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Abstract. In this paper, we define and characterize the notions of (implicative, maximal,
prime) ideals in hoops. Then we investigate the relation between them and prove that every
maximal implicative ideal of a ∨-hoop with double negation property is a prime one. Also,
we define a congruence relation on hoops by ideals and study the quotient that is made by
it. This notion helps us to show that an ideal is maximal if and only if the quotient hoop
is a simple MV-algebra. Also, we investigate the relationship between ideals and filters by
exploiting the set of complements.
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1. Introduction

Non-classical logic has become a formal and useful tool for computer science to

deal with uncertain information and fuzzy information. The algebraic counterparts

of some non-classical logics satisfy residuation and those logics can be considered

in a frame of residuated lattices, see [9]. For example, Hájek’s BL (basic logic,

see [10]), Lukasiewiczs MV (many-valued logic, see [8]) and MTL (monoidal t-norm

based logic, see [12]) are determined by the class of BL-algebras, MV-algebras and

MTL-algebras, respectively. All of these algebras have lattices with residuation as

a common support set. Thus, it is very important to investigate the properties of

algebras with residuation. Hoops are naturally ordered commutative residuated in-

tegral monoids, introduced by Bosbach in [8] and [12] then studied by Büchi and

Owens, a paper never published. In the last years, hoops theory was enriched with

deep structure theorems (see [4], [8], [12]). Many of these results have a strong im-

pact on fuzzy logic. Particularly, from the structure theorem of finite basic hoops

([4], Corollary 2.10) one obtains an elegant short proof of the completeness theo-

rem for propositional basic logic (see [4], Theorem 3.8), introduced by Hájek in [10].

c© The author(s) 2019. This is an open access article under the CC BY-NC-ND licence cbnd

DOI: 10.21136/MB.2019.0140-17 141

https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.21136/MB.2019.0140-17


The algebraic structures corresponding to Hájek’s propositional (fuzzy) basic logic,

BL-algebras, are particular cases of hoops. The main example of BL-algebras in in-

terval [0, 1] endowed with the structure induced by a t-norm. MV-algebras, product

algebras and Gödel algebras are the best known classes of BL-algebras. Recent inves-

tigations are concerned with non-commutative generalizations for these structures.

The filter theory plays an important role in studying these algebras. From the logic

point of view, various filters have natural interpretation as various sets of provable

formulas. At present, the filter theory of hoops has been widely studied and some

important results are obtained. In particular, some types of filters such as (positive)

implicative filters and fantastic filters (see [3]) were introduced and some of their

characterizations were presented in [1], [2], [13], [11]. In MV-algebras, filters and

ideals are dual notions, also we have to remark that residuated lattices and hoops

are incomparable. Indeed, not all hoops are residuated lattices. It is noticeable that

a hoop is a meet semi-lattice one with respect to the meet operator a∧b = a⊙(a → b)

but it has not a lattice structure. So, in this paper we claim that the notion of ideals

is missing in hoops. For this reason, in this paper, we define and characterize ideal,

implicative, maximal and prime ideals notions in hoops. Then we investigate the

relation between them and prove that every maximal implicative ideal of a ∨-hoop

with double negation property is a prime one. Also, we define a congruence relation

on a hoop by ideals and study the quotient that is made by it. This notion helps us

to show that an ideal is maximal if and only if the quotient hoop is a simple MV-

algebra. Also, we investigate the relationship between ideals and filters by exploiting

the set of complements.

2. Preliminaries

First we recall the definition of a hoop. By a hoop we mean an algebraic structure

(A,⊙,→, 1) where, for all x, y, z ∈ A:

(HP1) (A,⊙, 1) is a commutative monoid;

(HP2) x → x = 1;

(HP3) (x⊙ y) → z = x → (y → z);

(HP4) x⊙ (x → y) = y ⊙ (y → x).

On a hoop A we define x 6 y if and only if x → y = 1. It is easy to see that 6 is

a partial order relation on A. A hoop A is bounded if there is an element 0 ∈ A such

that 0 6 x for all x ∈ A. Let A be a bounded hoop. We define negation “ ′ ” on A

by x′ = x → 0 for all x ∈ A. If x′′ = x for all x ∈ A, then the bounded hoop A is

said to have the double negation property, or (DNP), for short. Suppose A is a hoop

such that for any x, y ∈ A, we have x ∨ y = ((x → y) → y) ∧ ((y → x) → x). If ∨
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is a join operation on A, then the hoop A is called a ∨-hoop, which is a distributive

lattice. The following proposition provides some properties of hoops.

Proposition 2.1 ([5], [6]). Let (A,⊙,→, 1) be a hoop. Then the following con-

ditions hold, for all x, y, z, a ∈ A:

(i) (A,6) is a meet-semilattice, with x ∧ y = x⊙ (x → y);

(ii) x⊙ y 6 z if and only if x 6 y → z;

(iii) x⊙ y 6 x, y and x 6 y → x;

(iv) x → x = 1 and 1 → x = x;

(v) x 6 y → (x⊙ y);

(vi) x → y 6 (y → z) → (x → z);

(vii) x 6 y implies x⊙ a 6 y ⊙ a, z → x 6 z → y and y → z 6 x → z;

(viii) if A is a bounded hoop, then x 6 x′′, x⊙ x′ = 0 and x′′′ = x′;

(ix) if A is a ∨-hoop, then for any n ∈ N, (x ∨ y)n → z = {(a1 ⊙ a2 ⊙ . . .⊙ an) →

z : ai ∈ {x, y}};

(x) if A is a ∨-hoop, then x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z).

A nonempty subset F of A is a filter of A if (F1): x, y ∈ F implies x ⊙ y ∈ F

and (F2): x ∈ F and x 6 y imply y ∈ F for any x, y ∈ A. The set of all filters in

a hoop A is denoted by F(A). F is a proper filter of a hoop A if F is a filter of A

and F 6= A. If A is a hoop and ∅ 6= X ⊆ A, then the intersection of all filters of A

containing X is denoted by 〈X〉 and is characterized by

〈X〉 = {a ∈ A : x1 ⊙ x2 ⊙ . . .⊙ xn 6 a for some n ∈ N and x1, . . . , xn ∈ X}

= {a ∈ A : x1 → (x2 → (. . . → (xn → a) . . .)) = 1

for some n ∈ N, x1, . . . , xn ∈ X}.

In particular, for any element x ∈ A we have

〈x〉 = {a ∈ A : xn 6 a for some n ∈ N} = {a ∈ A : xn → a = 1 for some n ∈ N}.

Let A and B be two hoops. A map ϕ : A → B is called a homomorphism if for all

x, y ∈ A we have ϕ(1) = 1, ϕ(x ⊙ y) = ϕ(x) ⊙ ϕ(y) and ϕ(x → y) = ϕ(x) → ϕ(y).

If A and B are two bounded hoops, then ϕ(0) = 0 (see [3], [4], [5]).

Definition 2.2 ([3]). Let F be a nonempty subset of a hoop A. Then F is called

a positive implicative filter of A if:

(PIF 1) 1 ∈ F ;

(PIF 2) (x⊙ y) → z ∈ F and x → y ∈ F imply x → z ∈ F for any x, y, z ∈ A.
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N o t a t i o n . From now on, in this paper, (A,⊙,→, 0, 1) or simply A is a bounded

hoop, unless otherwise stated.

3. Ideal in hoops

In this section, we introduce the notion of an ideal in a hoop and investigate some

of its properties.

Definition 3.1. Let I be a nonempty subset of A. I is called an ideal of A if it

satisfies the following conditions:

(I1) 0 ∈ I,

(I2) for any x, y ∈ I, x′ → y ∈ I,

(I3) for any x, y ∈ A, if x 6 y and y ∈ I, then x ∈ I.

It is clear that A and {0} are the trivial ideals of A. The set of all ideals of A is

denoted by ID(A). I is called a proper ideal if I is an ideal of A and I 6= A. It can

be easily seen that an ideal I is proper if and only if it is not containing 1.

E x am p l e 3.2. Let A = {0, a, b, c, d, 1}. We define two operations ⊙ and →

on A as follows:

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a b c 1 1
1 0 a b c d 1

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

Routine calculations show that A is a bounded hoop. It is easy to see that I =

{0, a} ∈ ID(A).

0

1

b

d

a

c

Figure 1. The Hasse diagram of A.

Let {Iλ : λ ∈ ∆} be a family of ideals in A. Then it is easy to see that
⋂

λ∈∆

Iλ is

an ideal of A but
⋃

λ∈∆

Iλ is not an ideal of A, in general.
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E x am p l e 3.3. Let A = {0, a, b, 1}. We define two operations ⊙ and → on A

as follows:
⊙ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

By routine calculations, A with these operations is a bounded hoop. It is easy to see

that I1 = {0, a} and I2 = {0, b} are two ideals of A, but I3 = I1 ∪ I2 = {0, a, b} is

not an ideal of A, because a⊖ b = a′ → b = b → b = 1 /∈ I3.

0

1

a b

Figure 2. The Hasse diagram of A.

N o t a t i o n . For any x, y ∈ A, we define x⊖ y = x′ → y. Easily by an example

we see that the operation ⊖ is not associative, but by adding (DNP) condition to

hoop A, the operation ⊖ is associative, because since y′′ = y, we have

(x ⊖ y)⊖ z = (x′ → y)′ → z = (x′ → y′′)′ → z = ((x′ ⊙ y′) → 0)′ → z

= (x′ ⊙ y′)′′ → z = (x′ ⊙ y′) → z = x′ → (y′ → z) = x⊖ (y ⊖ z).

R em a r k 3.4. Let I ∈ ID(A). Then for any x ∈ A, x ∈ I if and only if x′′ ∈ I.

By Proposition 2.1 (viii) and (I3), if x′′ ∈ I, then it is easy to see that x ∈ I. Let

x ∈ I, since 0 ∈ I, by (I2), x′′ = x⊖ 0 ∈ I.

Proposition 3.5. Let I be a nonempty subset of A. Then, for any x, y ∈ A, the

following statements are equivalent:

(i) I ∈ ID(A),

(ii) 0 ∈ I; for any x, y ∈ I, x⊖ y ∈ I and if x′ ⊙ y ∈ I and x ∈ I, then y ∈ I.

(iii) 0 ∈ I; for any x, y ∈ I, x⊖ y ∈ I and if (x′ → y′)′ ∈ I and x ∈ I, then y ∈ I.

P r o o f. (i) ⇒ (ii): Let I ∈ ID(A). Then by Definition 3.1, 0 ∈ I and, for any

x, y ∈ I, x ⊖ y ∈ I. Now, suppose for any x, y ∈ A, x′ ⊙ y ∈ I and x ∈ I. Since

x′ ⊙ y 6 x′ ⊙ y, by Proposition 2.1 (ii), y 6 x′ → (x′ ⊙ y). Also, since x′ ⊙ y ∈ I and

x ∈ I, by (I2), x′ → (x′ ⊙ y) ∈ I. Thus, by (I3), y ∈ I.

(ii) ⇒ (iii): Suppose x 6 y and y ∈ I. Then by Proposition 2.1 (vii), y′ 6 x′, and

so (y′ → x′)′ = 0. Hence, by (HP3) and Proposition 2.1 (viii), y′⊙x 6 (y′⊙x)′′ = 0,
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and so y′⊙x = 0 ∈ I. Since y ∈ I, by (ii), x ∈ I. Now, let (x′ → y′)′ ∈ I and x ∈ I for

any x, y ∈ A. By Proposition 2.1 (vii), x′ ⊙ y 6 (x′ ⊙ y)′′ = ((x′ ⊙ y)′)′ = (x′ → y′)′.

Then x′ ⊙ y ∈ I. Since x ∈ I, by (ii), y ∈ I.

(iii) ⇒ (i): It is clear that conditions (I1) and (I2) hold. Let, for any x, y ∈ A,

x 6 y and y ∈ I. By Proposition 2.1 (vii), y′ 6 x′. Then y′ → x′ = 1, and so

(y′ → x′)′ = 0 ∈ I. Since y ∈ I, by (iii), x ∈ I. Hence, I ∈ ID(A). �

In what follows, we investigate the relation between filters and ideals in any

hoop A. For this, for any ∅ 6= X ⊆ A, we define X ′ = {x ∈ A : x′ ∈ X}.

Proposition 3.6. If A has (DNP), then I ∈ ID(A) if and only if I ′ = F ∈ F(A).

P r o o f. (⇒) Let I ∈ ID(A) and F = I ′. Since 0 ∈ I, we get that 1 ∈ F .

Suppose x, y ∈ F . Then x′, y′ ∈ I. Thus, (x ⊙ y)′ ⊙ x′ ⊙ y′ 6 y′ ∈ I, since

I ∈ ID(A), we have (x ⊙ y)′ ⊙ x′ ⊙ y′ ∈ I. Hence, (x ⊙ y)′ ∈ I, and so x ⊙ y ∈ F .

Now, suppose x 6 y and x ∈ F . Then x′ ∈ I and by Proposition 2.1 (vii), y′ 6 x′.

Since I ∈ ID(A) and x′ ∈ I, we get y′ ∈ I, and so y ∈ F .

(⇐) Let F ∈ F(A) and I = F ′. Since 1 ∈ F , we have 0 ∈ I. Let x 6 y and y ∈ I.

Then y′ 6 x′ and y′ ∈ F . Since F ∈ F(A), we have x′ ∈ F and so x′′ ∈ I. Hence,

x ∈ I. Suppose x, y ∈ I. Then x′, y′ ∈ F . By Proposition 2.1 (viii),

(x′ ⊙ y′) → (x′ → y)′ = (x′ → y) → ((x′ ⊙ y′) → 0) = (x′ → y) → (x′ → y′′) = 1.

Hence, (x′⊙y′) 6 (x′ → y)′. Since F ∈ F(A) and x′⊙y′ ∈ F , we have (x′ → y)′ ∈ F ,

and so (x′ → y)′′ ∈ I. Then x′ → y ∈ I. �

In the following example, we show that the condition (DNP) is necessary.

E x am p l e 3.7. Let A = {0, a, b, c, d, e, f, 1}. Define two operations ⊙ and →

on A as follows:

→ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a d 1 1 1 d 1 1 1
b d f 1 1 d f 1 1
c d e f 1 d e f 1
d c c c c 1 1 1 1
e 0 c c c d 1 1 1
f 0 b c c d f 1 1
1 0 a b c d e f 1

⊙ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 a a a 0 a a a
b 0 a a b 0 a a b
c 0 a b c 0 a b c
d 0 0 0 0 d d d d
e 0 a a a d e e e
f 0 a a b d e e f
1 0 a b c d e f 1

By routine calculation, we can see that A with these operations is a bounded hoop.

Then it is easy to show that I = {0, a, b, c} ∈ ID(A), but I ′ = {1, d} /∈ F(A) because

d 6 e, f and e, f /∈ F .

146



0

1

a

c

d

f

b e

Figure 3. The Hasse diagram of A.

By Proposition 3.6 and Example 3.7, we can see that in hoops the notion of ideals

is missing and filters and ideals are not dual notions, in general, except in a hoop

with (DNP). So, the condition (DNP) is necessary.

Proposition 3.8. Let A be a bounded ∨-hoop and I ∈ ID(A). Then for any

x, y ∈ A, the following statements hold:

(i) x, y ∈ I if and only if x ∨ y ∈ I;

(ii) if x, y ∈ I, then x ∧ y ∈ I.

P r o o f. Let I ∈ ID(A). By Proposition 2.1 (iii), x ∧ y 6 x, y 6 x ∨ y. If

x, y ∈ I or x ∨ y ∈ I, then by (I3) it is clear that x ∧ y ∈ I or x, y ∈ I, respectively.

Now, suppose x, y ∈ I. Then by Proposition 2.1 (x) and (viii), x′ ⊙ (x ∨ y) =

(x′⊙x)∨ (x′⊙ y) = x′⊙ y. Since x′⊙ y 6 y, y ∈ I and I ∈ ID(A), we get x′⊙ y ∈ I,

so x′ ⊙ (x ∨ y) ∈ I. Since x ∈ I and I ∈ ID(A), by Proposition 3.5, x ∨ y ∈ I. �

In the following example, we show that the converse of Proposition 3.8 (ii) may

not be true, in general.

E x am p l e 3.9. According to Example 3.2, I = {0, a} ∈ ID(A) and a ∧ b =

a⊙ (a → b) = a⊙ d = 0 ∈ I but b /∈ I.

Proposition 3.10. Let I be a subset of a hoop A such that 0 ∈ I. Then the

following conditions are equivalent:

(i) I ∈ ID(A);

(ii) L(x, y) = {z ∈ A : z ⊙ x′ 6 y} ⊆ I for any x, y ∈ I;

(iii) if (z ⊙ x′)⊙ y′ = 0, then z ∈ I for any z ∈ A and x, y ∈ I.

P r o o f. (i)⇒ (ii): Let a ∈ L(x, y). Then a⊙x′ 6 y. Since y ∈ I and I ∈ ID(A),

a⊙ x′ ∈ I. Now, by Proposition 3.5, since x ∈ I and I ∈ ID(A), we get a ∈ I.

(ii) ⇒ (iii): Let x, y ∈ I and (z⊙ x′)⊙ y′ = 0. Since 0, y ∈ I and (z⊙ x′)⊙ y′ 6 0,

by (ii), we get z⊙x′ ∈ L(0, y) ⊆ I, and so z⊙x′ ∈ I. Moreover, since z⊙x′ 6 z⊙x′

and z ⊙ x′, x ∈ I, by (ii), z ∈ L(z ⊙ x′, x) ⊆ I. Hence, z ∈ I.
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(iii) ⇒ (i): By assumption, 0 ∈ I. Let x, y ∈ I. Then by Proposition 2.1 (ii), (vii)

and (viii), (x′ → y)⊙ x′ ⊙ y′ 6 y⊙ y′ = 0, and so by (iii), x′ → y ∈ I. Now, suppose

x′ ⊙ y ∈ I and x ∈ I. Then by Proposition 2.1 (viii), (y ⊙ x′)⊙ (x′ ⊙ y)′ = 0, and so

by (iii), y ∈ I. Hence, I ∈ ID(A). �

Proposition 3.11. Let I be a nonempty subset of A. Then for any x, y, z ∈ A,

the following conditions are equivalent:

(i) if I ∈ ID(A) and x⊙ (y ⊙ x′)′ ∈ I, then x ∈ I;

(ii) if 0 ∈ I, (x⊙ (y ⊙ x′)′)⊙ z′ ∈ I and z ∈ I, then x ∈ I.

P r o o f. (i)⇒ (ii): Since I ∈ ID(A), it is clear that 0 ∈ I and if (x⊙ (y⊙x′)′)⊙

z′ ∈ I and z ∈ I, then by (I2), x⊙ (y ⊙ x′)′ ∈ I. Thus, by (i), x ∈ I.

(ii) ⇒ (i): First we prove that I ∈ ID(A). For this, suppose x⊙ y′ ∈ I and y ∈ I.

Then (x⊙ (0⊙ x′)′)⊙ y′ = x⊙ y′ ∈ I, and so by (ii), x ∈ I. Now, let x, y ∈ I. Then

((x′ → y)⊙ (0⊙ (x′ → y)′)′)⊙ y′ ⊙ x′ 6 x′′ ⊙ x′ = 0 ∈ I.

Since x ∈ I, by (ii), (x′ → y)⊙ y′ ∈ I. Also, from y ∈ I, we have x′ → y ∈ I. Hence,

I ∈ ID(A). Now, suppose x ⊙ (y ⊙ x′)′ ∈ I. By considering z = 0 in (ii), we get

x ∈ I. �

Definition 3.12. Let ∅ 6= X ⊆ A. We recall that the smallest ideal containingX

in A is called the ideal generated by X in A and is denoted by (X ]. It is also the

intersection of all ideals of A containing X .

Theorem 3.13. Let ∅ 6= X ⊆ A. Then

(X ] = {a ∈ A : ∃n ∈ N : a 6 x1 ⊖ (x2 ⊖ . . .⊖ (xn−1 ⊖ xn) . . .)

for x1, x2, . . . , xn ∈ X}.

P r o o f. Let B = {a ∈ A : ∃n ∈ N : a 6 x1 ⊖ (x2 ⊖ . . .⊖ (xn−1 ⊖ xn) . . .) for x1,

x2, . . . , xn ∈ X}. It is enough to prove that B is the smallest ideal containing X .

For this, first we show that B is an ideal of A. Since, for any x1, x2 ∈ X , we have

0 6 x1 ⊖ x2, 0 ∈ B, and so (I1) holds. Now, let a, b ∈ A such that a 6 b and b ∈ B.

Since b ∈ B, there exists n ∈ N such that for x1, x2, . . . , xn ∈ X , b 6 x1⊖ (x2 ⊖ . . .⊖

(xn−1 ⊖ xn) . . .). From a 6 b, we get a 6 b 6 x1 ⊖ (x2 ⊖ . . .⊖ (xn−1 ⊖ xn) . . .), thus,

a 6 x1⊖ (x2⊖ . . .⊖ (xn−1⊖xn) . . .), and so a ∈ B. Hence, (I3) holds. Now, suppose

a, b ∈ B. Then there exist n,m ∈ N such that x1, x2, . . . , xn, y1, y2, . . . , ym ∈ X ,

a 6 x1 ⊖ (x2 ⊖ . . . ⊖ (xn−1 ⊖ xn) . . .) and b 6 y1 ⊖ (y2 ⊖ . . . ⊖ (ym−1 ⊖ ym) . . .).

By Proposition 2.1 (vii), (x1 ⊖ (x2 ⊖ . . . ⊖ (xn−1 ⊖ xn) . . .))
′ 6 a′, and so a′ → b 6
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(x1 ⊖ (x2 ⊖ . . .⊖ (xn−1 ⊖ xn) . . .))
′ → b. Since b 6 y1 ⊖ (y2 ⊖ . . .⊖ (ym−1 ⊖ ym) . . .),

by Proposition 2.1 (vii),

(x1 ⊖ (. . .⊖ (xn−1 ⊖ xn) . . .))
′ → b 6 (x1 ⊖ (. . .⊖ . . .⊖ (xn−1 ⊖ xn) . . .))

′

→ (y1 ⊖ . . .⊖ . . .⊖ (ym−1 ⊖ ym) . . .)).

Then a′ → b 6 (x1⊖(x2⊖. . .⊖(xn−1⊖xn) . . .))
′ → (y1⊖(y2⊖. . .⊖(ym−1⊖ym) . . .)),

and so a ⊖ b 6 x1 ⊖ (x2 ⊖ . . . ⊖ xn ⊖ y1 ⊖ y2 ⊖ . . . (ym−1 ⊖ ym) . . .). Thus, a ⊖

b ∈ B. Hence, B is an ideal of A. It is clear that X ⊆ B, because, for any

x, y ∈ X , by Proposition 2.1 (iii), x 6 y′ → x = y ⊖ x. Hence, x ∈ B. Now,

let there exist C ∈ ID(A) such that X ⊆ C. It is enough to prove that B ⊆ C.

Let a ∈ B. Then there exists n ∈ N such that for x1, x2, . . . , xn ∈ X , we have

a 6 x1 ⊖ (x2 ⊖ . . . ⊖ (xn−1 ⊖ xn) . . .). Since X ⊆ C and C ∈ ID(A), by (I2),

x1⊖ (x2⊖ . . .⊖ (xn−1⊖xn) . . .) ∈ C, and so by (I3), a ∈ C. Hence, B is the smallest

ideal of A containing X . Therefore, B = (X ]. �

N o t a t i o n . Consider a ⊖ (a ⊖ . . .⊖ (a ⊖ a) . . .) = na = (a′)n−1 → a. If A has

(DNP), then x⊖ y = y ⊖ x and na = ((a′)n)′.

Proposition 3.14. Let I ∈ ID(A) and a ∈ A. Then the following statements

hold:

(i) (a] = {x ∈ A : ∃n ∈ N : x 6 na};

(ii) if A is a hoop with (DNP), then (I ∪ {a}] = {x ∈ A : ∃n ∈ N : x⊙ (na)′ ∈ I};

(iii) if A is a ∨-hoop with (DNP), then (I ∪ {x}] ∩ (I ∪ {y}] = (I ∪ {x ∧ y}].

P r o o f. (i) Let B = {x ∈ A : ∃n ∈ N : x 6 na}. Then we prove that B

is the smallest ideal of A generated by a. For this, we show that B is an ideal

of A. Since 0 6 a ⊖ a = 2a, it is clear that 0 ∈ B. Let x 6 y for x, y ∈ A

and y ∈ B. Then there exists n ∈ N such that x 6 y 6 na. So, x ∈ B. Now,

suppose x, y ∈ B. Then there exist n,m ∈ N such that x 6 na and y 6 ma, and so

x 6 (a′)n−1 → a and y 6 (a′)m−1 → a. By Proposition 2.1 (vii), ((a′)n−1 → a)′ 6 x′

and x′ → y 6 ((a′)n−1 → a)′ → y. Also,

((a′)n−1 → a)′ → y 6 ((a′)n−1 → a)′ → ((a′)m−1 → a)

and so,

x′ → y 6 ((a′)n−1 → a)′ → y 6 ((a′)n−1 → a)′ → ((a′)m−1 → a).

Hence,

x′ → y 6 ((a′)n−1 → a)′ → ((a′)m−1 → a) = na⊖ma = (n+m)a.
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Thus, x⊖ y ∈ B. On the other hand, by Proposition 2.1 (viii), a 6 a′ → a = a⊖ a,

and so B is an ideal of A containing a. Suppose C is an ideal of A containing a. Let

x ∈ B. Then there exists n ∈ N such that x 6 na. Since a ∈ C and C ∈ ID(A), hence

na ∈ C, and so x ∈ C. Hence, B ⊆ C. Therefore, (a] = {x ∈ A : ∃n ∈ N : x 6 na}.

(ii) Let E = {x ∈ A : ∃n ∈ N : x ⊙ (na)′ ∈ I}. Since a ⊙ a′ = 0 ∈ I and for

any x ∈ I, x ⊙ a′ 6 x ∈ I and I ∈ ID(A), so it is clear that I ∪ {a} ⊆ E. Let

x, y ∈ E. Then there exist n,m ∈ N such that x ⊙ (na)′ ∈ I and y ⊙ (ma)′ ∈ I.

Thus, there exist α, β ∈ I such that x ⊙ (na)′ 6 α and y ⊙ (ma)′ 6 β. Hence, by

(HP3), x 6 (na)′ → α and y 6 (ma)′ → β. Then by Proposition 2.1 (vii),

x′ → y 6 ((na)′ → α)′ → y 6 ((na)′ → α)′ → ((ma)′ → β)′ = (na)⊖ α⊖ (ma)⊖ β.

Since A has (DNP), we get that (x′ → y)⊙ ((n +m)a)′ 6 α ⊖ β ∈ I. The proof of

the other cases is similar to (i).

(iii) By definition of ⊖, it is easy to see that a ⊙ (nx)′ = a ⊙ (x′)n. Suppose

a ∈ (I ∪ {x ∧ y}]. Then there exists n ∈ N such that a ⊙ (n(x ∧ y))′ ∈ I. Thus, by

Proposition 2.1 (ii), (vii) and (DNP), we have,

a⊙ (n(x∧y))′ = a⊙ ((x∧y)′)n > a⊙ (x′)n, a⊙ (y′)n = a⊙ (nx)′ and a⊙ (ny)′.

Then a ∈ (I ∪{x}]∩ (I ∪{y}], and so (I ∪{x∧y}] ⊆ (I ∪{x}]∩ (I ∪{y}]. Conversely,

let a ∈ (I ∪ {x}] ∩ (I ∪ {y}]. Then there exist n,m ∈ N such that a ⊙ (nx)′ and

a⊙(my)′ ∈ I, and so a⊙(x′)n and a⊙(y′)m ∈ I. Let U = a⊙(x′)n and V = a⊙(y′)m.

Then by (HP3), U ′ = (a⊙ (x′)n)′ = (x′)n → a′ and V ′ = (a⊙ (y′)m)′ = (y′)m → a′.

By routine calculations, we can see that,

(x′)n → (V ′ → (U ′ → a′)) = 1 and (y′)m → (V ′ → (U ′ → a′)) = 1.

Then by Proposition 2.1 (ix), there exists p ∈ N such that

[(x ∧ y)′]p → (V ′ → (U ′ → a′))

= (x′ ∨ y′)p → (V ′ → (U ′ → a′))

=
∧

{(a1 ⊙ . . .⊙ ap) → (V ′ → (U ′ → a′)) : ai ∈ {x′, y′}} = 1.

Hence, a ∈ (I ∪ {x ∧ y}]. �

Proposition 3.15. Let ϕ : A → B be a hoop homomorphism. Then the following

statements hold:

(i) if ϕ is an epimorphism and I ∈ ID(B), then ϕ−1(I) ∈ ID(A);

(ii) if ϕ is an isomorphism and I ∈ ID(A), then ϕ(I) ∈ ID(B);

(iii) if kerϕ = {x ∈ A : ϕ(x) = 0}, then kerϕ ∈ ID(A).
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P r o o f. (i) Let I ∈ ID(B). Since ϕ(0) = 0 ∈ I, we have 0 ∈ ϕ−1(I). Suppose

x 6 y and y ∈ ϕ−1(I). Then ϕ(y) ∈ I. Since x → y = 1 and ϕ is a homomorphism,

we obtain that ϕ(x) 6 ϕ(y), thus, ϕ(x) ∈ I, and so x ∈ ϕ−1(I). Let x, y ∈ ϕ−1(I).

Then ϕ(x), ϕ(y) ∈ I. Since I ∈ ID(B), ϕ(x′ → y) = ϕ′(x) → ϕ(y) ∈ I. Thus,

x′ → y ∈ ϕ−1(I) and so ϕ−1(I) ∈ ID(A).

(ii) Let I ∈ ID(A). It is clear that 0 ∈ ϕ(I). Let x 6 y and y ∈ ϕ(I). Since

y ∈ ϕ(I), there exists a ∈ I such that ϕ(a) = y. Since x = ϕ(b) 6 ϕ(a) = y, we

have 1 = ϕ(1) = ϕ(b → a) = ϕ(b) → ϕ(a). From the fact that ϕ is an isomorphism,

we get b 6 a. Moreover, since I ∈ ID(A) and a ∈ I, we obtain b ∈ I, and so x =

ϕ(b) ∈ ϕ(I). Now, suppose x, y ∈ ϕ(I). Then there exist a, b ∈ I such that ϕ(a) = x

and ϕ(b) = y. Since I ∈ ID(A), a′ → b ∈ I, and so x′ → y = ϕ′(a) → ϕ(b) ∈ ϕ(I).

Hence, ϕ(I) ∈ ID(B).

(iii) Let kerϕ = {x ∈ A : ϕ(x) = 0}. Since ϕ(0) = 0, we have 0 ∈ kerϕ, and

so kerϕ 6= ∅. Suppose x, y ∈ kerϕ. Then ϕ(x) = ϕ(y) = 0, and so ϕ(x′ → y) =

ϕ′(x) → ϕ(y) = 0′ → 0 = 0. Hence, x′ → y ∈ kerϕ. Let x 6 y and y ∈ kerϕ.

Since ϕ is monotone, ϕ(x) 6 ϕ(y) = 0. Then ϕ(x) = 0 and so x ∈ kerϕ. Hence,

kerϕ ∈ ID(A). �

Let A be a hoop with (DNP) and I an ideal of A. Define the relation ∼I on A

by x ∼I y if and only if x′ ⊙ y ∈ I and y′ ⊙ x ∈ I for any x, y ∈ A. Similarly to the

proof of [7], Theorem 4.2 and Proposition 4.3, we can see that ∼I is a congruence

relation on A. For any x ∈ A, we denote by x/I the equivalence class of x, that is,

x/I = {y ∈ A : x ∼I y}. Let A/I = {x/I : x ∈ A} and we define on the set A/I the

operations

x/I ⊗ y/I = (x ⊙ y)/I, x/I  y/I = (x → y)/I, 0/I = I,

and 1/I = {x′ ∈ I : x ∈ A}.

Also, we define a partial order on A/I by x/I 6 y/I if and only if x′ ⊙ y ∈ I. Then

by routine calculation we can prove that (A/I,⊗, , 0/I, 1/I) is a hoop.

N o t a t i o n . The quotient hoop via any ideal is always an MV-algebra, because

by Proposition 2.1 (viii), x⊙ (x′′)′ = x⊙ x′ = 0 ∈ I and x′′ ⊙ x′ = 0. Then x ∼ x′′,

and so x/I = x′′/I.

4. Implicative ideal in hoops

In this section, we introduce the notion of an implicative ideal in hoops and inves-

tigate some of its properties. Then we study the quotient structures that are made

by an implicative ideal.
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Definition 4.1. Let ∅ 6= I ⊆ A. Then I is called an implicative ideal of A if for

any x, y, z ∈ A it satisfies the following conditions:

(IM1) 0 ∈ I;

(IM2) if x, y ∈ I, then x⊖ y ∈ I;

(IM3) if x⊙ y′ ⊙ z′ ∈ I and y ⊙ z′ ∈ I, then x⊙ z′ ∈ I.

E x am p l e 4.2. According to Example 3.7, it is easy to check that I = {0, a, b, c}

is an implicative ideal of A.

Proposition 4.3. If A has (DNP), then I is an implicative ideal if and only if

I ′ = F is a positive implicative filter of A.

P r o o f. Proof is similar to the proof of Proposition 3.6. �

Theorem 4.4. Every implicative ideal of A is an ideal of A.

P r o o f. Suppose I is an implicative ideal of A and x 6 y such that y ∈ I. Then

x → y = 1. By Proposition 2.1 (vii) and (viii), x → y 6 x → y′′ = (x ⊙ y′)′. Thus,

(x ⊙ y′)′ = 1, and so (x ⊙ y′)′′ = 0 ∈ I. Since x ⊙ y′ 6 (x ⊙ y′)′′, we get that

x ⊙ y′ = 0 ∈ I. Let z = 0. Then x ⊙ y′ ⊙ z′ = x ⊙ y′ = 0 ∈ I and y ⊙ z′ = y ∈ I.

Since I is an implicative ideal of A, x⊙ z′ = x ∈ I. Hence, I ∈ ID(A). �

By the following example we show that the converse of the above theorem may

not be true, in general.

E x am p l e 4.5. In Example 3.2, I = {0, a} is an ideal of A. But it is not an

implicative ideal of A. Because if we let x = 1, y = c and z = b, then x⊙ y′ ⊙ z′ =

b⊙ c = 0 ∈ I. Also, y ⊙ z′ = c⊙ c = a ∈ I, but x⊙ z′ = c /∈ I.

Proposition 4.6. Let I ∈ ID(A). Then for any x, y ∈ A, the following state-

ments are equivalent:

(i) I is an implicative ideal;

(ii) if x⊙ y′′ ⊙ y′′ ∈ I, then x⊙ y ∈ I;

(iii) if x2 ∈ I, then x ∈ I;

(iv) {x ∈ A : x2 = 0} ⊆ I.

P r o o f. (i) ⇒ (ii): Let x⊙ y′′ ⊙ y′′ ∈ I. Since I is an implicative ideal of A and

by Proposition 2.1 (vii), y′ ⊙ y′′ = 0 ∈ I, we get x ⊙ y′′ ∈ I. From x ⊙ y 6 x ⊙ y′′

and I ∈ ID(A), we get x⊙ y ∈ I.

(ii) ⇒ (i): Let x ⊙ y′ ⊙ z′ ∈ I and y ⊙ z′ ∈ I for any x, y, z ∈ A. Then by

Proposition 2.1 (vii), (x⊙ z′ ⊙ z′)⊙ (y⊙ z′)′ = (x⊙ z′ ⊙ z′)⊙ (z′ → y′) 6 x⊙ z′⊙ y′.

Since I ∈ ID(A) and x⊙ y′ ⊙ z′ ∈ I, we get that (x⊙ z′ ⊙ z′)⊙ (y ⊙ z′)′ ∈ I. Then
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by Propositions 3.5 and 2.1 (viii), x ⊙ (z′)′′ ⊙ (z′)′′ = x ⊙ z′ ⊙ z′ ∈ I. Thus, by (ii),

x⊙ z′ ∈ I. Hence, I is an implicative ideal of A.

(ii) ⇒ (iii): Let x2 ∈ I. Since I ∈ ID(A), by Remark 3.4, (x2)′′ ∈ I. By

Proposition 2.1 (viii), we have

(x′′ ⊙ x′′) → (x2)′′ = (x′′ ⊙ x′′) → ((x2)′ → 0)

= x′′ → (x′′ → ((x2)′ → 0))

= x′′ → ((x2)′ → x′)

= (x2)′ → (x′′ → x′)

= (x2)′ → (x → x′)

= x → ((x2)′ → x′)

= x → (x → (x2)′′)

= x2 → (x2)′′ = 1.

So, x′′⊙x′′ 6 (x2)′′. Since I ∈ ID(A) and (x2)′′ ∈ I, we get 1⊙x′′⊙x′′ = x′′⊙x′′ ∈ I.

Then by (ii), 1⊙ x = x ∈ I.

(iii)⇒ (ii): Let x⊙y′′⊙y′′ ∈ I for any x, y ∈ A. By Proposition 2.1 (viii) and (vii),

y 6 y′′, then y ⊙ y 6 y′′ ⊙ y′′. Since x2 6 x, we have x2 ⊙ y2 6 x⊙ y′′ ⊙ y′′. Since

x⊙y′′⊙y′′ ∈ I and I ∈ ID(A), we obtain that (x⊙y)2 ∈ I. Then by (iii), x⊙y ∈ I.

(iii) ⇒ (iv): Let a ∈ {x ∈ A : x2 = 0}. Then a2 = 0 ∈ I, by (iii), a ∈ I, and so

{x ∈ A : x2 = 0} ⊆ I.

(iv) ⇒ (iii): Suppose x2 ∈ I for any x ∈ A. Then x2/I = 0/I. Since {0/I} ∈

ID(A/I), by (iv), x/I ∈ 0/I. Hence, x ∈ I. �

Corollary 4.7. Let I be an implicative ideal of A and J ∈ ID(A) such that

I ⊆ J . Then J is an implicative ideal of A.

P r o o f. Since I ⊆ J and I is an implicative ideal, then by Proposition 4.6,

{x ∈ A : x2 = 0} ⊆ I ⊆ J . As J ∈ ID(A), hence by Proposition 4.6, J is an

implicative ideal of A. �

Corollary 4.8. Let I ∈ ID(A). If I is an implicative ideal of A, then x′ ∧ x ∈ I

for any x ∈ A.

P r o o f. Let I be an implicative ideal of A. Since x ∧ x′ 6 x, x′, we obtain

that (x ∧ x′)2 6 x ⊙ x′ = 0. Then (x ∧ x′)2 = 0. Thus, by Proposition 4.6,

{x ∈ A : x2 = 0} ⊆ I, and so x ∧ x′ ∈ I. �

In the following example, we show that the converse of Corollary 4.8 may be not

true, in general.
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E x am p l e 4.9. According to Example 3.2, I = {0, a} ∈ ID(A). But, d ∧ d′ =

d ⊙ (d → d′) = d ⊙ a = 0 ∈ I provided that, in Example 4.5, we show that I is not

an implicative ideal of A.

Proposition 4.10. Let I ∈ ID(A). If I is an implicative ideal of A such that

x′′ ⊙ y ⊙ z′ ∈ I and x⊙ y′ ∈ I, then x⊙ z′ ∈ I.

P r o o f. Let for any x, y, z ∈ A, x′′ ⊙ y ⊙ z′ ∈ I. Then by Proposition 2.1 (vii)

and (viii) we have

(x′′ ⊙ y ⊙ z′)′ ⊙ (x′′ ⊙ y′′ ⊙ z′) = ((y ⊙ z′) → x′)⊙ (x′′ ⊙ y′′ ⊙ z′)

= z′ ⊙ (z′ → (y → x′))⊙ x′′ ⊙ y′′

6 (y → x′)⊙ x′′ ⊙ y′′

= (y → x′)⊙ (x′ → 0)⊙ y′′

6 y′ ⊙ y′′ = 0 ∈ I.

Since I ∈ ID(A), (x′′ ⊙ y ⊙ z′)′ ⊙ (x′′ ⊙ y′′ ⊙ z′) ∈ I, and so x′′ ⊙ y′′ ⊙ z′ ∈ I. Also,

from x⊙ y′ ∈ I, we have

(x⊙ y′)′ ⊙ (y′ ⊙ x′′) = y′ ⊙ (y′ → x′)⊙ x′′
6 x′ ⊙ x′′ = 0 ∈ I.

Since I ∈ ID(A), (x ⊙ y′)′ ⊙ (y′ ⊙ x′′) ∈ I, and so y′ ⊙ x′′ ∈ I. Since I is an

implicative ideal of A, we get that z′ ⊙ x′′ ∈ I. Moreover, by Proposition 2.1 (viii),

z′ ⊙ x 6 z′ ⊙ x′′, and so x⊙ z′ ∈ I. �

By the next example, we can show that the converse of Proposition 4.10 may be

not true, in general.

E x am p l e 4.11. According to Example 3.2, I = {0, a} ∈ ID(A). Let y ⊙ x′′ ⊙

z′ = b ⊙ c′′ ⊙ d′ = b ⊙ c ⊙ a = 0 ∈ I and x ⊙ y′ = c ⊙ b′ = c ⊙ c = a ∈ I. By

assumption, x⊙ z′ = c⊙ d′ = c⊙ a = a ∈ I. But by Example 4.5, we show that I is

not an implicative ideal of A.

Proposition 4.12. Let I be a nonempty subset of A. Then for any x, y, z ∈ A,

the following conditions are equivalent:

(i) I is an implicative ideal of A;

(ii) I ∈ ID(A) and if (x⊙ y′)⊙ y′ ∈ I, then x⊙ y′ ∈ I;

(iii) I ∈ ID(A) and if (x⊙ y′)⊙ z′ ∈ I, then (x⊙ z′)⊙ (y ⊙ z′)′ ∈ I;

(iv) 0 ∈ I and if ((x⊙ y′)⊙ y′)⊙ z′ ∈ I and z ∈ I, then x⊙ y′ ∈ I.
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P r o o f. (i) ⇒ (ii): By Theorem 4.4, I is an ideal of A. Let (x ⊙ y′) ⊙ y′ ∈ I.

Since I is an implicative ideal of A and by Proposition 2.1 (viii), y ⊙ y′ = 0 ∈ I, we

have x⊙ y′ ∈ I.

(ii) ⇒ (iii): Let (x ⊙ y′)⊙ z′ ∈ I. Then by Proposition 2.1 (vi),

x⊙ (y ⊙ z′)′ ⊙ z′ ⊙ z′ = x⊙ z′ ⊙ z′ ⊙ (z′ → y′) 6 (x⊙ y′)⊙ z′ ∈ I

and I ∈ ID(A); thus, x ⊙ (y ⊙ z′)′ ⊙ z′ ⊙ z′ ∈ I. By (ii), (x ⊙ z′) ⊙ (y ⊙ z′)′ =

x⊙ (y ⊙ z′)′ ⊙ z′ ∈ I.

(iii) ⇒ (i): Suppose (x ⊙ y′) ⊙ z′ ∈ I and y ⊙ z′ ∈ I. Then by (iii), (x ⊙ z′) ⊙

(y⊙ z′)′ ∈ I. Since y⊙ z′ ∈ I and I ∈ ID(A), x⊙ z′ ∈ I. Hence, I is an implicative

ideal of A.

(ii) ⇒ (iv): Since I ∈ ID(A), 0 ∈ I. Let ((x⊙ y′)⊙ y′)⊙ z′ ∈ I and z ∈ I. Since

I ∈ ID(A), we have (x ⊙ y′)⊙ y′ ∈ I. By (ii), x⊙ y′ ∈ I.

(iv) ⇒ (ii): First we prove that I ∈ ID(A). For this, suppose x ⊙ y′ ∈ I and

y ∈ I. We have x⊙ y′ = x⊙ 0′ ⊙ 0′ ⊙ y′ ∈ I. Then by (iv), x ∈ I. Now, let x, y ∈ I.

By Proposition 2.1 (viii), (x′ → y) ⊙ x′ ⊙ x′ ⊙ y′ 6 x′′ ⊙ x′ ⊙ x′ = 0 ∈ I. By (I2),

(x′ → y)⊙ x′ ⊙ x′ ⊙ y′ ∈ I. Since y ∈ I, by (iv), (x′ → y)⊙ x′ ∈ I. Also, from x ∈ I,

we obtain that x′ → y ∈ I. Hence, I ∈ ID(A). Now, suppose (x ⊙ y′)⊙ y′ ∈ I. Let

z = 0 in (iv). Then by (iv), x⊙ y′ ∈ I. �

N o t a t i o n . As we know, a Boolean algebra is a structure (B,+, ·,−, 0, 1), with

two binary operations “+” and “ · ”, a unary operation “−” and two distinguished el-

ements 0 and 1 such that B with these operations makes a complemented distributive

commutative algebra.

Theorem 4.13. If A is a bounded ∨-hoop with (DNP), then I is an implicative

ideal if and only if A/I is a Boolean algebra.

P r o o f. (⇒) Let I be an implicative ideal of A. Then by Proposition 4.6, for

any a ∈ A, a ∧ a′ ∈ I. Since a/I ∧ a′/I = (a ∧ a′)/I, we get a/I ∧ a′/I = 0/I. Also,

since (a/I ∨ a′/I)′ = (a ∨ a′)′/I = (a′ ∧ a′′)/I = 0/I, we have (a/I ∨ a′/I)′′ = 1/I.

Since A has (DNP), a/I ∨ a′/I = 1/I. Hence, A/I is a Boolean algebra.

(⇐) Suppose A/I is a Boolean algebra, x ⊙ y′ ⊙ z′ ∈ I and y ⊙ z′ ∈ I for any

x, y, z ∈ A. Since x⊙ y′ ⊙ z′ ∈ I and y ⊙ z′ ∈ I, we have (x ⊙ y′ ⊙ z′)/I = 0/I and

(y⊙ z′)/I = 0/I. Moreover, since A/I is a Boolean algebra, y/I ∨ y′/I = 1/I. Then

by Proposition 2.1 (x),

(x⊙ z′)/I = x/I ⊙ z′/I ⊙ 1/I = x/I ⊙ z′/I ⊙ (y/I ∨ y′/I)

= (x/I ⊙ z′/I ⊙ y/I) ∨ (x/I ⊙ z′/I ⊙ y′/I) = 0/I.

Hence, x⊙ z′ ∈ I. Therefore, I is an implicative ideal of A. �
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Proposition 4.14.

(i) If ϕ : A → B is a hoop homomorphism and I is an implicative ideal of B, then

ϕ−1(I) is an implicative ideal of A.

(ii) If ϕ : A → B is surjective and I is an implicative ideal of A, then ϕ(I) is an

implicative ideal of B.

P r o o f. Similar to the proof of Proposition 3.15. �

Proposition 4.15. Let I ∈ ID(A). Then I is an implicative ideal of A if and

only if, for any a ∈ A, the set Ia = {x ∈ A : x ⊙ a′ ∈ I} is the least ideal of A

containing I and {a}.

P r o o f. (⇒) Let a ∈ A. Since 0 ∈ A and 0 ⊙ a′ = 0 ∈ I, we have 0 ∈ Ia 6= ∅.

Suppose x′ ⊙ y ∈ Ia and x ∈ Ia. Then (x′ ⊙ y) ⊙ a′ ∈ I and x ⊙ a′ ∈ I. Since I is

an implicative ideal, we get that y ⊙ a′ ∈ I, and so y ∈ Ia. Now, let x, y ∈ Ia. Then

x ⊙ a′ ∈ I and y ⊙ a′ ∈ I. By Proposition 2.1 (vi), we have, (x′ → y) ⊙ x′ ⊙ a′ =

x′ ⊙ (x′ → y) ⊙ a′ 6 y ⊙ a′ ∈ I. Since I ∈ ID(A) and y ⊙ a′ ∈ I, we have

(x′ → y)⊙x′⊙a′ ∈ I. Moreover, from x⊙a′ ∈ I and the fact that I is an implicative

ideal, we obtain that (x′ → y) ⊙ a′ ∈ I. Then x′ → y ∈ Ia. Hence, Ia is an ideal

of A. Also, since a⊙ a′ = 0 ∈ I, we get a ∈ Ia. Let x ∈ I. By Proposition 2.1 (iii),

x ⊙ a′ 6 x. Since I ∈ ID(A) and x ∈ I, we have x ⊙ a′ ∈ I, and so x ∈ Ia. Hence,

I ⊆ Ia. Now, suppose there exists J ∈ ID(A) such that I ∪ {a} ⊆ J . Let x ∈ Ia.

Then x⊙ a′ ∈ I ⊆ J , and so x⊙ a′ ∈ J . Since J ∈ ID(A) and a ∈ J , we have x ∈ J .

Hence, Ia ⊆ J . Therefore, Ia is the least ideal of A containing I and {a}.

(⇐) Let I ∈ ID(A) and for any x, y, z ∈ A, let x ⊙ y′ ⊙ z′ ∈ I and y ⊙ z′ ∈ I.

According to the definition of Ia, it is clear that x ⊙ y′ ∈ Iz and y ∈ Iz . Since

Iz ∈ ID(A), we get that x ∈ Iz , and so x ⊙ z′ ∈ I. Hence, I is an implicative ideal

of A. �

Proposition 4.16. Let I, J be two ideals of A. Then the following statements

hold:

(i) Ia = I if and only if a ∈ I;

(ii) if a 6 b, then Ia ⊆ Ib;

(iii) if I ⊆ J , then Ia ⊆ Ja;

(iv) (I ∩ J)a = Ia ∩ Ja and (I ∪ J)a = Ia ∪ Ja;

(v) Ia⊖b ⊆ (Ia)b.

P r o o f. (i) By Proposition 4.15, since I ∪ {a} ⊆ Ia and Ia = I, we have a ∈ I.

Now, if a ∈ I, since Ia is the least ideal of A containing I and {a}, it is clear that

Ia = I.
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(ii) Let a 6 b and x ∈ Ia. Then x ⊙ a′ ∈ I. Since a 6 b, by Proposition 2.1 (vii)

and (viii), b′ 6 a′, and so x⊙ b′ 6 x⊙ a′. Since I ∈ ID(A) and x ⊙ a′ ∈ I, we have

x⊙ b′ ∈ I. Then x ∈ Ib.

(iii) Let I, J ∈ ID(A) and I ⊆ J . If x ∈ Ia, then x ⊙ a′ ∈ I, and so x ⊙ a′ ∈ J .

Hence, x ∈ Ja.

(iv) Since I∩J ⊆ I, J , by (iii), (I∩J)a ⊆ Ia∩Ja. Let x ∈ Ia∩Ja. Then x⊙a′ ∈ I

and x ⊙ a′ ∈ J , thus, x ⊙ a′ ∈ I ∩ J . Hence, x ∈ (I ∩ J)a. The proof of the other

case is similar.

(v) Let x ∈ Ia⊖b. Then x⊙ (a⊖ b)′ = x⊙ (a′ → b)′ ∈ I. By (HP3), we have,

(a′ ⊙ b′) → (a′ → b)′ = (a′ → b) → ((a′ ⊙ b′) → 0) = (a′ → b) → (a′ → b′′) = 1.

Thus, (a′⊙b′) 6 (a′ → b)′, and so x⊙ (a′⊙b′) 6 x⊙ (a′ → b)′ ∈ I. Since I ∈ ID(A),

x⊙ (a′ ⊙ b′) ∈ I. Hence, x ∈ (Ia)b. �

Proposition 4.17. Let A be a bounded hoop with (DNP). Then the following

statements are equivalent:

(i) any ideal I of A is an implicative ideal;

(ii) {0} is an implicative ideal of A;

(iii) for any a ∈ A, the set A(a) = {x ∈ A : x⊙ a′ = 0} is an ideal of A.

P r o o f. (i) ⇒ (ii): Since {0} is a trivial ideal of A, by (i), the proof is clear.

(ii) ⇒ (iii): Since 0 ∈ A and 0 ⊙ a′ = 0, we have 0 ∈ A(a) 6= ∅. Suppose

x, y ∈ A(a). Then x⊙ a′ = y⊙ a′ = 0. Since A has (DNP), x = x′′ ∈ A(a). Then by

Proposition 2.1 (vi), (x′ → y)⊙ y′ ⊙ a′ = (x′ → y)⊙ (y → 0)⊙ a′ 6 x′′ ⊙ a′ = x⊙ a′.

Since x ⊙ a′ = 0, we get that (x′ → y) ⊙ y′ ⊙ a′ = 0 ∈ {0}. Also, y ⊙ a′ = 0 ∈ {0}.

Since {0} is an implicative ideal of A, (x′ → y) ⊙ a′ = 0, so x′ → y ∈ A(a). Now,

suppose x 6 y and y ∈ A(a). Then by Proposition 2.1 (vii), x ⊙ a′ 6 y ⊙ a′ = 0,

thus, x⊙ a′ = 0. Hence, x ∈ A(a). Therefore, A(a) is an ideal of A.

(iii) ⇒ (i): Let I ∈ ID(A) such that x ⊙ y′ ⊙ z′ ∈ I and y ⊙ z′ ∈ I for any

x, y, z ∈ A. Since I ∈ ID(A), A/I is a hoop. Then by (iii), for any a/I ∈ A/I

we have A/I(a/I) ∈ ID(A/I). Then (x ⊙ y′)/I ⊙ z′/I = 0 and y/I ⊙ z′/I = 0.

Thus, (x ⊙ y′)/I ∈ A/I(z/I) and y/I ∈ A/I(z/I). Since A/I(z/I) ∈ ID(A/I), we

have x/I ∈ A/I(z/I). Then x/I ⊙ z′/I = 0. Hence, x ⊙ z′ ∈ I. Therefore, I is an

implicative ideal of A. �

157



5. Prime, maximal and Boolean ideals in hoops

In this section, we introduce prime, maximal and Boolean ideals in a hoop and

investigate the relation between these ideals and implicative one. Also, we study the

quotients that are made by them.

Definition 5.1. Let P be a proper ideal of A. P is called a prime ideal of A if

x ∧ y ∈ P implies x ∈ P or y ∈ P for any x, y ∈ A. The set of all prime ideals of A

is denoted by Spec(A).

E x am p l e 5.2. According to Example 3.3, we can easily see that both ideals I1
and I2 are prime ideals of A.

Proposition 5.3. If A is a ∨-hoop with (DNP), then I is a prime ideal if and

only if I ′ = F is a prime filter of A.

P r o o f. Proof is similar to the proof of Proposition 3.6. �

Proposition 5.4. Let A be a ∨-hoop with (DNP) and let P be a proper ideal

of A. Then P is a prime ideal if and only if, for any I, J ∈ ID(A) such that I∩J ⊆ P ,

we get I ⊆ P or J ⊆ P .

P r o o f. (⇒) Suppose I, J ∈ ID(A) such that I ∩J ⊆ P , but I * P and J * P .

Then there exist x ∈ I − P and y ∈ J − P . Since x ∧ y 6 x, y and I, J ∈ ID(A),

x∧y ∈ I ∩J ⊆ P , and so x∧y ∈ P . Since P ∈ Spec(A), we get that x ∈ P or y ∈ P ,

which is a contradiction. Hence, I ⊆ P or J ⊆ P .

(⇐) Let P ∈ ID(A) such that for any x, y ∈ A, x ∧ y ∈ P . If x, y /∈ P , then by

Corollary 3.14, (P ∪ {x}] ∩ (P ∪ {y}] = (P ∪ {x ∧ y}] = P . Thus, by assumption,

(P ∪ {x}] ⊆ P or (P ∪ {y}] ⊆ P , and so x ∈ P or y ∈ P , which is a contradiction.

Hence, P ∈ Spec(A). �

Proposition 5.5. Let ϕ : A → B be a hoop homomorphism. Then the following

statements hold:

(i) if ϕ is an epimorphism and P ∈ Spec(B), then ϕ−1(P ) ∈ Spec(A);

(ii) if ϕ is surjective and P ∈ Spec(A) such that P 6= B, then ϕ(P ) ∈ Spec(B).

P r o o f. By Propositions 3.15 and 5.4, the proof is clear. �

Theorem 5.6. Let A be a ∨-hoop with (DNP), let I be a proper ideal of A and

∅ 6= S ⊆ A such that I ∩ S = ∅. If S is ∧-closed, then there exists P ∈ Spec(A) such

that I ⊆ P and P ∩ S = ∅.
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P r o o f. Let Σ = {J ∈ ID(A) : I ⊆ J and J∩S = ∅}. Since I ∈ Σ, hence Σ 6= ∅.

If {Jλ}λ∈∆ is a family of ideals of A that are in Σ, then by Zorn’s lemma we can see

that P =
⋃

λ∈∆

Jλ is a maximal element of Σ. So, it is enough to prove that P is a prime

ideal. Since P∩S = ∅, it is clear that P is proper. Now, suppose x∧y ∈ P for x, y ∈ A

such that x, y /∈ P . Then by Corollary 3.14, (P ∪{x}]∩(P ∪{y}] = (P ∪{x∧y}] = P .

Since P ⊆ (P ∪{x}]∩(P∪{y}] and P is a maximal element of Σ, we get (P ∪{x}] /∈ Σ

and (P ∪ {y}] /∈ Σ, so (P ∪ {x}] ∩ S 6= ∅ and (P ∪ {y}] ∩ S 6= ∅. Then there exist

a ∈ (P ∪ {x}] ∩ S and b ∈ (P ∪ {y}] ∩ S. Since S is ∧-closed, we have

a ∧ b ∈ [(P ∪ {x}] ∩ (P ∪ {y}]] ∩ S = P ∩ S

So, we consequence that P ∩ S 6= ∅, which is a contradiction. Then, P ∈ Spec(A).

Therefore, there exists P ∈ Spec(A) such that I ⊆ P and P ∩ S = ∅. �

Corollary 5.7. Let A be a ∨-hoop with (DNP). Then for any proper ideal I of A

there exists P ∈ Spec(A) such that I ⊆ P .

P r o o f. Since I is a proper ideal of A, there exists x ∈ A − I. Let S = {x}.

Then by Theorem 5.6, the proof is clear. �

Definition 5.8. Let M be a proper ideal of A. Then M is called a maximal

ideal of A if no proper ideal of A strictly containsM . It means that if there exists an

ideal J of A such that M ⊆ J ⊆ A, then M = J or J = A. The set of all maximal

ideals of A is denoted by Max(A).

E x am p l e 5.9. According to Example 3.3, we can easily see that both the ide-

als I1 and I2 are maximal ideals of A.

Proposition 5.10. Let A be a ∨-hoop with (DNP). Then every maximal ideal

of A is a prime one.

P r o o f. Let M ∈ Max(A) and x ∧ y ∈ M for any x, y ∈ A. If x /∈ M , then

M ⊆ (M ∪ {x}]. Since M ∈ Max(A), we get (M ∪ {x}] = A. In a similar way, if

y /∈ M , then (M ∪ {y}] = A. By Corollary 3.14, A = (M ∪ {x}] ∩ (M ∪ {y}] =

(M ∪ {x ∧ y}] = M , which is a contradiction. Hence, M ∈ Spec(A). �

Proposition 5.11. Let ϕ : A → B be a hoop homomorphism. Then the following

statements hold:

(i) if ϕ is an epimorphism and M ∈ Max(B), then ϕ−1(M) ∈ Max(A);

(ii) if ϕ is surjective andM ∈ Max(A) such that ϕ(M) 6= B, then ϕ(M) ∈ Max(B).

P r o o f. By Propositions 3.15 and 5.4, the proof is clear. �
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Theorem 5.12. Let A be a hoop and M a proper ideal of A. Then the following

statements are equivalent:

(i) M is a maximal ideal of A;

(ii) A/M is a simple hoop;

(iii) |ID(A/M)| = 2.

P r o o f. (i) ⇒ (ii): Let M ∈ Max(A). Then for any J ∈ ID(A) such that

M ( J , J/M ∈ ID(A/M). Since M ∈ Max(A) and M ( J , we get that J = A. So,

A/M has just trivial ideals. Hence, A/M is a simple hoop.

(ii) ⇒ (iii): It is clear.

(iii) ⇒ (i): Let |ID(A/M)| = 2. Suppose M,J ∈ ID(A) such that M ( J .

If J 6= A, then {0} = M ( J/M ( A/M . Thus, |ID(A/M)| > 2, which is a

contradiction. Hence, M is a maximal ideal of A. �

Definition 5.13. An ideal I of A is called a Boolean ideal if x ∧ x′ ∈ I for any

x, y ∈ A.

E x am p l e 5.14. According to Example 3.3, we can easily see that both the

ideals I1 and I2 are Boolean ideals of A.

According to Corollary 4.8, every implicative ideal is a Boolean ideal, but by

Example 4.9, converse may be not true, in general.

Theorem 5.15. Let A be a bounded ∨-hoop with (DNP) and let I be a proper

ideal of A. Then the following statements are equivalent:

(i) I is a prime implicative ideal of A;

(ii) I is a maximal implicative ideal of A;

(iii) if x, y /∈ I, then x⊙ y′ ∈ I and x′ ⊙ y ∈ I;

(iv) if x /∈ I, then there exists n ∈ N such that xn
⊖ = x′ ⊖ x′ ⊖ . . .⊖ x′ ∈ I;

(v) x ∈ I or x′ ∈ I.

P r o o f. (i) ⇒ (ii): Let I be a proper ideal of A such that I /∈ Max(A). Then

there exists J ∈ ID(A) such that I ( J ( A. Thus, there is an element x ∈ J − I.

Since (x′∧x)⊙x′ = x⊙(x → x′)⊙x′ = 0 ∈ I ⊆ J , we get that x∧x′ ∈ (I∪{x}] ⊆ J .

Since x ∧ x′ ∈ (I ∪ {x}], if x ∧ x′ ∈ I, from I ∈ Spec(A), then x′ ∈ I, and so x′ ∈ J .

Since J ∈ ID(A), x⊖x′ = 1 ∈ J , which is a contradiction. If x∧x′ = x, then x 6 x′,

and so x2 = 0. Since I is an implicative ideal of A, by Proposition 4.6, x ∈ I, which

is a contradiction. Hence, I ∈ Max(A).

(ii) ⇒ (i): By Proposition 5.10, the proof is clear.

(ii)⇒ (iii): Suppose x, y /∈ I. Since I ∈ Max(A), we have (I∪{x}] = (I∪{y}] = A.

Then y ∈ (I ∪ {x}] and x ∈ (I ∪ {y}]. Thus, x⊙ y′ ∈ I and x′ ⊙ y ∈ I.
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(iii) ⇒ (iv): If x /∈ I, since 1 /∈ I, then by (ii), 1 ⊙ x′ ∈ I and x ⊙ 1′ = 0 ∈ I.

Thus, x′ ∈ I. So, for n = 1, the proof is clear.

(iv)⇒ (v): Let x /∈ I. Then there exists n ∈ N such that xn
⊖ = x′⊖x′⊖. . .⊖x′ ∈ I.

Since x′ 6 xn
⊖ and I ∈ ID(A), we have x′ ∈ I.

(v) ⇒ (ii): Suppose I /∈ Max(A). Then there exists J ∈ ID(A) such that I (

J ( A. Let x ∈ J − I. Then by (iii), x′ ∈ I, and so x′ ∈ J . Since x, x′ ∈ J and

J ∈ ID(A), 1 = x′ → x′ ∈ J . Thus, J = A, which is a contradiction. Hence,

I ∈ Max(A). Now, suppose x2 ∈ I for any x ∈ A. By Proposition 4.6, it is enough to

prove that x ∈ I. Let x /∈ I. Then by (iii), x′ ∈ I. Since I ∈ ID(A) and x2, x′ ∈ I, we

have (x2)′ → x′ ∈ I. Then (x → x′) → x′ = ((x ⊙ x) → 0) → x′ = (x2)′ → x′ ∈ I.

Since x 6 (x → x′) → x′ and I ∈ ID(A), we have x ∈ I. Therefore, I is an

implicative ideal of A. �

Corollary 5.16. Let A be a bounded ∨-hoop with (DNP). If every proper ideal

of A is an implicative ideal, then Spec(A) = Max(A).

P r o o f. By Theorem 5.15, the proof is clear. �

6. Conclusions

In this paper we define and characterize the notions of (implicative, maximal,

prime) ideals in hoops. Then we investigate the relation between them and prove

that every maximal implicative ideal of a ∨-hoop with (DNP) is a prime one. Also,

we define a congruence relation on hoops by ideals and study the quotient that is

made by it. This notion helps us to show that an ideal is maximal if and only if the

quotient hoop is a simple MV-algebra. Also, we investigate the relationship between

ideals and filters by exploiting the set of complements.
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[7] A.Di Nola, L. Leuştean: Compact representations of BL-algebras. Arch. Math. Logic 42
(2003), 737–761. zbl MR doi

[8] F.Esteva, L.Godo: Monoidal t-norm based logic, towards a logic for left-continuous
t-norms. Fuzzy Sets Syst. 124 (2001), 271–288. zbl MR doi
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