi
− c3β − c4)e

− c5λi + c6λ (3)

with:
1

λi
=

1

λ+ 0.08β
− 0.035

β3 + 1
, (4)

where c1 to c6 are fixed to: c1 = 0.5176, c2 = 116, c3 = 0.4, c5 = 21, c6 = 0.0068
respectively [7, 22].

2.2. Generator Model

The generator dynamics is presented by:

diqs
dt = ωb

L′
s

(
−R1iqs + ωsL

′
sids + ωr

ωs
e′qs − 1

Trωs
e′ds − vqs + Lm

Lrr
vqr

)
dids
dt = ωb

L′
s

(
−R1ids − ωsL′siqs + ωr

ωs
e′ds − 1

Trωs
e′qs − vds + Lm

Lrr
vdr

)
de′qs
dt = ωbωs

(
R2ids +

(
1− ωr

ωs

)
e′ds − 1

Trωs
e′qs + Lm

Lrr
vdr

)
de′ds
dt = ωbωs

(
−R2iqs −

(
1− ωr

ωs

)
e′qs − 1

Trωs
e′ds + Lm

Lrr
vqr

)
,

(5)

where ωb signifies the electrical base speed, ωs indicates the synchronous angle speed,
and ωr means the rotor angle speed; e′ds and e′qs show the equal d-axis and q-axis (dq)
internal voltages; ids and iqs state the dq-stator currents; vds and vqs denote the dq-
stator terminal voltages; vdr and vqr state the dq-rotor voltages. Lm implies the mutual



1038 A. GHOLAMI, A. SAHAB, A. TAVAKOLI, AND B. ALIZADEH

inductance; whereas the remaining parameters are given within the bellow.

ωb = 100π rads , ωs = 1p.u, Lm = 4p.u, Lss = 1.01Lm, Lrr = 1.005Lss, Hm = 4.4s

Rs = 0.005p.u,Rr = 1.1Rs, R = 58.59m2, vwind = 12ms , β = 15deg, ρ = 1.225 kg
m3

L′s = Lss − L2
m

Lrr
, R2 =

(
Lm
Lrr

)2
Rr, Tr = Lrr

Rr
, R1 = Rs +R2.

(6)

The active power Pe supplied by the generator is considered by:

Pe = e′qsiqs + e′dsids. (7)

The q-axis is adjusted with the stator voltage whereas the d-axis is adjusted to lead
the q-axis, in this way, vds ≡ 0 and vqs matches to the terminal voltage magnitude. The
reactive power Qe is achieved as:

Qe = vqsids + vdsiqs. (8)

2.3. Shaft System Model

The shaft framework can be modelled as a single lumped-mass system, whose lumped
inertia constant H∞ is considered as [18]:

Hm = Ht +Hg, (9)

where Ht and Hg specify the inertia constants of wind turbine and generator, respec-
tively. The electromechanical dynamics is defined as:

dωm
dt

=
1

2Hm
(Tm − Te −Dωm) , (10)

where ωm is the rotational speed of the lumped-mass system and is equal to the generator
rotor speed ωr when both of them given in per unit; D signifies the lumped system
damping; and Tm is the mechanical torque with Tm = Pm

ωm
, respectively.

3. RMPC DESIGN OF DFIG FOR POWER SYSTEM STABILITY
ENHANCEMENT

Consider the following continuous-time nonlinear systems

ẋ(t) = Ax(t) +Bu(t) + w(t, x), (11)

where x (t) ∈ Rnx shows the system states, u (t) ∈ Rnu is the control input, The signal
w (t) ∈ Rnw is the disturbance or model-plant mismatch, which is unknown but bounded,
and lies in a compact set,

W = {w (t) ∈ Rnw | ‖w‖ ≤ wmax} . (12)

The system has the following boundaries x (t) ∈ X, u (t) ∈ U, ∀ t > 0. Where,
X ⊂ Rnx is bounded and U ⊂ Rnu is compact.
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Lemma 3.1. (Yu et al. [25]) Let S : Rnx → [0,∞) be a continuously differentiable
function and α1 (‖x‖) < S (x) < α2 (‖x‖), where α1, α2 are class k∞ functions. Suppose
u : R→ Rnu is chosen, and there exit λ > 0 and µ > 0 such that

Ṡ (x) + λS (x)− µwT (t)w (t) ≤ 0 (13)

with x ∈ X, d ∈ D. Then, the system trajectory starting from x (t0) ∈ Ω ⊆ X, will
remain in the set Ω, where

Ω =

{
x ∈ Rnx | S (x) ≤ µw2

max

λ

}
. (14)

Lemma 3.2. (Poursafar et al. [17]) Let M,N be real constant matrices and P be a
positive matrix of compatible dimensions. Then

MTPN +NTPM ≤ εMTPM + ε−1NTPN (15)

holds for any ε > 0.

Lemma 3.3. (Bpyd et al. [1]) The LMI

[
Q(x) S(x)
ST (x) R(x)

]
> 0. (16)

In which, Q(x) = QT (x), R(x) = RT (x) and S(x) are affine function of x, and is
corresponding to

R(x) > 0 Q(x)− S(x)R−1(x)ST (x) > 0
Q(x) > 0 R(x)− S(x)Q−1(x)ST (x) > 0.

(17)

By choosing the tracking error e = [ e1 e2 ]T for active power Pe and reactive power
Qe as the outputs, it yields

e1 = Pe − P ∗e
e2 = Qe −Q∗e,

(18)

where P ∗e and Q∗e signify the active and reactive power references, respectively. The
differentiate tracking error (18) for explicitly appearing the control inputs vqr and vdr,
gives

[
ė1
ė2

]
=

[
−R1ωb

L′
s
− ωb

Tr
0

0 −R1ωb
L′
s

] [
e1
e2

]
+

[
f1
f2

]
+

[
B11 B12

B21 B22

] [
vqr
vdr

]
, (19)
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where

f1 = − ωb
L′
s
vqse

′
qs − ωb

L′
s
vdse

′
ds + ωbωr

L′
sωs

(
e′qs

2
+ e′ds

2
)

+ ωbωr
(
e′qsids − e′dsiqs

)
−
(
R1ωb
L′
s

+ ωb
Tr

)
P ∗e − Ṗ ∗e

f2 = −ωbωs (vqsiqs + vdsids) + ωb
L′
sTrωs

(
vqse

′
qs + vdse

′
ds

)
+ ωbωr

L′
sωs

(
vqse

′
ds − vdse′qs

)
−R1ωb

L′
s
Q∗e − Q̇∗e

B11 = Lmωb
LrrL′

s
e′qs + Lmωbωs

Lrr
ids

B12 = Lmωb
LrrL′

s
e′ds −

Lmωbωs
Lrr

iqs

B21 = − Lmωb
LrrL′

s
vds

B22 = Lmωb
LrrL′

s
vqs,

(20)
where f1 and f2 contain the combinatorial impact of nonlinearities, generator parameter
uncertainties, and external disturbances. Moreover, B is the original control gain matrix
which elements also cover uncertain generator parameters.

Assume all nonlinearities and parameters are unknown, state the perturbations ψ1(·)
and ψ2(·) for system (19) to combined all the nonlinearities, generator uncertainties,
and external disturbances of f1, f2 and B into a lumped term, such that they can be
rewritten into a brief form, it gives[

ψ1(·)
ψ2(·)

]
=

[
f1
f2

]
+ (B −B0)

[
vqr
vdr

]
, (21)

where B0 is the new control gain as following

B0 =

[
b11 0
0 b22

]
. (22)

In the above equation, b11 and b22 are constants. Here, the new control gain B0

is chosen in such way to completely decouple the control of active power and reactive
power.

Then system (19) can be adjusted as[
ė1
ė2

]
=

[
−R1ωb

L′
s
− ωb

Tr
0

0 −R1ωb
L′
s

] [
e1
e2

]
+

[
ψ1(·)
ψ2(·)

]
+

[
b11 0
0 b22

] [
vqr
vdr

]
. (23)

Here, the above two first order differential equations define the decoupled dynamics
of active power and reactive power, respectively.

By definition
vqr = u1 + v1
vdr = u2 + v2,

(24)
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where v1 and v2 are relevant to the state feedback and u1 and u2 are related to the
robust predictive control.

System states arrive at the point of equilibrium under the state feedback and the
robust predictive control unit ensures system stability against uncertainties. To get the
state feedback rule, we consider the subsystem (25).[

ė1
ė2

]
=

[
−R1ωb

L′
s
− ωb

Tr
0

0 −R1ωb
L′
s

] [
e1
e2

]
+

[
b11 0
0 b22

] [
vqr
vdr

]
. (25)

By choosing Lyapunov function in the following way:

V (e1, e2) =
1

2
e21 +

1

2
e22, (26)

which is a positive definite function. In order to guarantee the stability, the derivative
of the Lyapunov function must be determined negatively. For this purpose

V̇ (e1, e2) = e1

(
−
(
R1ωb
L′s

+
ωb
Tr

)
e1 + b11v1

)
+ e2

(
−R1ωb

L′s
e2 + b22v2

)
. (27)

By selecting
v1 = −k1e1
v2 = −k2e2

(28)

we will have

V̇ (e1, e2) = −
(
R1ωb
L′s

+
ωb
Tr

+ b11k1

)
e21 −

(
R1ωb
L′s

+ b22k2

)
e22. (29)

Applying (28) to (23) and rewriting it, we will have[
ė1
ė2

]
=

 −(R1ωb
L′
s

+ ωb
Tr

+ b11k1

)
0

0 −
(
R1ωb
L′
s

+ b22k2

) 
[
e1
e2

]
+

[
ψ1(·)
ψ2(·)

]
+

[
b11 0
0 b22

] [
u1
u2

]
.

(30)

Now, to control the system (30), we will apply a robust model predictive control. For
system (30), the state-feedback control law in kT time is selected as

u(kT + τ, kT ) = Ke(kT + τ, kT ). (31)

The infinite horizon quadratic cost function is stated as

J =
∫∞
0

(e(kT + τ, kT )TQe(kt+ τ, kT )

u(kt+ τ, kT )TRu(kt+ τ, kT )

µw(kt+ τ, kt)Tw(kt+ τ, kT ))dτ, µ > 0,

(32)

where Q and R are positive definite weight matrices. In the objective function (32), the
uncertain but negative effect with weight µ is presented, where µ is acquired by H∞
technique [20].
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Theorem 3.4. Consider system (30) where e(kT ) is the measure value in sampling
time of kT . There is a state-feedback control law (31) in true stability condition, if the
optimization problem with LMI constraints can be feasible.

min
γ,X

γ

[
I e(kT )T

e(kT ) X

]
(AX +BY )T +AX +BY + (α+ λ)X ≤ 0

−X + γε−1I ≤ 0,

(33)

whereX > 0 and Y are matrixes achieved from the aforementioned optimization problem
and γ is a positive scalar (the upper bound of the objective (32)). As such, state-feedback
matrix is achieved as K = Y X−1 in every moment.

P r o o f . Consider the following quadratic Lyapunov function

V (e(t)) = e(t)TPe(t), P > 0. (34)

In sampling time for kT assume that V (e(t)) holds true in the following condition

e(t)TPe(t) < γ (35)

dV (e(kT+τ,kT ))
dt ≤ −(e(kT + τ, kT )TQe(kt+ τ, kT )

u(kt+ τ, kT )TRu(kt+ τ, kT )

µw(kt+ τ, kt)Tw(kt+ τ, kT )).

(36)

With the purpose of obtaining the robust efficiency, it must be e(∞, kT ) = 0 which
results in V (e(∞, kT )) = 0. With the integration of the both sides of the equation (36)
is obtained

J ≤ V (e(kT )). (37)

With the intention of obtaining an MPC robust algorithm, the Lyapunov function should
be minimized taking into consideration the upper bound [8]. Thus

min
γ,P

γ subject to

e(t)TPe(t) ≤ γ.
(38)

By describing X = γP−1 and utilizing Schur Complements, we have

min
γ,X

γ

[
I x(kT )T

x(kT ) X

]
≥ 0.

(39)
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In continue, as stated by Lemma 3.1, for system (30) we have

Ṡ(e(t)) + λS(e(t))− µw(t, e)Tw(t, e) ≤ 0. (40)

Then, in accordance with (34), it can be achieved

ė(t)TPe(t) + e(t)TP ė+ λe(t)TPe(t)− µw(t, e)Tw(t, e) ≤ 0 (41)

e(t)T
(
(A+BK)TP + P (A+BK) + λP

)
e(t) + w(t, e)TPe(t)

+e(t)TPw(t, e)− µw(t, e)Tw(t, e) ≤ 0
(42)

with respect to Lemma 3.2

w(t, e)TPe(t) + e(t)TPw(t, e) ≤ αe(t)TPe(t) + α−1w(t, e)TPw(t, e) (43)

By replacing (43) in (42), it is gotten that

e(t)T
(
(A+BK)TP + P (A+BK) + (α+ λ)P

)
e(t)

+α−1w(t, e)TPw(t, e)− µw(t, e)Tw(t, e) ≤ 0.
(44)

By considering
P ≤ λmaxI ≤ εI, (45)

where λmax indicates the maximum eigenvalue of P and εI specifies the corresponding
upper bound [17], then

e(t)T
(
(A+BK)TP + P (A+BK) + (α+ λ)P

)
e(t) + (α−1ε− µ)w(t, e)Tw(t, e) ≤ 0.

(46)
By selecting

µ =
ε

α
. (47)

Equation (46) is concentrated to

e(t)T
(
(A+BK)TP + P (A+BK) + (α+ λ)P

)
e(t) ≤ 0. (48)

Replacing P = γX−1, X > 0 and K = Y X−1,(
(A+BYX−1)TX−1 +X−1(A+BYX−1) + (α+ λ)X−1

)
γ ≤ 0. (49)

By pre and post multiplying X,

(AX +BY )T +AX +BY + (α+ λ)X ≤ 0. (50)

According to (45), it is obvious
P ≤ εI. (51)

Replacing P = γX−1 and by pre multiplying X, it can be obtained

−X + γε−1I ≤ 0. (52)

So, the proof is completed. �
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4. SIMULATION

In this section, the robust model predictive control is applied to the DFIG system. Also,
to prove the dominance of the proposed controller, it is compared with RPC [5].

4.1. Step change of wind speed

At fixed pitch angle of 15 deg, the wind speed is changed from 10 to 12 m/s (10 m/s2

rate) and it affects the output power of the wind turbine according to the equations
1-4. Figure 2 shows the wind speed profile and system responses and control costs. It
is obvious that the active power oscillation continues for a 5 s in RPC control whereas
RMPC can successfully suppress such unfavorable oscillation in less than 0.5 s, plus the
minimal overshoot among two methods. Additionally, RMPC desires the least control
efforts compared to that of RPC control. Even though RMPC reconstruct the reactive
power slower than that of RPC control, it provides a much smoother response with less
overshoot.
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Fig. 2. System responses and control costs obtained under a step

change of wind speed from 10 to 12 m/s with a fixed pitch angle of 15

deg. (a) active power; (b) reactive power; (c) d-axis rotor voltage; (d)

q-axis rotor voltage.
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Fig. 3. System responses obtained under a pitch angle variation from

15 to 5 deg. in 1 s with a constant wind speed of 12 m/s. (a) active

power; (b) reactive power.;(c) d-axis rotor voltage; (d) q-axis rotor

voltage.

4.2. Pitch angle variation

While pitch angle is very critical for the wind power production and safe process of wind
turbine [6], the control performance of RMPC is compared against to that of RPC. At
constant wind speed of 12 m/s, the pitch angle decreases from 15 to 5 deg. in 1 s. Figure 3
shows the system responses, which demonstrates that the active power of RMPC can
meet around 0.5 s, whereas RPC control have to be expend 10 s. Additionally, RMPC
needs the slightest control costs compared to that of RPC control.

The comparisons show that the RMPC strategy based on the nonlinear DFIG model
can effectively track the given power set points in the presence of wind speed and pitch
angle variations regardless of optimizing the cost function and considering constraints.

4.3. Low frequency disturbance

In this section, low frequency inter-area modes oscillation is considered as external dis-
turbance. This kind of oscillation is common among multiple groups of generators [24]
and should be suppressed. For this purpose, vs = 1 + 0.1 sin(πt/1.25) is applied to the
system as an inter-area type disturbance. The responses obtained from the simulation
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Fig. 4. The responses obtained under low frequency disturbance

vs = 1 + 0.1 sin(πt/1.25). (a) active power; (b) reactive power speed.

are shown in Figure 4. As it can be seen from the figure, the RMPC in a much shorter
time and with less fluctuations than RPC is able to eliminate the effects of disturbance
on the system and achieve the target P and Q values.

4.4. Model uncertainty

To evaluate the robustness of the proposed method under model uncertainty, the fol-
lowing scenario is considered: The Lm changes around its nominal value of ±20%, and
this change also affects other parameters of the model. The active and reactive power
obtained from the simulation are shown in Figure 5. The results are roughly similar to
the results of Section 4.3, namely, by using RMPC, the elimination of uncertainty effects
is obtained in a shorter time with less fluctuation.

The above simulations demonstrate the capability of the proposed method in optimal
and robust control of the DFIG system. The simulation is executed on Matlab (2014b
MathWorks) using a personal computer with an Intel(R) Core(TM) i7 CPU at 2.2 GHz
and 8 GB of RAM and execution times of 0.76644s, 0.72121s, 0.57842s and 0.63716s
were obtained for scenarios 4.1 to 4.4, respectively.
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Fig. 5. System responses obtained under Lm uncertainty. (a) active

power; (b) reactive power

5. CONCLUSION

An LMI-based RMPC strategy for DFIG-based WECS has been proposed in this paper.
A nonlinear DFIG model was considered and the predicted active and reactive output
power were calculated using a state space model resulting the nonlinear DFIG model.
The control law is derived from LMI based RMPC that considers control tracking and
economic index through optimization of an objective function, while considering the
constraints on the states and the control signal. It is shown that the performance of the
proposed RMPC is superior to that of RPC method. Therefore, the proposed RMPC
provides a useful method for controlling this class of nonlinear DFIG in the operation
of WECS in presence of wind variation and parameter uncertainty.
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